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Abstract: Studying aging is important to further understand the molecular mechanisms underlying
this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular
mice, are often used in aging studies, since they mimic important features of human aging, age
quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared
(FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle
tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle
at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data
using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest
deep changes in protein secondary structure in 24-month-old mice compared to both tissues in
6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular
β-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR
spectroscopy being unable to identify the proteins responsible for these conformational changes,
this study gives insights into the potential of FTIR to monitor the aging process and identify an
age-specific spectroscopic signature.

Keywords: aging fingerprint; aging muscle; spectroscopic profile

1. Introduction

Aging studies are of great importance to elucidate this complex process, to detect
and prevent age-related diseases, and to develop anti-aging therapies. However, the
study of aging is still a work in progress for the scientific community, as there are several
challenges that are difficult to overcome. A relevant obstacle to studying age is time; it
is nearly impossible and totally impracticable to perform a longitudinal study of aging
in humans; cost and ethical issues are other drawbacks that have to be considered when
studying aging. Therefore, aging studies are mostly performed using different models,
either computational models, cell cultures or animal models. Both in vitro and in vivo
studies are widely used in aging research, using both cell and animal models [1,2]. Among
all animal models used, Mus musculus mice are the preferred model for in vivo research for
several reasons: they are small animals, which makes manipulation easier, have a relative
short lifespan, a well-documented genome and they are similar to humans in many aspects
of health and disease [1]. In addition, it is possible to correlate mice age to human age [3],
making it easier to translate research results. However, despite all these advantages, mice
do not appear to develop some of the most common age-related diseases, such as diabetes
and atherosclerosis, so one needs to be careful when using this model to study aging and
age-related diseases [3–6].

Molecules 2021, 26, 6410. https://doi.org/10.3390/molecules26216410 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-0639-0666
https://orcid.org/0000-0002-3277-1809
https://orcid.org/0000-0003-4000-7461
https://orcid.org/0000-0002-5862-5797
https://orcid.org/0000-0002-0595-5821
https://doi.org/10.3390/molecules26216410
https://doi.org/10.3390/molecules26216410
https://doi.org/10.3390/molecules26216410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26216410
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26216410?type=check_update&version=1


Molecules 2021, 26, 6410 2 of 12

Studies on aging aim not only to predict the odds of the development of age-related
diseases but also to identify the changes that occur during physiological aging and iden-
tify potential biomarkers of aging. This is a challenging task, and to date there are still
difficulties in the identification of true biomarkers of healthy aging despite great efforts
in different fields [7–9]. Whether using -omics analytic approaches (such as proteomics,
lipidomics, transcriptomics, genomics or metabolomics) to identify molecules that specifi-
cally and significantly change throughout the aging process, or using clinical parameter
such as blood pressure, bone density or maximal oxygen consumption, there are no perfect
markers of physiological age yet, since they always also reflect changes that occur during
pathogenesis [7]. One approach that has been gaining potential as a screening tool for
the study of biological samples in health and disease is Fourier Transform Infrared (FITR)
spectroscopy. This technique has already been used for the identification of cancer biomark-
ers [10], characterization of disease metabolites [11], identification of microorganisms [12],
intra-operative identification of malignant tissue [13] and quantification of analytes in
biological fluids [14], with robust and reproducible results. One of the great advantages
of this approach is that it allows rapid screening of a given sample in order to obtain a
spectroscopic profile characteristic of that sample with valuable information on the con-
tent of the main biological molecules: lipids, proteins, nucleic acids and carbohydrates.
Although FTIR spectroscopy is not as specific as, for instance, NMR or mass-spectrometry
approaches, it is less expensive and in the case of analysis of tissues, samples can be re-used
for further analysis. In this way, it is a good starting point when initiating metabolomic
analyses: one can understand the behavior of the sample, compare spectroscopic profiles
in health and disease, and select which are the main groups of biomolecules that will be
worth studying when using more invasive, time-consuming and expensive approaches.

Despite the entire organism suffering from the effects of aging, skeletal muscle is
considered one of the most age-sensitive tissues, and is vital for several functions in the
body, including respiration [15]. Additionally, cardiac muscle also undergoes deep changes
during aging that can result in heart failure [16]. Thus, the aim of this study was to
screen tissue samples of the cardiac and skeletal muscle of C57BL/6J female mice (40 mice
samples) using FTIR spectroscopy and to assess the differences and similarities of changes
in both tissues during aging.

2. Results
2.1. FTIR Spectra Overview and Pre-Treatments

To evaluate the spectroscopic profile of muscle tissue during aging, samples of skeletal
and cardiac muscle of C57BL/6J female mice at 6, 12, 17 and 24 months of age were sub-
jected to FTIR spectroscopy (ten biological and three technical replicates at each timepoint).

The average baseline-corrected, area normalized spectra of skeletal and cardiac muscle
are presented in Figure 1. Area normalization of the FTIR spectra was performed to ensure
that differences in the amount of sample placed in the ATR crystal would not be the cause
of spectral differences between samples.

To perform a detailed analysis of age-related spectral changes, we analyzed each tissue
independently, then compared both tissues to evaluate the main differences among them
throughout the aging process.

Raw spectra were subjected to PCA analysis for outlier detection and outlier removal.
To further evaluate how age affects biomolecules, spectra were cut in three main spectral
regions (3050–2800 cm−1, 1800–1500 cm−1 and 1200–900 cm−1), baseline-corrected, and
area normalized and statistical analysis was performed. PLS-R analysis was performed
to evaluate age-related changes in the tissue, and analysis of peak intensities was carried
out to evaluate in detail some important peaks, namely those related to protein secondary
structure. PLS analysis was performed individually in each spectral region for each tissue.
For each region, the choice of which factor to use to interpret the results was performed in
such a way as to maximize the variance explained by that factor and to avoid overfitting.
In this way, for skeletal muscle, the best factors to use to discriminate between the samples
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were factor 1, factor 2 and factor 2 for the 3050–2800, 1800–1500 and 1200–900 cm−1 regions,
respectively. For cardiac muscle, following the same logic, we used factor 3, factor 1 and
factor 1 for 3050–2800, 1800–1500 and 1200–900 cm−1 regions, respectively (see Sections 2.2
and 2.3 for detailed results).
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Figure 1. Baseline-corrected, area normalized average FTIR spectra of skeletal (A) and cardiac (B)
muscle in the mid-infrared range (4000–900 cm−1).

2.2. Skeletal Muscle

As observed in Figure 1, the spectra of cardiac and skeletal muscle are visually identi-
cal, and one can only identify some slight differences in peak intensities when zoomed in, as
in panel A of Supplementary Figures S1–S3. To identify in detail these spectral differences,
we further analyzed the three main spectroscopic regions, 3050–2800 cm−1; 1800–1500 cm−1

and 1200–900 cm−1 with PLS analysis. Briefly, we took second-derivative spectra of each
normalized spectral region and performed a PLS analysis using the age of the mice as the Y
matrix and spectral data as the X matrix. As pointed out at the end of Section 2.1, for each
spectral region we chose the number of factors that allowed for the best discrimination
between samples without overfitting. Figure S1B shows the second-derivative spectra of
skeletal muscle tissue in the 3050–2800 cm−1 region, used for PLS model. The PLS score
plot is shown in Figure S1C, and corresponding loadings are shown in Figure S1D. Factor 1
partially discriminates younger animals (6 M) from older animals (24 M), with a sensitivity
of 80% and a specificity of 75%. The factor 1 loadings (Figure S1D blue line) suggest that
the peak at 2925 cm−1, assigned to CH2 groups from lipid acyl chains, is associated with
older samples and the peak at 2868 cm−1, assigned to CH3 groups of lipid acyl chains, is
related to younger samples.

To further evaluate if there are changes in the intensity of some specific peaks during
aging, we performed a peak intensity analysis using second derivative spectra and normal-
ized spectra, as described in the methods section. Specifically, in the 3050–2800 cm−1 region,
we evaluated the acyl chain length and lipid unsaturation levels. The results showed no
significant changes during aging (Figure 2A,B black bars); however, a tendency for an
increase in lipid unsaturation from 12 M to 24 M can be observed (Figure 2B black bars).
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Figure 2. Analysis of peak intensities of cardiac and skeletal muscle spectra. (A) Acyl chain length, calculated using CH2

and CH3 peak intensities (ratio I2851+2922/I2959+2871); (B) Lipid unsaturation levels, calculated using the ratio between
olefinic band and CH2 bands (ratio I3013/ I2851+2922); (C) The levels of triglycerides, calculated using intensity of C=O band
at 1741 cm−1; (D) Total protein levels, calculated by the sum of Amide I and Amide II peaks (IAmide II/IAmide I); (E) Ratio
of antiparallel β-sheet/β-sheets sums, calculated using I1693/I1693+1682+1628; (F) Ratio of intermolecular β-sheets/β-sheets
sums, calculated using I1628/I1693+1682+1628; (G) Fibril formation, calculated using Amide I and Amide II peak intensities
(ratio IAmide II/IAmide I) using baseline-corrected, area-normalized and non-derived spectra; (H) Cholesterol ester levels,
calculated using the intensity of peak at 1169 cm−1; and (I) Glucose levels, calculated using the intensity of peak at
1045 cm−1. Data are expressed as mean ± SD. ** p < 0.01; *** p < 0.001; **** p < 0.0001.

The 1800–1500 cm−1 spectral region is especially important to analyze changes in
protein secondary structure using the Amide I and Amide II peaks. Figure S2B shows
the second derivative spectra of skeletal muscle. PLS results show that there is a positive
correlation between the spectral profile in this region and the age of the mice (correlation
coefficient R = 0.72). Moreover, factor 2 discriminates samples of younger mice from
those of older mice with a sensitivity of 86.7% and a specificity of 87.5% (Figure S2C).
The analysis of the loadings plot (Figure S2D) shows that peaks at 1741 cm−1 assigned
to carbonyl groups, at 1651 cm−1 assigned to α-helix structures of proteins, and at 1540
and 1512 cm−1, both assigned to Amide II of proteins, are associated with older samples
(24 M), while peaks at 1693 cm−1 assigned to antiparallel β-sheets, at 1662 cm−1 assigned
to β-sheets, at 1625 cm−1 assigned to intermolecular β-sheets, and at 1554 cm−1 assigned
to Amide II of proteins, are associated with samples from six month old mice.

The analysis of peak intensities in this region revealed that the levels of triglycerides
(TG) as estimated by the intensity of the peak at 1741 cm−1 and assigned to carbonyl groups
(C=O), do not vary significantly during aging (Figure 2C black bars), a behavior also seen
for total protein levels (Figure 2D black bars). Figure 2E–G (black bars) shows there are no
differences in the intensities of peaks related to the secondary structure of proteins.
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In the so-called fingerprint region (1200–900 cm−1), it is possible to observe bands that
arise mainly from carbohydrates, nucleic acids and lipids. The second derivative spectra of
skeletal muscle are presented in Figure S3B. Similar to the 1800–1500 cm−1 region, PLS-R
analysis showed a positive correlation between the spectral profile and the age of the tissue
(correlation coefficient R = 0.81). The score plot (factor 2 vs. factor 3) discriminates samples
of six month old mice from the oldest samples (24 months) with a sensitivity of 90% and a
specificity of 75% (Figure S3C). The corresponding loadings show that a peak at 1045 cm−1,
which may arise from glucose, is associated with samples from 24 month old mice, while
peaks at 1155 and 1081 cm−1, assigned to glycogen and PO4

- groups of DNA, respectively,
are related to samples from six month old mice (Figure S3D). Despite the PLS analysis
showing that glucose may be related to older samples, the analysis of the peak intensities
revealed no significant changes during aging (Figure 2I black bars). The peak intensity
analysis of the peak related to cholesterol esters (1169 cm−1) also showed no variation with
aging (Figure 2H black bars).

2.3. Cardiac Muscle

As can be seen in Figure 1B, there is a decrease in the intensity of the Amide I and II
peaks as well as in peaks assigned to CH2 and CH3 groups in the cardiac muscle of older
mice when compared with younger animals; thus, these differences were evaluated using
PLS and peak intensity analysis. To see in detail the differences in peak intensities between
younger and older animals, the three main spectral regions were zoomed in and plotted
in panel A of supplementary Figures S4–S6. For PLS analysis we used second-derivative
spectra of each normalized spectral region and used the age of the mice as the Y matrix and
spectral data as the X matrix. As pointed out at the end of Section 2.1, we chose the number
of factors that allowed for the best discrimination between samples without overfitting for
each spectral region.

The average second derivative spectra of mice cardiac muscle of all age groups in the
3050–2800 cm−1 region are presented in Figure S4B. A PLS model was built using these
spectra, and a PLS score plot is presented in Figure S4C. Factor 3 discriminates samples of
six month old mice (negative factor 3) from older samples, which are located mainly in the
positive sector of factor 3, with a sensibility of 63% and a specificity of 87.5%. The peaks
responsible for this discrimination are highlighted in Figure S4D in the loadings plot. The
results clearly show that peaks at 3013 and 2877 cm−1, assigned to the olefinic band (CH
group of double bands) and CH3 groups, respectively, are associated with older samples,
and the peak at 2851 cm−1, from CH2 groups, is associated with six month old mice. The
intensity of some peaks was also analyzed in order to calculate the length of acyl chains
and unsaturation levels (Figure 2A,B grey bars). The results show no significant differences
throughout aging in any of the calculated levels.

The Figure S5B presents the second derivative spectra of cardiac muscle in the
1800–1500 cm−1. PLS analysis revealed a positive correlation between age and spectral
profile in this region, with a correlation coefficient R = 0.70. Looking to the score plot,
there is a clear discrimination in factor 1 of the younger samples (6 months) from older
samples (24 months) (Figure S4C), with a sensitivity of 66.7% and a specificity of 87.5%. The
loadings (Figure S5D) show that peaks at 1744 (carbonyl groups), 1682 (β-sheet structures
of proteins), 1648 (α-helix structures of proteins), 1625 (intermolecular β-sheet structures
of proteins) and 1554, 1540 and 1512 cm−1 (Amide II of proteins) are associated with
older samples (24 M), and peaks at 1696 (antiparallel β-sheets of proteins) and 1662 cm−1

(β-turns of proteins) are associated with younger samples (6 M).
The analysis of peak intensities showed no significant differences in the levels of

triglycerides, total protein levels, antiparallel β-sheets, intermolecular β-sheets and fibril
formation during aging (Figure 2C–G grey bars).

The second derivative spectra of cardiac muscle in the fingerprint region (1200–900 cm−1)
are presented in Figure S6B. PLS analysis showed that there is a positive strong correlation



Molecules 2021, 26, 6410 6 of 12

between the spectroscopic profile and the age of the tissue, with a correlation coefficient
R = 0.78.

Looking to the score plot, a clear distinction is noticeable between the samples of
six month old mice and samples from 24 month old mice by factor 1, with a sensibility
of 92.6% and a specificity of 87.5% (Figure S6C). The loadings plot (Figure S6D) shows
that this discrimination is explained by peaks related to cholesterol esters (1166 cm−1)
and glucose (1050 cm−1), which appear to be related to older samples; however, analysis
of peak intensities of these two peaks revealed no significant changes during the aging
process (Figure 2H,I grey bars).

2.4. Skeletal vs. Cardiac Muscle

To compare the behavior of both striated muscle tissues during aging and highlight
the major differences between these two tissues, we performed a comparative analysis
of all spectra of skeletal and cardiac muscle in the three spectral regions by PCA. In
the 3050–2800 cm−1 region, PCA separated skeletal and cardiac muscle by PC1, with
a sensitivity of 82.4% and a specificity of 83.8% (Figure S7A). In the 1800–1500 cm−1

region, the differences between tissues are even more evident, with a sensitivity of 100%
and 99.1% specificity by PC1 separation (Figure S7B). In the fingerprint region, PC1 also
discriminates cardiac from skeletal muscle, with a sensitivity of 91.9% and a specificity of
98.2% (Figure S7C).

The analysis of peak intensities revealed significant differences between the two
tissues. Concerning lipids, there is a tendency for acyl chains to be bigger in cardiac
muscle, although this difference is only significant for 24 months (Figure 2A). Similarly,
lipid unsaturation levels are higher in cardiac muscle, being significant different in all
ages (Figure 2B). As concerns triglycerides, there are no significant differences in the levels
of these compounds between skeletal and cardiac muscle (Figure 2C). Analysis of peak
intensities also showed that cardiac muscle has lower levels of proteins than skeletal muscle;
however, this difference was only significant for older mice (17 and 24 months) (Figure 2D).
With respect to differences in protein secondary structure between the two tissues, the
results show no significant differences between both tissues in the amount of antiparallel
β-sheets (Figure 2E); however, lower levels of intermolecular β-sheets were observed in
cardiac muscle compared to skeletal muscle for all analyzed ages (Figure 2F). Regarding
cholesterol esters, cardiac muscle seems to have higher levels than skeletal muscle, but this
difference is not statistically significant (Figure 2H). On the contrary, the results indicate
that cardiac muscle has lower levels of glucose than skeletal muscle; however, this result
was also not significant (Figure 2I).

3. Discussion

The present study attempted to evaluate age-related changes in the spectroscopic
profiles of cardiac and skeletal muscle from mice and to identify spectroscopic markers of
aging that would allow us to classify the status of the tissues in terms of age.

Mice are the preferred models for human aging studies, as it is possible to roughly
translate the age of mice into human age [3]. We used C57BL/6J female mice at 6, 12, 17
and 24 months of age, which translate to mature adults (6 M), middle aged (12 M) and old
aged mice (17 and 24 M) [6]. The equivalent age range in humans would therefore be from
around 30 years of age to around 70, which, taking into account the average lifespan, can
allow for some understanding of the metabolic changes concomitant with this physiological
process. However, the fact that we used only female mice for this study prevents us from
carrying out an accurate approximation of the human physiological response, as animals
from both sexes would be needed to predict the response in humans in the most accurate
way [17]. In addition, changes in the body composition of mice that are inherent to their
aging can bring additional bias into these types of studies.

Both skeletal and cardiac muscle are widely affected by aging. Sarcopenia, for instance,
is a common feature of aging and impairs skeletal and cardiac muscle function, decreasing
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autonomy [18–20]. Even without comorbidities such as cardiovascular disease, an asso-
ciation between skeletal and cardiac muscle sarcopenia has been found, reinforcing the
link between these two muscle types during aging [21]. There is also evidence that aging
increases acetylation of key proteins in both striated muscles, which may also contribute
to muscle deterioration [22]. Given that the global population is aging, understanding
the molecular mechanisms underlying muscle aging can allow for the development of
therapeutic strategies to improve quality of life for the elderly.

The FTIR results for the 3000–2800 cm−1 spectral region seem to indicate that the
skeletal muscle of older animals has longer lipid chains than younger mice. On the other
hand, in cardiac muscle it seems that there is a tendency for a decrease in CH2 groups and
an increase in CH3 and CH groups in lipids upon aging, which may indicate that older
cardiac muscle lipids have shorter carbon chains. In addition, the increase in the amount of
CH groups may indicate an increase in unsaturation levels in this tissue with age (although
the analysis of peak areas did not reveal any significant differences in unsaturation levels
in this tissue upon aging). Houtkooper et al. studied metabolic fingerprints from the
plasma, liver and muscle of aging C57BL/6J mice [22]. Results showed an increase in
the levels of free fatty acids and a decrease in long-chain acylcarnitines in the plasma of
24 month old mice. They also reported an increase in saturated 18:0 and 20:0 free fatty acids
and a decrease in 16:0 and 16:2 FFAs in older mice [22]. More importantly, these authors
identified decreased levels of linoleic acid from erythrocytes and decreased levels of C16
acylcarnitines as strong predictors of aging. In muscle, the authors detected 65 metabolites
that changed with age, most of them related to fatty acid metabolism [22]. These results
indicated that lipids suffer alterations throughout the aging process and may be used to
predict age [23]. In another study, Zhou et al. found an increase in 18:0 ceramides in aged
skeletal muscle [24], and Wong et al. [25] studied the lipidome of human plasma during
aging and found a generalized decrease in the levels of all lipid classes in older individuals,
independently of sex and body mass index.

The FTIR results for the 1800–1500 cm−1 region provide insights into changes in the
protein secondary structure in skeletal and cardiac muscle during aging. Specifically, in
skeletal muscle, our data from PLS analysis indicate a decrease in both antiparallel and
intermolecular β-sheets in β-sheet-containing proteins upon aging. This could be due
to a decrease in the expression of β-sheet rich proteins or due to a modification in the
secondary structural elements of existing proteins towards structures with less β-sheet. In
cardiac muscle, the results show an increase in the content of intermolecular β-sheets and a
decrease in antiparallel β-sheets. It is widely known that aging causes a progressive decline
in proteostasis and a consequent increase in protein aggregation levels in several organisms
(known as metastable proteins) [26,27]. This is often associated with increased levels of
β-sheet structures, since this secondary structure is aggregation-prone and is found in
proteins present in aggregates of known neurodegenerative diseases. Tanase et al. reported
an increase in protein aggregation levels in the bone marrow and spleen of 22 month
old mice compared to three month old mice [28]. Leeman et al. also reported increasing
protein aggregation levels in the neural stem cells of aged mice, due to defects and reduced
activity of the lysosomal pathway [29]. It has also been reported that deposition of amyloid
proteins occurs in the cardiac muscle of mice and that cardiac amyloidosis is not as rare as
it was thought to be [30,31]. Therefore, our results from skeletal muscle seem to contradict
results reported from other cells and tissues, where a tendency for a decrease in β-sheets
during aging in this tissue is seen. However, this may not mean a decrease in total protein
aggregation levels. In fact, FTIR spectroscopy only detects changes in protein secondary
structure, and in this case, we observed a decrease in β-sheets concomitant with age.
Nevertheless, it is known that only a small fraction of proteins that aggregate during
the aging process have aggregation-prone structures, such as poly-Q chains or increased
β-sheets [27,32]. Therefore, the decrease in β-sheet structures observed here may not reflect
a decrease in the amount of protein aggregates, but rather a decrease in the expression
of proteins with this structure. Future work using complementary approaches such as
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SDS-PAGE and mass spectrometry will be performed to help elucidate the changes in
protein aggregation pattern with age and identify specific proteins that are aggregating. In
cardiac muscle, the increase in intermolecular β-sheets with age may indicate that proteins
aggregating in this tissue are different from those aggregating in skeletal muscle. It would
be of great interest to perform a comparative study between these two tissues in order to
evaluate differences, for instance, in the proteomic protein aggregation profile with age. In
addition, despite the levels of intermolecular β-sheets appearing to decrease with age, a
comparison between cardiac and skeletal muscle indicates that skeletal muscle has higher
levels of these structures for all ages analyzed. Finally, carbonyl groups (peak at 1741 cm−1)
in this region show an increase in the levels of C=O bonds with age for both tissues, which
may indicate, for instance, higher phospholipid content, something that has already been
reported for aged skeletal muscle [33].

FTIR analysis of the fingerprint region (1200–900 cm−1) showed an increase in glucose
levels in older mice in both tissues, and increased glycogen levels in the skeletal muscle
of younger mice. These results are in agreement with the literature, where Uchitomi et al.
found decreased levels of compounds associated with glucose metabolism, in particular
fructose 1,6-diphosphate, in the skeletal muscle of aged mice (28 months-old) that they
associated with a decrease in the glycolytic pathway with age [33]. Also, Houtkooper
et al. [34] found increased levels of glucose in liver and skeletal muscle of aged mice.

One of the limitations of this study is that FTIR spectroscopy is not able to identify
specific molecules, only functional groups of molecules. This prevents us from reaching
definitive conclusions about the results; we can only infer potential changes in different
groups of biomolecules that are characterized mainly by a given functional group in a given
region of the spectra (e.g., despite there being several molecules with C=C and C–H bonds,
the spectral region between 3050–2800 cm−1 is characteristic of lipids). Other limitations
of the study include the fact that we only analyzed total protein, without any fractioning.
Thus, changes detected in protein conformation in the FTIR spectra cannot be attributed to
specific proteins but must rather be analyzed as a whole. Further studies using proteomic
approaches are needed, and some are already ongoing to identify specific proteins which
undergo conformation changes during the physiological aging process.

This work highlights the potential of FTIR spectroscopy as a tool to identify age-related
changes in mouse muscle. The results suggest differing changes during aging for cardiac
and skeletal muscle, indicating that these tissues age differently, given they present a
different protein secondary structure spectroscopic signature. The results also revealed that
there is a decrease in antiparallel β-sheets with age, characteristic of oligomeric structures in
both cardiac and skeletal muscle. However, while there is an increase in aggregation-prone
intermolecular β-sheet structures in proteins of cardiac muscle, there is not in skeletal
muscle. Since human samples of cardiac muscle are not easily accessible, the study of
murine samples may open doors to understanding the potential impact of increase in
aggregation-prone structures in this tissue and evaluating the potential impact it may
have on human health. In this way, targeted therapies may be considered to slow the
deteriorative effects of aging on the heart. Despite FTIR spectroscopy not being able to
identify specific molecules, it is a cheap, reliable and accessible tool to monitor spectral
signatures specific to tissue aging.

4. Materials and Methods
4.1. Animals

Colonies of female C57BL/6J mice were obtained from Charles River Laboratories, UK,
at 6, 12, 17 and 24 months of age, and allowed to acclimatize in a vivarium for at least a week
before being euthanized. Animals were maintained under a controlled environment (23 ◦C
and 12 h light cycle with food and water ad libitum), and their health status and well-being
were monitored daily by the iBiMED animal facility staff. The animal study protocol was
reviewed and approved by the Medical Sciences Department of the University of Aveiro
animal welfare body (approval number 01/2018). Briefly, the animals were euthanized by
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cervical dislocation followed by decapitation. An incision was made in the thorax to collect
the heart (from now on designated cardiac muscle, its major component). In addition, a
portion of skeletal muscle was collected from the limbs after removing the skin (from now
on designated skeletal muscle, its major component). The heart and the skeletal muscle
were immediately frozen in liquid nitrogen and subsequently transferred to −80 ◦C.

4.2. Tissue Preparation

From a total of 40 animal samples comprising four groups, 10 young—6 months (6 M),
10 adult—12 months (12 M), 10 middle-aged—17 months (17 M) and 10 old—24 months
(24 M), the heart and skeletal muscle were collected, immediately frozen in liquid nitrogen
and stored at −80 ◦C. For analysis, frozen samples were pulverized in a dry ice cooled
mortar and a 10 mg specimen used for FTIR measurements.

4.3. FTIR Measurements

All FTIR spectra were acquired in ATR mode with an FTIR Bruker Alpha Platinum
spectrometer (Bruker©, Billerica, MA, USA) coupled to OPUS software (Bruker©, Billerica,
MA, USA). Spectra were obtained in the mid-infrared range (4000–600 cm−1) with a
resolution of 8 cm−1 and 64 co-added scans. Spectral acquisition was performed in a
room with controlled conditions of temperature and relative humidity (23 ◦C and 35%,
respectively). Tissue samples were placed at the center of an ATR diamond crystal with a
spatula and left to air dry. The drying process was accompanied by visual observation of the
live spectrum with OPUS software; the sample was considered dried when spectrum profile
did not change. For each age and for each tissue type, 10 biological replicates and 3 technical
replicates were acquired. A background spectrum was acquired against air between each
sample, and the ATR crystal was cleaned with 70% ethanol and distilled water.

4.4. FTIR Data Processing and Analysis
Preprocessing

All spectra were exported in OPUS format and imported to The Unscrambler X
software (V.10.5., Camo Analytics). All spectra were individually visually analyzed and
spectra with background noise or with suspicious profile were repeated to ensure good
quality data. After visual inspection, we separately performed a PCA analysis on both
skeletal and cardiac muscle spectra in order to identify and remove outliers. Samples
with high values for PCA Q-residuals were considered outliers and removed from the
data matrix.

After outlier removal, spectra were divided into three spectral regions: 3050–2800 cm−1,
1800–1500 cm−1 and 1200–900 cm−1. Sub-spectra were then baseline corrected and area
normalized. Normalization was performed in order to ensure differences in the amount of
sample placed in the crystal were not responsible for differences in the spectral profiles.
Normalized spectra were then derived using the 2nd derivative with Savitzky–Golay
algorithm and three smoothing points. Since spectra from biological samples are complex,
with several overlapping peaks, the use of the derivative is crucial to resolve the peaks and
extract any valuable information. The pre-processed spectra were then subjected to both
multivariate analysis (PCA and PLS) and analysis of specific peak intensity.

4.5. Multivariate Analysis: PCA and PLS

Spectral data has thousands of variables (spectral points) that would be impossible
to analyze individually. Multivariate analysis allows for the reduction spectral data to
fewer variables, called principal components (PCs) in PCA analysis and factors in PLS
analysis. In each analysis, for each dataset, one must choose the best PCs or factors to use in
order to explain the results in a way that allows extraction of the most valuable biological
information without overfitting (see [35] for detailed information).

To analyze changes in the spectral profiles of both cardiac and skeletal muscle during
aging, we performed a PLS analysis on both tissues individually in the three above-
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mentioned spectral regions. The PLS model was built using the 2nd derivative spectra and
a random intern cross-validation and Kernel algorithm. PLS analysis produces a scores
plot, which is a scatter plot with a projection of the data in two dimensions. Since PLS is a
supervised multivariate statistical test, one has two matrices of data (X and y), in this case,
the spectral data and the age of the mice, respectively. Besides the score plot, PLS analysis
produces a loadings plot that explains discrimination.

To compare cardiac and skeletal muscle, we performed a PCA analysis on all three
spectral regions, using the 2nd derivative spectra and up to seven principal components.
All multivariate analyses were performed using The Unscrambler X software (v.10.5 CAMO
Analytics).

4.6. Intensity of Spectral Bands

To calculate the intensity of the spectral bands we used different approaches: for
the calculation of intensity of peaks assigned to CH (3013 cm−1), CH2 (2851 cm−1 and
2922 cm−1) CH3 (2959 cm−1 and 2871 cm−1), C=O (1741 cm−1), glucose (1045 cm−1), choles-
terol esters (1169 cm−1) and protein secondary structures, namely β-sheets (1693 cm−1,
1682 cm−1 and 1628 cm−1), we inverted 2nd derivative correspondent spectra by factoring
by −1, as previously described [36,37]. Then we selected the wavenumbers corresponding
to that peak and extracted the intensity values. The use of 2nd derivative spectra for
these calculations was due to the need to resolve overlapping signals and ensure correct
information.

For calculation of the fibril formation ratio and total protein amount we used non-
derivative baseline corrected and normalized spectra to extract the values of the intensity
of the Amide I and Amide II peaks.

Statistical analysis was performed together for both tissues with GraphPad Prism 6 soft-
ware (GraphPad Software, Inc.), using Ordinary Two-Way ANOVA (not repeated measures)
and the Sidak test for multiple comparisons of all means, with a confidence level of 0.05.

Supplementary Materials: Figure S1: PLS analysis of skeletal muscle in the 3050–2800 cm−1 spectral
region. Figure S2: PLS analysis of skeletal muscle in the 1800–1500 cm−1 spectral region. Figure S3:
PLS analysis of skeletal muscle in the 1200–900 cm−1 spectral region. Figure S4: PLS analysis of
cardiac muscle in the 3050–2800 cm−1 spectral region. Figure S5: PLS analysis of skeletal muscle in
the 1800–1500 cm−1 spectral region. Figure S6: PLS analysis of cardiac muscle in the 1200–900 cm−1

spectral region. Figure S7: PCA exploratory analysis of FTIR spectra of skeletal and cardiac muscle.
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