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Abstract: Three worldwide historical plague pandemics resulted in millions of deaths. Yersinia
pestis, the etiologic agent of plague, is also a potential bioterrorist weapon. Simple, rapid, and
specific detection of Y. pestis is important to prevent and control plague. However, the high similarity
between Y. pestis and its sister species within the same genus makes detection work problematic.
Here, the genome sequence from the Y. pestis CO92 strain was electronically separated into millions of
fragments. These fragments were analyzed and compared with the genome sequences of 539 Y. pestis
strains and 572 strains of 20 species within the Yersinia genus. Altogether, 97 Y. pestis-specific tags
containing two or more single nucleotide polymorphism sites were screened out. These 97 tags
efficiently distinguished Y. pestis from all other closely related species. We chose four of these
tags to design a Cas12a-based detection system. PCR–fluorescence methodology was used to
test the specificity of these tags, and the results showed that the fluorescence intensity produced
by Y. pestis was significantly higher than that of non-Y. pestis (p < 0.0001). We then employed
recombinase polymerase amplification and lateral flow dipsticks to visualize the results. Our newly
developed plasmid-independent, species-specific library of tags completely and effectively screened
chromosomal sequences. The detection limit of our four-tag Cas12a system reached picogram levels.

Keywords: Yersinia pestis; specific tags; CRISPR-Cas12a; visual detection; species discrimination

1. Introduction

Plague is a fatal infectious disease caused by Yersinia pestis. Plague pandemics, of
which there have been three from the sixth century AD to the end of the 19th century, have
inflicted a heavy toll on human societies. Y. pestis mainly infects humans through flea bites
or inhalation and, without antibiotic treatments, patients die within a few days. Y. pestis is
also a concern as a potential bioterrorist weapon [1].

Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica are the main pathogenic bacteria
in the Yersinia genus. The reference genome of the Y. pestis CO92 strain comprises a
4.65 Mb chromosome and three plasmids of 96.2 kb, 70.3 kb, and 9.6 kb [2]. The Y. pestis
and Y. pseudotuberculosis genomes are very similar [3]. The Y. pseudotuberculosis IP32953
reference genome strain encodes 3974 predicted genes. Among them, 2976 genes share
sequence homology levels of at least 97% with Y. pestis CO92 [3]. Sequence analysis of five
housekeeping genes and one gene involved in lipopolysaccharide synthesis revealed that
these Y. pestis genes are the same or almost the same as those from Y. pseudotuberculosis.
In fact, the similarity is so high that some researchers have inferred that Y. pestis has
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evolved from Y. pseudotuberculosis [4]. Consistent with this observation, Y. pestis and
Y. pseudotuberculosis 16S rRNA molecules are identical and therefore cannot be used to
differentiate these species [5]. This presents great challenges for species identification of
Y. pestis. With the increasing number of sequenced strains, the Yersinia bacterial genome
database at the National Center for Biotechnology Information (NCBI) has become large
and complicated. However, this database contains some non-Y. pestis genome data. Such
data may have been deposited from simple sequence comparisons and may therefore
mislead researchers in subsequent analyses. Thus, it is necessary to establish a simple and
efficient method to accurately identify Y. pestis.

Currently, bacteriological, immunological, and molecular biological methods are
commonly used to identify Y. pestis, and bacterial culture remains common. Medium
containing cefsulodin–irgasan–novobiocin (CIN) is currently used as a selective medium
for Y. pestis [6], but suspicious colonies on CIN medium take two days of cultivation at
28 ◦C for identification. Hence, this method is time-consuming and unsuitable for rapid
diagnosis. The Y. pestis F1 antigen is the most commonly used immunological target, and
many serological methods can be used to detect anti-F1 antibodies (e.g., enzyme linked im-
munosorbent assays, indirect hemagglutination assays, and gold-immunochromatography
assays). Immunological detection methods based on the Y. pestis F1 antigen are completable
within 15 min [7]. However, these methods lack sensitivity, and false negatives are not
uncommon when testing sputum specimens. Earlier targets of the PCR-based methods
used to identify Y. pestis were usually sequences on unique plasmids, but these targets can
be ineffective at identifying atypical strains such as plasmid-deficient ones [8–10]. Two
unique plasmids (pPCP1 and pMT1) were isolated during the evolution of Y. pestis, and
a virulence plasmid (pCD1 of Y. pestis) is found in all pathogenic Yersinia. The pst gene
on pPCP1, caf1 on pMT1, and chromosomally located ypo2088 have all been used as Y.
pestis detection targets [11]. Another specific target gene (pla) encodes the pPCP1 plasmid-
located plasminogen activator. These unique plasmids, however, are not present in all
Y. pestis strains [12,13]. Despite ypo2088 and yihN, there are few other specific targets on
chromosomes for the identification of Y. pestis [14,15]. Thus, although MALDI-TOF MS is
increasingly used for Yersinia-species identification, it does not distinguish species that fall
within the Y. pseudotuberculosis complex [16–19]. Although high-throughput sequencing-
based whole-genome identification is the most accurate identification method, simple
sequence alignments will still be prone to the types of errors mentioned above. Therefore,
more reliable and accurate targets are needed to help researchers to quickly identify Y.
pestis and distinguish it from its related species.

In this study, we electronically split the Y. pestis CO92 strain’s genomic sequence
into millions of fragments comprising 100-bp windows in 1-bp steps. These fragments
were used to compare and analyze the genome sequences from 539 strains of Y. pestis and
572 strains from other Yersinia species. From these, we identified 483 fragments containing
Y. pestis species-specific single-nucleotide polymorphism (SNP) sites. Altogether, 97 Y.
pestis-specific tags containing two or more SNP sites were screened out. These 97 tags are
sufficient to efficiently distinguish Y. pestis from other closely related species. We used these
97 tags to write an automated program to help researchers quickly identify Y. pestis after
they have obtained a draft genome sequence. We also designed a CRISPR-Cas12a-assisted
SNP detection system using four of our newly developed Y. pestis-specific tags.

CRISPR-Cas systems are widely used for genome editing [20] and, in recent years,
the trans-cleavage activity of Cas proteins has been discovered [21]. Detection methods
based on CRISPR-Cas, which is now also considered a next-generation pathogen detection
method, have become established [22,23]. DETECTR (DNA endonuclease targeted CRISPR
trans-reporter) [24] and HOLMES (one-HOur Low-cost Multipurpose highly Efficient
System) [25] can detect DNA sequences with attomolar sensitivity and high specificity
using CRISPR-Cas12a [26]. Recombinase polymerase amplification (RPA) does not require
thermal denaturation of the template and can be run at a low constant temperature. RPA
has been successfully integrated into different detection platforms, from end-point lateral
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flow strips to real-time fluorescent detectors. The lateral flow dipstick (LFD) method is easy
to use and its results easily interpretable. It can be used to detect proteins and nucleic acids.
In this study, four tags selected from the aforementioned 97 Y. pestis-specific tags were
designed for use with the Cas12a-based detection system in combination with RPA [27,28]
and with LFD methodology [29,30] for easy visualization.

2. Materials and Methods
2.1. Strains Used in This Study

Y. pestis 201 was isolated from Microtus brandti in Mongolia Inner, and is an avirulent
strain in humans [31]. The Y. pseudotuberculosis 1682 (Yp1682) strain was isolated from
a pig in Japan, the Y. pseudotuberculosis 1678 (Yp1678) strain was isolated from a person
in Japan, and the Y. pseudotuberculosis 1688 (Yp1688) strain was isolated from a dog in
Japan. They are part of the Beijing Institute of Microbiology and Epidemiology strain
collection. The Bacillus anthracis A16PI2 strain is an attenuated strain with a deleted pXO2
plasmid [32]. Staphylococcus aureus ATCC49521 and Escherichia coli DH5α were used in the
specificity tests.

2.2. Acquisition of Genome Data for Y. pestis and Other Yersinia Species

We downloaded the genome data for Y. pestis and other Yersinia species strains from
NCBI (https://www.ncbi.nlm.nih.gov/genome/?term=Yersinia, accessed on 12 February
2020). The Y. pestis CO92 strain was used as the reference. The DNA fragments on its
chromosomal sequence (GenBank: NC_003143, 13-DEC-2020) were selected as the source
of the specific tags. To obtain all the specific sites, we wrote a python script. On the Y. pestis
CO92 chromosome, the DNA fragments that we conceptually cut into 100-bp windows in
1-bp steps were the candidate tags.

2.3. BLAST Analysis on DNA Tags and Screening for Y. pestis-Specific DNA Fragments

We used a local BLAST (BLAST-2.7.1+) to query the candidate tags in the genomes of
other Yersinia species strains. When they appeared on the chromosomes of these strains
(Query Cover = 100%; Percentage of Identity = 100%) they were removed. We then wrote a
python script to query the remaining fragments on all the Y. pestis chromosomes, and to
count the distributions of the fragment in each strain. The fragments distributed on all Y.
pestis chromosomes were obtained, and they were considered to be unique DNA fragments
belonging to Y. pestis. We wrote another python script to merge the obtained fragments
into long non-overlapping DNA fragments so that all of the fragments would be specific
for Y. pestis.

2.4. Constructing Specific Tags and Searching for SNPs for Detecting Y. pestis

We searched the Y. pestis-specific long DNA fragments against the chromosomes of
other Yersinia species strains using local BLAST software (BLAST-2.7.1+). According to
the BLAST results, we extracted the homologous fragments from each Y. pestis-specific
long DNA fragment in other Yersinia species strains and made them into FASTA format
files. These homologues FASTA DNA sequences were aligned with MEGA-X software to
locate SNP sites distinguishing Y. pestis from other Yersinia species strains. After screening
out the sequences containing two or more SNP sites, we were left with SNP-containing
DNA fragments (100–200-bp long) for use as tags to specifically identify Y. pestis. To ensure
the specificity of these tags, we performed an online BLAST program to search these tags
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 25 February 2021) and remove those
that appeared to be non-Y. pestis.

Based on this set of specific tags, we developed a mini software platform using python,
based on the principle that if these tags appear in the genomes of the target strains, these
strains will be identified as Y. pestis. We reasoned that the more tags that are identified, the
more reliable the results will be.

https://www.ncbi.nlm.nih.gov/genome/?term=Yersinia
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.5. Establishing a CRISPR-Cas2a-Assisted Y. pestis Identification Method Based on SNPs
2.5.1. Detecting SNP Sites in Y. pestis Using a PCR–Fluorescence Combined Method

This study used the CRISPR-Cas12a system for detection. The amplified product of the
target fragment was added to the CRISPR-Cas12a system, and the signal sent by the single-
stranded DNA probe was detected (Figure 1a). The Cas12a protein binds to the substrate
DNA under the guidance of CRISPR RNA (crRNA) to form a Cas12a/crRNA/DNA
complex. The complex can cleave single-stranded fluorescent DNA probes. When crRNA
is consistent with the complementary sequence of the substrate DNA, it will emit strong
fluorescence, but when the complementary sequence of crRNA and the substrate DNA are
not completely consistent, weak fluorescence or no fluorescence is emitted (Figure 1d).
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Figure 1. Experimental CRISPR-Cas12a detection-based design. (a) We first amplified the target
fragment to improve the detection sensitivity. We then added the amplified substrate to the CRISPR-
Cas12a reaction, and the signal from the probe was detected. (b) We used PCR primers to introduce
the PAM sequence into the amplified product. (c) crRNA comprises a universal sequence and
complementary sequence. (d) When crRNA and substrate DNA are completely matched, strong
fluorescence is emitted. When crRNA and the substrate DNA are not completely matched, no
fluorescence or weak fluorescence is emitted.
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The sequences of the PCR primers used for detection are shown in Table 1. Formation
of the Cas12a/crRNA/DNA complex requires a protospacer adjacent motif (PAM) (a TTTN
sequence). When no PAM was present before the complementary sequence, we introduced
it using PCR amplification primers (Figure 1b). To shorten the reaction time, the length of
the DNA product was kept between 100–150-bp. The 17-base complementary sequence
and the universal sequence (5’-AAUUUCUACUGUUGUAGAU-3’) formed a complete
crRNA (Table 1) [33].

Table 1. Target sequences, primers, and crRNAs used for detection in this study.

Tag Names Target Sequences Primers
crRNA (5′-3′)

Names Sequences (5′-3′)

YP-1 A*C*CAGACTCGCTCCACA

PCR-YP-1-F AGGTGACAATTGTATACCTGCATAATTAATTAGCATTTA AAUUUCUACU
GUUGUAGAU
ACCAGACUCG

CUCCACA

PCR-YP-1-R ACAGATGTTGACTGGTGAGATGGTC
RPA-YP-1-F GACAATTGTATACCTGCATAATTAATTAGCATTTA
RPA-YP-1-R ACAAATTTTACAGATGTTGACTGGTGAGATGGTC

YP-2 C*CTCG*GTACTGTTGCCA

PCR-YP-2-F CCGCCAGATCCACGCCCTTTC AAUUUCUAC
UGUUGUAGAU
CCUCGGUAC
UGUUGCCA

PCR-YP-2-R GCATCAACGGCATTTCGGCCA
RPA-YP-2-F CCGGACAGATTGGCCGCCAGATCCACGCCCTTTC
RPA-YP-2-R CAGCCGCATCAACGGCATTTCGGCCAATGGCAG

YP-3 C*CT*ATGGCGTTCTCTAT

PCR-YP-3-F TGCGAAATTGTACAAAAATCTCTGTTAGACTTTTA AAUUUCUAC
UGUUGUAGAU
CCUAUGGCG
UUCUCUAU

PCR-YP-3-R CGCTGTTCTGCAACTTGAGTGACTAC
RPA-YP-3-F GTGCGAAATTGTACAAAAATCTCTGTTAGACTTTTA
RPA-YP-3-R GTAGTCACTCAAGTTGCAGAACAGCGTAAAACG

YP-4 A*GA*GACAAATATCACCA

PCR-YP-4-F TTGGCTTCAAGCGATTCCAGTCAATTTA AAUUUCUAC
UGUUGUAGAU
AGAGACAAA
UAUCACCA

PCR-YP-4-R GCATGGAGCTATTATGACAAGAACCGG
RPA-YP-4-F AATCGTTGGCTTCAAGCGATTCCAGTCAATTTA
RPA-YP-4-R TAGAAGCATGGAGCTATTATGACAAGAACCGG

* SNP sites used to distinguish Y. pestis from non-Y. pestis. Italic text indicates PAM sequences. Underlined parts indicate the positions of
the complementary sequences.

The complementary sequence of the crRNA and the target DNA together determine
the efficiency of Cas12a protein cleavage. When the complementary sequence of the crRNA
and the Y. pestis sequence completely match, strong fluorescence is emitted. Should the
complementary sequence of the crRNA not completely match the target sequence in Y.
pseudotuberculosis, weak fluorescence will be emitted for Y. pseudotuberculosis. The more
mismatch sites occurring between the complementary sequence of the crRNA and the
Y. pseudotuberculosis target, the weaker the fluorescence produced. Hence, the four tags
containing two SNPs in the seven bases at the 5′ ends of the complementary sequence were
selected (Table 1).

We next designed a 12-base, single-stranded DNA probe (5′-GAGACCGACCTG-3′.
The base at the 5′ end of the fluorescent probe was labeled with HEX, and the 3′-end base
was labeled with BHQ1. Y. pestis (Y. pestis 201) and Y. pseudotuberculosis (YP1682) genomes
(10 ng/µL) were used as PCR amplification templates. The reagents used in the 50 µL
reactions are shown in Supplementary Table S1. The PCRs comprised 5 min at 94 ◦C,
followed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, and
extension at 72 ◦C for 30 s, with a final extension at 72 ◦C for 5 min. PCR amplicons (2 µL
each) were added to the Cas12a reaction. The Cas12a reaction was conducted at 37 ◦C
in a 20 µL volume (Supplementary Table S2). Fluorescence intensities were detected at
60 min (excitation wavelength 535 nm, detection wavelength 553 nm). The fluorescence
intensity was detected on the Bio-Rad real-time PCR CFX96 instrument (Life Science,
Hercules, CA, USA). The PCR amplifications used TaKaRa ExTaq™ Version 2.0 kit, and
the primers were synthesized by Beijing Tianyi Huiyuan Biotechnology Co., Ltd. The
LbCas12a (0.15 mg/mL) protein was expressed and purified as described previously [34].
The crRNAs and single-stranded DNA probes were synthesized by General Biosystems
(Anhui) Co., Ltd., Chuzhou, China).
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To evaluate the method’s specificity, we concurrently detected Y. pestis (Y. pestis
201), Y. pseudotuberculosis (Yp1682, Yp1678, and Yp1688), Bacillus anthracis (A16PI2), S.
aureus (ATCC49521), and E. coli (DH5α). Genomic DNAs (50 ng/µL) from each bacterium
were extracted as the templates. The fluorescence intensity detected every 12 min was
statistically analyzed.

The sensitivity experiment involved diluting the Y. pestis 201 genome in DEPC-treated
water. Y. pestis genomic DNA was used at different concentrations (106, 105, 104, 103, 102,
and 101 fg/µL) to evaluate the method’s sensitivity. Y. pseudotuberculosis genomic DNA
(106 fg/µL) was used as the negative control. Assay sensitivity was calculated according to
the fluorescence intensity emitted at 60 min post-reaction.

2.5.2. Detecting SNP Sites in Y. pestis Using a Combination of RPA and LFD

RPA amplification was performed using the TwistAmp® Liquid exo kit (TwistDX,
Maidenhead, UK). The GC content of the RPA primers (Table 1) was between 20% and
70%, and the Tm was between 50 ◦C and 100 ◦C. The reaction conditions were 37 ◦C for
40 min. The reagents volumes are shown in Supplementary Table S3. RPA combined
with the LFD was then used to detect the four tags. The LFD probe contained 12 bases
and its sequence was 5′-GAGACCGACCTG-3′. The base at the 5′ end of the probe was
fluorescein-labeled, and the 3’-end base of the probe was biotin-labeled. The HybriDetect
kit (TwistDX, Maidenhead, UK) was used for the strip-based detection. The Cas12a reaction
product (10 µL) was added dropwise to the strip, the strip was placed at room temperature
for 5 min, and 100 µL of buffer was added. After 2 min, the strip was removed from the
buffer and the result was read immediately.

3. Results
3.1. Acquisition of Specific Fragments

We downloaded the genomes of 539 Y. pestis strains and 572 other Yersinia species
strains (including 20 species of the Yersinia genus) from the NCBI genome database
(Figure 2b). The Y. pestis CO92 strain’s chromosome was in silico cut into 4,829,756 frag-
ments (100-bp windows in 1-bp steps) using a python script (Figure 2a).

3.2. Screening Results for the Y. pestis-Specific Fragments

Using a local BLAST (BLAST-2.7.1+), we removed the 4,191,017 fragments appearing
in other Yersinia species strains, which left 638,739 remaining fragments. Surprisingly, when
we analyzed their distributions on the Y. pestis chromosome, we found that the genome of
one particular strain (Assembly ID: GCA_902387395.1, UHGG_MGYG-HGUT-02476) had a
tag detection rate of only 1341 (0.21%) in the 638,739 fragments, whereas the tag detection
rate of the other 538 Y. pestis strains was between 62.36% and 100%. After performing a
whole genome cluster analysis, it was apparent that this strain was not Y. pestis, but Y.
pseudotuberculosis (Figure 2d). Hence, we removed this strain from further analysis, which
resulted in 35,680 fragments obtained for all 538 Y. pestis strains. These 35,680 tags were
merged according to the overlaps between the fragments, and 833 specific fragments were
obtained (Figure 2a). The length of these fragments was between 100-bp and ~ 411-bp.
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3.3. Obtaining Y. pestis-Specific Tags

The 833 DNA fragments were searched for among other Yersinia species strains
(572 strains) using a local BLAST software (BLAST-2.7.1+). The corresponding DNA se-
quences from each strain were extracted and 833 FASTA format files were constructed.
Each of these files was aligned with MEGA-X software to find SNP sites that could distin-
guish Y. pestis from other Yersinia species or strains. As a result, we found 483 fragments
containing SNP sites (Figure 2a). To improve the detection specificity, any sequences
containing more than 2 (including 2) SNP sites were selected from the 483 fragments. Alto-
gether, 97 fragments were located and used to specifically identify Y. pestis (Figure 2c). The
100–200-bp long sequences containing these SNP sites were used as Y. pestis-specific tags
(Supplementary Table S4). To test the specificity of the 97 Y. pestis-specific tags on a larger
database they were searched online (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
25 February 2021). The results showed that the sequences of the Y. pestis-specific tags were
completely consistent with the sequences of the Y. pestis species as a whole, and the Query
Cover and Per. Ident (Percentage of Identity) values were 100%. The sequences of these Y.
pestis-specific tags lacked complete consistency with non-Y. pestis species and strains and
could therefore be used to identify Y. pestis.

We used these tags in combination to complete a convenient, practical automated
program in python for users as an application to rapidly characterize Y. pestis using
nucleotide sequencing data. This python code is available at: https://github.com/844844
/Identify_Y.pestis/tree/main (accessed on 24 March 2021). The program is the local version
of Microsoft Windows, and strains can be one-click identified by inputting the sequencing
data. The software makes it easy for users to understand the output analysis results, share
data with colleagues, and make definitive judgments on the suspected isolates.

3.4. Detecting SNP sites in Y. pestis by PCR-Combined Fluorescence Methodology
3.4.1. CRISPR-Cas12a-Assisted Y. pestis Identification Using PCR-Combined
Fluorescence Detection

We chose four Y. pestis-specific tags to detect Y. pestis, naming them YP-1, YP-2, YP-3,
and YP-4 sites. We found that the fluorescence intensity produced by the detection of Y.
pestis was much higher than that of Y. pseudotuberculosis, a statistically significant difference
(Figure 3). The detection results for the four sites were the same, and the fluorescence
intensity clearly distinguished Y. pestis from Y. pseudotuberculosis.
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Figure 3. Detection of Y. pestis by PCR-combined fluorescence methodology. YP-1, YP-2, YP-3, and
YP-4 tags were detected. When detecting Y. pestis, Y. pseudotuberculosis was used as a control. The
fluorescence intensities emitted at 12 min post set-up were detected, and the data were judged. The
fluorescence intensity detection of Y. pestis was higher than that of Y. pseudotuberculosis for the four
tags. The results of detecting YP-1 tag (a), YP-2 tag (b), YP-3 tag (c) and YP-4 tag (d) from the two
groups were analyzed using t-test, and the significant differences were noted (p < 0.01).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/844844/Identify_Y.pestis/tree/main
https://github.com/844844/Identify_Y.pestis/tree/main


Pathogens 2021, 10, 562 9 of 14

3.4.2. Specificity of the Method Used to Differentiate Y. pestis from Other Bacteria

In the previous experiment, we tested the assay’s specificity for Y. pestis and Y. pseudo-
tuberculosis (Yp1682). Y. pestis and Y. pseudotuberculosis belong to the Yersinia genus, and
their genomes are highly similar. To evaluate the specificity of the method, we concurrently
detected two other Y. pseudotuberculosis (Yp1678, Yp1688), as well as B. anthracis (A16PI2;
Bacillus genus), Gram-positive S. aureus (ATCC49521), and Gram-negative E. coli (DH5α).
The results (Figure 4) showed that the fluorescence intensity for Y. pestis was significantly
higher than that of the control species and strains. Thus, the four Y. pestis-specific tags
displayed good specificity.
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Figure 4. Specificity of the method used to differentiate Y. pestis from other bacteria. YP-1, YP-2, YP-3,
and YP-4 tags were used to verify the method’s specificity. Seven strains including Y. pestis (Y. pestis
201), Y. pseudotuberculosis (Yp1682, Yp1678, and Yp1688), B. anthracis (A16PI2), S. aureus (ATCC49521),
and E. coli (DH5α) were used to detect the four tags. Fluorescence intensity was detected at 0, 12, 24,
36, 48, and 60 min into the Cas12a reaction. The fluorescence intensity at each time point was used to
plot and analyze the results. The results of detecting YP-1 tag (a), YP-2 tag (b), YP-3 tag (c) and YP-4
tag (d) showed that the tags differentiated Y. pestis from non-Y. pestis (two-way repeated measures
ANOVA, p < 0.0001).

3.4.3. Sensitivity of the Method Used to Differentiate Y. pestis from Other Bacteria

We next evaluated the detection sensitivity of this method using Y. pestis genomic
DNA as the template, and genomic DNA from Y. pseudotuberculosis (Yp1682) as the control.
The results (Figure 5) showed that the minimum detectable concentration of YP-1, YP-2,
and YP-3 sites was 103 fg/µL, and the minimum detectable concentration of YP-4 was
106 fg/µL.

3.5. Detecting SNP Sites in Y. pestis by RPA Combined with LFD

To shorten the detection time, we used RPA instead of the traditional PCR method to
amplify the target DNA. The results in Figure 6a show that strong fluorescence was detected
with Y. pestis, whereas only weak fluorescence was detected with Y. pseudotuberculosis.
We next used RPA combined with LFD as the visualization method to identify Y. pestis.
Figure 6b shows that the Y. pestis strain produced a visibly strong dark colored band on
the test position of the strips, indicating that the test results were positive. In contrast, no
bands in the test results area were visible for Y. pseudotuberculosis. These results indicate
that the visualization method can distinguish Y. pestis from Y. pseudotuberculosis.
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Figure 5. Sensitivity of the method used to differentiate Y. pestis from other bacteria. Bar charts show
the fluorescence intensity detected at 60 min. Y. pseudotuberculosis was used as the control strain. The
fluorescence values for YP-1 tag (a), YP-2 tag (b), and YP-3 tag (c) showed statistically significant
differences compared with the negative control when the concentration reached 103 fg/µL (t-test,
p < 0.001). (d) The fluorescence values for the YP-4 tag showed statistically significant differences
compared with the negative control when the concentrations of the sites reached 106 fg/µL (t-test,
p < 0.001).
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Figure 6. Y. pestis detection using the RPA method. (a) RPA combined with fluorescence was used to
detect YP-1, YP-2, YP-3, and YP-4 tags. Y. pseudotuberculosis was used as the control strain for each tag.
Fluorescence intensity was detected at a 12 min reaction time. The t-test method was used to analyze
the results and a significant difference was observed between Y. pestis and Y. pseudotuberculosis for
all the tagging sites (p < 0.01). (b) RPA combined with LFD to detect YP-1, YP-2, YP-3, and YP-4
tags. Y. pseudotuberculosis was used as the control strain for each tag. Fluorescence detection of YP-1,
YP-2, YP-3, and YP-4 tags on LFD strips. A positive test band was visible for Y. pestis but not for
Y. pseudotuberculosis.

4. Discussion

The Yersinia genus is an Enterobacteriaceae family member. The genus currently in-
cludes three prominent human and animal pathogens: Y. pestis, Y. enterocolitica, and Y.
pseudotuberculosis [35]. Of these, Y. pestis causes the fatal infectious disease called plague.
The difficulty in distinguishing Y. pestis from Y. pseudotuberculosis and other closely related
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species is related to their high phenotypic and genetic similarities. The targets of PCR-based
methods used for species identification are usually sequences on the unique pMT1 and
pPCP1 plasmids, but using these plasmids can be ineffective in identifying atypical strains
such as plasmid-deficient ones. There are a few reports about targets on chromosomes.
Some targets are considered effective (e.g., ypo2088 and yihN), while more are proven to
lack specificity (e.g., inv, entF3, and wzz) [11]. Thus, here we have obtained 97 optional
targets for detection on the Y. pestis chromosome, which provide valuable references for
subsequent detection research.

In this study, we selected detection targets from chromosomal genome data in the
NCBI database. These data comprised 539 strains of Y. pestis and 572 strains belonging
to other closely related species. Using the Y. pestis CO92 strain as the standard in our
experiments, we conceptually split its chromosomal sequence into millions of fragments
to obtain individual 100-bp long fragments, each of which we called a “tag”. Using local
BLAST software, the fragments present in the 572 strains with homology to Y. pestis were
removed. The labels remaining in all Y. pestis strains (539 strains) were then screened out.
During this process, we discovered that a strain of Y. pseudotuberculosis was mistakenly
regarded as Y. pestis in the NCBI database. Through the fusion fragments, we obtained
Y. pestis-specific fragments and 97 fragments containing more than 2 (including 2) SNP
sites were selected as the selection tags. We envisage that the wide application of whole
genome sequencing in public health fields will mean that our specific tags will become
increasingly important. Our tags contain in-built multiple SNP sites, thereby ensuring that
strains with poor sequencing quality are not missed during the detection process. The SNPs
are not located on a virulence plasmid, and the Y. pestis strains (pMT1- and pPCP1-) were
identified using chromosomal molecular markers, thereby providing sufficient information
for bacterial trace analysis.

We then selected four of the tags to establish a highly specific detection method for Y.
pestis based on CRISPR-Cas12a. The CRISPR-Cas12a system has been successfully used
to detect a variety of pathogens, including SARS-CoV-2, the human immunodeficiency
virus, and Mycobacterium tuberculosis, among others [36–38]. The CRISPR-Cas12a detection
system is highly sensitive and can discriminate between SNPs [39]. Therefore, we employed
the Cas12a protein and PCR combined with fluorescence methodology to detect the four Y.
pestis tag sites. Our method can clearly distinguish Y. pestis from Y. pseudotuberculosis with
high specificity at a minimum detection concentration of 103–106 fg/µL. When detecting
SNP sites, a PCR amplification primer is needed to introduce the PAM sequence so that
the primer position is fixed near to the detection site. When the PCR product’s length is
100–150-bp, the positions of the two primers cannot be freely selected, and this will result
in the primers having different PCR amplification efficiencies and the minimum detectable
concentrations will also differ. The limit of detection with tag YP-4 (Figure 5) was lower
than that of the other tags but the specificity was acceptable. In theory, any SNP locus can
distinguish Y. pestis from other closely related bacteria based on the current NCBI database.
Two to three sites are sufficient for Y. pestis identification in practical applications. Thus,
when the nucleic acid concentration is not extremely low, use of the Yp-4 site is also an
option and its use was therefore not rejected in this study. To shorten the reaction time,
we replaced PCR with RPA. The template amplification time was reduced from 90 min
to 40 min, and the total detection time was shortened by 50 min. Because RPA does not
require any equipment it is very suitable for on-site testing [40], and we used LFD instead
of the fluorescence method to achieve visual detection of Y. pestis.

This set of tags not only can be used for the in silico identification of genome sequences,
but also can be employed as the targets of molecular biology methods for clinical and
environmental sample identification. It is worth noting that we used the latest Cas12a
protein in this study. Last, our set of tags can be used with new diagnostic technologies
such as high-throughput DNA chips and biosensors, as well as with traditional quantitative
PCR and other species identification methods. Plague outbreaks still occur from time to
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time, so early and unambiguous diagnostic detection is essential for panic avoidance and
for successful treatment and disease prevention.

5. Conclusions

We obtained 97 electronic tags for highly-specific detection of Y. pestis. We also
developed a method to visually detect Y. pestis, which can be used for the robust, specific,
and portable detection of the Y. pestis genome. RPA-Cas12a-LFD has great potential for
on-site Y. pestis detection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10050562/s1, Table S1: PCR conditions. Table S2: Cas12a reaction conditions.
Table S3: RPA reaction conditions. Table S4: The 97 Y. pestis-specific tags obtained in this study. The
python code is available at: https://github.com/844844/Identify_Y.pestis/tree/main (accessed on
24 March 2021).
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