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Abstract: Vachellia nilotica (L.) P.J.H. Hurther & Mabb. and Dalbergia sissoo Roxb. are two of the most
important multipurpose agroforestry tree species of the Indian sub-continent, but their growth in
saline soils is greatly reduced. Recently, organic amendments have showed the potential to increase
plant growth in salt-affected soils; however, the influence of using these amendments for growing the
above-mentioned tree species under saline conditions is not yet quantified. Therefore, an experiment
was devised to analyze the interactive effects of organic amendments in saline soils on the growth
of V. nilotica and D. sissoo. Under controlled conditions, a pot experiment was conducted in sandy
loam saline soils (EC = 20.5 dSm−1). Organic amendments from four diverse sources: farmyard
manure (FYM), poultry manure (PM), slurry (SL), and farmyard manure biochar (FYMB) were
employed in this study. At the harvesting time, data regarding morphological, physiological, ionic,
and biochemical parameters were obtained. The current study results indicated that both tree species
reacted differently, but positively, to diverse applied amendments. The maximum increment in total
above-ground biomass, total below-ground biomass, and shoot length for V. nilotica (163.8%, 116.3%,
and 68.2%, respectively) was observed in FYM amended soils, while the maximum increment for
D. sissoo (128%, 86%, and 107%, respectively) was observed in FYMB amended soils, as compared
to control. Minimum plant growth of both species was observed in untreated soils (saline soils).
Likewise, the maximum potassium ion and minimum sodium ion concentrations were present in
the root and shoots of plants (both species) treated with FYMB. The use of organic amendments
resulted in decreased concentrations of malondialdehyde and hydrogen peroxide, and increased
concentrations of antioxidant enzymes such as SOD, POD, and CAT. Moreover, higher photosynthetic
rates and stomatal conductance were observed in the plants grown in amended soils. The findings of
this study can be used to include the above-mentioned high-value tree species for future afforestation
programs under saline conditions.
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1. Introduction

Salinity is a global issue, and the area affected by salinity is increasing persistently [1,2].
In a few countries, salinity and sodicity affect more than 50% of the cultivated land [3]. The
productive area of the world is decreasing due to salinity and other abiotic stresses while
the world population is increasing, raising the issue of food security [2,4]. There is therefore
a dire need to find ways to make these lands productive [5,6]. Many approaches can reclaim
saline soils such as engineering, chemical, and biological techniques [2,7]. Using green
plants is an efficient, sustainable, and cost-effective practice to improve salt-affected soils’
quality [8,9]. Moreover, among vegetation, trees are considered to have more potential
due to their higher tolerance index, larger biomass production, and longer periods of
growth [9–16]. However, only selected tree species can be grown on saline soils [17].

Under sub-tropical and semi-arid conditions, several tree species have been reported to
survive under light to moderate salinity levels, such as Vachellia nilotica, Vachellia auriculiformis,
Albizia lebbek, Terminalia arjuna, Prosopis juliflora, Casuarina equisetifolia, Prosopis cineraria,
Tamarix indica, Dalbergia sissoo, Eucalyptus camaldulensis, Emblica officinalis, Zizyphus jujube,
and Syzygium cumini [18,19]. Among them, V. nilotica and D. sissoo are farm-friendly tree
species found in several parts of the world, particularly in India, Pakistan, Sri Lanka, Nepal,
Australia, and Africa [20,21]. Both are highly valuable for timber, furniture, fodder, medici-
nal value [22], and other environmental services such as climate change mitigation, shade,
beauty, soil fertility improvement, etc. [23,24]. Both tree species also play an important
role in environmental conservation and ecosystem balance [25]. These species are reported
to have the ability to tolerate saline conditions and ameliorate the soil’s physicochemical
properties [26,27]. Trees have the ability to minimize salt deposition and salt accumulation
in the upper layer of soil due to higher transpiration rate of trees and lower evaporation
rate under the shade of trees, respectively [28,29]. The deep root system of trees helps in
improving the physical structure of soil and allows the translocation of sodium ions in
deeper soil horizons [30,31]. However, in these types of degraded soils, trees have to face
various physiological problems and their growth is reduced [19,28].

Generally, saline soils have low organic matter content [32]. However, it is recently
reported that several organic amendments made from agricultural wastes such as green
manures, farmyard and poultry manure, agro-industrial by-products, food processing
wastes, mulches, cover crops, and composts can be very helpful in improving soil health
and plant growth under saline conditions [33–36]. Farmyard manure has been used to
ameliorate degraded soils for several centuries and it has the potential to mitigate the
negative impacts of salinity, enhance plant biomass, and increase yield [37]. Similarly,
poultry manure and slurry have shown very positive results in enhancing vegetative cover
on salt-degraded lands [38,39]. Biochar, a processed form of the organic amendment,
has shown promising results and has resulted in increased crop yields and plant growth
under saline conditions [36,40]. It is considered one of the most important discoveries in
the history of mankind [40–43]. There are different types of biochar made from diverse
sources under characteristic environmental conditions [9,16,41,44]. In another experiment,
different types of biochar were applied to check their effect on the growth of three different
agroforestry tree species. Among three different types of biochar, farmyard manure biochar
showed the best results. It not only improved soil conditions, but also enhanced plant
growth [9].

This experiment was devised to assess the impact of commonly available organic
amendments (FYM, PM and SL) and processed organic amendment in the form of biochar
(FYMB) on the growth of two important farm-friendly tree species: V. nilotica and D. sissoo
under saline conditions. The result of using various organic amendments on the growth and
physiological attributes of selected species were studied, and the combined ameliorative
effect of the selected amendments and species on soil physicochemical properties was
also studied.
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2. Results and Discussion
2.1. Growth Attributes

Figure 1 depicts the growth parameters of the selected two species with five different
treatments. V. nilotica generally showed better results as compared to D. sissoo for all growth
parameters. There was a 68%, 36%, 45%, and 63% increase in the shoot length of V. nilotica
in T2, T3, T4, and T5, respectively, as compared to T1. There was a 92%, 79%, 2.2%, and
107% increase in the shoot length of D. sissoo in T2, T3, T4, and T5, respectively, as compared
to T1. There was a 114%, 34%, 96%, and 102% increase in the root length of V. nilotica in
T2, T3, T4, and T5, respectively, as compared to T1. There was a 45%, 33%, 26%, and 42%
increase in the root length of D. sissoo in T2, T3, T4, and T5, respectively, compared to T1.
There was a 163%, 65%, 110%, and 139% increase in the total above-ground biomass of
V. nilotica in T2, T3, T4, and T5, respectively, as compared to T1. There was a 109%, 45%,
5%, and 128% increase in the total above-ground biomass of D. sissoo in T2, T3, T4, and
T5, respectively, as compared to T1. There was a 116%, 24%, 57%, and 86% increase in the
below-ground biomass of V. nilotica in T2, T3, T4, and T5, respectively, compared to T1.
There was an 86%, 34%, 55%, and 102% increase in the below-ground biomass of D. sissoo
in T2, T3, T4, and T5, respectively, as compared to T1. The general trend of V. nilotica with
different treatments for all growth parameters was recorded as T2 > T5 > T4 > T3 > T1. The
general trend of D. sissoo with different treatments was recorded as T5 > T2 > T3 > T4 > T1.

2.2. Physiological Attributes

Figure 2 depicts the effect of different organic amendments on physiological character-
istics of V. nilotica and D. sissoo. All treatments affected the chlorophyll concentrations of
plants. FYM and FYMB showed maximum SPAD values for chlorophyll contents. Chloro-
phyll contents of Vachellia nilotica increased by 48%, 31%, 28%, and 34% in T2, T3, T4, and T5,
respectively, as compared to control. Chlorophyll contents of Dalbergia sissoo increased by
31%, 17%, 10%, and 40% in FYM, PM, SL, and FYMB, respectively, as compared to control.
The photosynthetic rate of both species was increased by using all types of organic amend-
ments. The photosynthetic rate was increased by 34%, 20%, 12%, and 33% for V. nilotica
against FYM, PM, SL, and FYMB, respectively. The photosynthetic rate was increased by
33%, 17%, 9%, and 36% for D. sisso in T2, T3, T4, and T5, respectively. The maximum stom-
atal conductance (0.07 mol m−2 s−1) and sub-stomatal CO2 (236.11 µmol m−2 s−1) were
exhibited by the V. nilotica plants treated with farmyard manure. The minimum stomatal
conductance (0.02 mol m−2 s−1) and sub-stomatal CO2 (179.44 µmol m−2 s−1) were shown
by the D. sissoo plants with the control treatment. The general trend of V. nilotica with differ-
ent treatments for all physiological parameters was recorded as T2 > T5 > T4 > T3 > T1. The
general trend of D. sissoo with different treatments was recorded as T5 > T2 > T3 > T4 > T1.

2.3. Sodium and Potassium Contents in Plants

The sodium (Na) and potassium (K) concentrations were determined for shoots and
roots for both species in all treatments. The Na contents in shoots of V. nilotica were
decreased by 45%, 31%, 33%, and 79% in T2, T3, T4, and T5, respectively, compared to
control. The concentration of Na in shoots of D. sissoo was decreased by 53%, 33%, 35%,
and 83% in T2, T3, T4, and T5, respectively, as compared to control.

The K contents (mg g−1 DW) in shoots of V. nilotica were increased by 81%, 51%,
65%, and 111% in T2, T3, T4, and T5, respectively, compared to control. The K contents
(mg g−1 DW) in shoots of D. sissoo were increased by 129%, 87%, 112%, and 62% in T2, T3,
T4, and T5, respectively, compared to control. Minimum sodium and maximum potassium
concentrations in roots of D. sissoo and V. nilotica were recorded in the T5 treatment. The
results of sodium and potassium concentration are illustrated in Figure 3.
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Vachellia nilotica and Dalbergia sissoo, where T1 = control, T2 = farmyard manure, T3 = poultry ma-
nure, T4 = slurry, T5 = biochar. The lower case letters the indicate that values are significantly (p < 
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Figure 1. Effects of different organic amendments on (a) shoot diameter, (b) shoot length, (c) root
length, (d) shoot dry weight, (e) root dry weight, (f) branch dry weight, and (g) leaf dry weight of
Vachellia nilotica and Dalbergia sissoo, where T1 = control, T2 = farmyard manure, T3 = poultry manure,
T4 = slurry, T5 = biochar. The lower case letters the indicate that values are significantly (p < 0.05)
different from each other.
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Figure 2. Effect of different organic amendments on (a) chlorophyll content, (b) photosynthetic rate,
(c) stomatal conductance, (d) substomatal CO2 concentration, (e) transpiration rate of Vachellia nilotica
and Dalbergia sissoo, where T1 = control, T2 = farmyard manure, T3 = poultry manure, T4 = slurry,
T5 = biochar. The lower case letters indicate that values are significantly (p < 0.05) different from
each other.

2.4. Biochemical Parameters

Figure 4 depicts the results of the effect of different organic amendments and selected
tree species on selected enzymatic activities. Results indicated that all types of organic
amendments enhanced antioxidant enzymatic activities as compared to control. Higher
concentrations of H2O2 and MDA (µM g−1 FW) were found in the plants of control
treatment, whereas organic amendments reduced the concentration of H2O2 and MDA,
but results were not statistically significant for different types of organic amendments. The
minimum concentration of antioxidant enzymatic activities was present in the D. sissoo
plants. The maximum increments in SOD (68.76%) and CAT (38.20%) activities were found
in the D. sissoo plants with the T5 treatment. POD activities were not affected significantly
by using different organic amendments.

2.5. Post-Harvest Soil Characteristics

The current study results demonstrate that post-harvest characteristics of soils are
significantly affected by using different types of organic amendments. The minimum
value of pH was observed in the plants of control treatment; although pH was significantly
reduced as compared to initial soil characteristics, there was no significant difference among
different treatments for the value of pH after harvesting of plants.
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Figure 3. Effect of different organic amendments on (a) shoot sodium, (b) shoot potassium, (c) root
sodium, and (d) root potassium of Vachellia nilotica and Dalbergia sissoo, where T1 = control, T2 =
farmyard manure, T3 = poultry manure, T4 = slurry, T5 = biochar. The difference between lower case
letters is the indication that values are significantly (p < 0.05) different from each other.

Maximum electrical conductivity was found in the plants of the control treatment. All
types of applied organic amendments showed very promising results in reducing the values
of EC and improving the physicochemical characteristics of the soil. All types of organic
amendments were found to be helpful in reducing the values of the total soluble salts (TSS)
and the sodium adsorption ratio (SAR). The use of organic amendments also improved
the organic matter and saturation percentages. It was also observed that the concentration
of potassium and calcium ions was increased and the concentration of sodium ions was
decreased by applying different types of organic matter as a soil amendment. Among
different types of applied organic amendments, biochar showed the most promising results
in reducing the values of EC, TSS, SAR, and sodium ions. Furthermore, biochar was also the
best amendment to improve the organic matter contents of soil, saturation percentage, and
concentration of potassium ions. Data regarding different post-harvest soil characteristics
are given in Table 1. We can say that all types of applied organic amendments were
beneficial in improving the physicochemical characteristics of soil, but biochar showed the
best results.

Among trees species, Vachellia nilotica showed the best results as compared to Dalbergia
sissoo in terms of improved physicochemical characteristics, as it can be seen from the table
that the EC reduced from 20.5 dS/m–12.41 dS/m in the soil where D. sissoo was grown
without any amendment, whereas the EC of soil decreased from 20.5 dS/m to 8.71 dS/m
of untreated V. nilotica soil. Similar results were obtained for all other parameters. These
results show that the phytoremediation potential of V. nilotica is greater than Dalbergia sisoo
for ameliorating salt degraded lands and biochar is the best amendment to improve the
physicochemical properties of soil.
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tase (SOD), (c) catalase (CAT) activities, concentrations of (d) hydrogen peroxide (H2O2) in plants’
leaves, and (e) malondialdehyde (MDA). T1 = control, T2 = farmyard manure, T3 = poultry manure,
T4 = slurry, T5 = biochar. The difference between lower case letters is the indication that values are
significantly (p < 0.05) different from each other.

The results of this study represent the salinity tolerance potential of two important
agroforestry species (Vachellia nilotica and Dalbergia sissoo) and, at the same time, the
effects of three commonly found organic wastes (farmyard manure, poultry manure, and
slurry) and one processed organic amendment, in the form of biochar, on the growth and
physiology of these species along with the physicochemical properties of soil. Results
indicated that salinity negatively affected the plant’s growth. Almost all morphological
and growth parameters such as shoot length, root length, dry weight of root, shoots, leaves,
and branches were less in the control treatment plants (under salinity). The reduction
in growth is due to a higher concentration of salts in saline soils. The osmotic potential
of salt-affected soils is low and when plants are grown in this soil, they must keep their
internal osmotic potential low to avoid exosmosis. This, in turn, leads to oxidative stress
and dehydration [45–48]. Salinity stress also causes nutrient imbalance, and nutrients
such as N, Ca, K, and toxic ions replace P, Fe, Zn, and as a result, their uptake to shoot is
decreased [49–51].

Different species responded to salinity in different ways, as Vachellia nilotica showed
better growth as compared to Dalbergia sissoo and was found to be more effective in the
remediation of saline soils. The response of plants to salinity is species and genotype-
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dependent [52]. This may be due to difference in the root behavior and hardiness of these
species towards such an adverse soil environment. The differences in the salinity tolerance
in these two species may be due to different rates of salt transport to the shoots, which
adversely affects leaf growth, reducing the photosynthetic efficiency of the plants [53]. In
another experiment, seedlings of Vachellia nilotica and Acacia ampliceps were grown under
different salinity levels of up to 400 mM NaCl concentration and all growth parameters
were reduced at the time of harvesting [20].

Although all the amendments showed better results for both species than control, both
species’ responses to different amendments were different. Farmyard manure showed
the most promising results for the growth of V. nilotica, whereas FYMB was the best
amendment for the growth of D. sissoo. Likewise, slurry showed better results for V. nilotica
as compared to poultry manure, but results were the opposite for D. sissoo, where poultry
manure showed better results than slurry. Therefore, we can say that response of plants
to different organic amendments is species-specific. It was reported that the response of
six different woody seedlings was species-specific under organic fertilization [54]. Likewise,
five different ornamental plant species responded differently to applying the same organic
matter [55]. In another study, a meta-analysis was performed and it was reported that the
first-year crop yield of different agronomic crops is different for different commonly used
organic amendments [56]. Plant growth of Corymbia maculata and Eucalyptus torquata was
not the same for applied organic amendments. Eucalyptus torquata showed better results
than control after using organic amendments, whereas Corymbia maculate did not show
any significant results after applying the same amendment [57]. Among different types of
biochar, sugarcane bagasse biochar showed the better results for the growth of D. sissoo,
whereas woodchips biochar was more effective for the growth of V. nilotica [9].

The current study results revealed that minimum Na and maximum K concentrations
were found in the plant parts treated with biochar. Biochar improved potato crop yield by
decreasing Na contents and increasing K contents [58]. Biochar is reported to significantly
enhance the concentration of potassium in leaf sap of maize [59]. Biochar showed the
ability to increase the amount of available potassium and reduce the bioavailability of
sodium ions [60]. Biochar application increased the available K and resultantly enhanced
the biomass of lentils [61]. Biochar has the ability to reduce toxic elements by the process
of adsorption [62]. Salt-affected soil amended with farmyard and poultry manures for
rice showed enhanced growth and yield, increased amounts of potassium and K/Na, and
increased salt-tolerance [63].

The use of organic amendments increased antioxidant enzymatic activities (SOD,
POD, and CAT). This shows the enhanced tolerance of plants to salinity stress [64]. The
antioxidant defense system of spinach leaves was also increased by using biochar and other
amendments [65]. Moreover, different organic and inorganic amendments significantly
increased antioxidant enzymatic activities in Zea mays against cadmium contamination [66].
In addition, the use of organic amendments, including biochar, improved mung bean
antioxidant defense systems [67].

All amendments showed better results for chlorophyll contents and other gas exchange
parameters for both species compared to control. It was reported that biochar increased
the stomatal conductance and photosynthetic rate of okra plants [68], fava beans [69], and
maize plants [70]. Photosynthetic activity and other physiological parameters of plants are
also reported to be enhanced by the use of organic amendments [71].
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Table 1. Effect of various organic amendments and agroforestry trees species on post-harvest soil characteristics.

Parameters T1 T2 T3 T4 T5
SP 1 SP 2 SP 1 SP 2 SP 1 SP 2 SP 1 SP 2 SP 1 SP 2

pH 7.77a ± 0.04 7.77a ± 0.04 7.87a ± 0.04 7.88a ± 0.04 7.87a ± 0.04 7.89a ± 0.04 7.85a ± 0.04 7.87a ± 0.04 7.84a ± 0.04 7.84a ± 0.04
EC (dS/m) 8.71b ± 0.2 12.4a ± 0.2 3.94de ± 0.2 8.42b ± 0.2 6.83c ± 0.2 8.75b ± 0.2 4.13de ± 0.2 8.15b ± 0.2 3.57e ± 0.2 4.53e ± 0.2

TSS(mmolc/L) 87.10b ± 2.1 124.1a ± 2.1 39.3de ± 2.1 84.2b ± 2.1 68.3c ± 2.1 87.5b ± 2.1 41.3de ± 2.1 81.5b ± 2.1 35.7e ± 2.1 45.2e ± 2.1
HCO3

−(mmolc/L) 4.44a ± 0.3 4.51a ± 0.3 3.2b ± 0.3 3.5ab ± 0.3 3.6b ± 0.3 3.7ab ± 0.3 3.2ab ± 0.3 3.8ab ± 0.3 3.2b ± 0.3 3.5ab ± 0.3
Cl− (mmolc/L) 51.0b ± 1.7 60.0a ± 1.7 19.3fg ± 1.7 28.6cde ± 1.7 31.3cd ± 1.7 34.6cd ± 1.7 22.6efg ± 1.7 27.3de ± 1.7 17.3g ± 1.7 25.4def ± 1.7

Ca2+ + Mg2+ (mmolc/L) 3.7 c ± 0.7 3.83bc ± 0.7 7.5a ± 0.7 7.5a ± 0.7 7.1a ± 0.7 6.6a ± 0.7 6.4ab ± 0.7 6.6ab ± 0.7 5.0abc ± 0.7 5.2abc ± 0.7
Na+ (mmolc/L) 51.0b ± 1.2 62.33a ± 1.2 22.3fg ± 1.2 35.0d ± 1.2 28.0e ± 1.2 37.3cd ± 1.2 25.0e ± 1.2 40.3c ± 1.2 18.5h ± 1.2 19.9gh ± 1.2

SAR 37.4b ± 1.3 45.5a ± 1.3 11.7e ± 1.3 18.0cd ± 1.3 14.9de ± 1.3 20.6c ± 1.3 13.9de ± 1.3 22.1c ± 1.3 11.6e ± 1.3 12.3e ± 1.3
K+(mmolc/L) 6.5c ± 0.4 6.0c ± 0.4 11.3a ± 0.4 11.4a ± 0.4 10.3ab ± 0.4 10.4ab ± 0.4 9.5b ± 0.4 9.4 b ± 0.4 11.6a ± 0.4 12.0a ± 0.4

OM (%) 0.51e ± 0.1 0.50e ± 0.1 0.69bc ± 0.1 0.66cd ± 0.1 0.64cd ± 0.1 0.63d ± 0.1 0.62d ± 0.1 0.63d ± 0.1 0.77a ± 0.1 0.74ab ± 0.1
Saturation (%) 34.5d ± 0.47 34.5d ± 0.5 39.6b ± 0.5 38.8b ± 0.5 37.6c ± 0.5 37.6c ± 0.5 38.5bc ± 0.5 38.5bc ± 0.5 45.4a ± 0.5 45.3a ± 0.5

Mean value (n = 3); ± standard error; significant difference based on p < 0.05; the lower case letters indicate that values are significantly (p < 0.05) different from each other. T1, control;
T2, farmyard manure; T3, poultry manure; T4, slurry; T5, Biochar. SP1 = Vachellia nilotica, SP2 = Dalbergia sissoo.
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All organic amendments generally improved soil physicochemical characteristics of
saline soils, with biochar showing the best results in this study. Suppose that organic
amendments are used to treat salt-affected soils. In that case, they have several benefits to
improve the quality of soil, such as increased water holding capacity [72], enhanced soil
fertility [73], increased organic carbon [74,75], improved cation exchange capacity (CEC),
decreased electrical conductivity [9,76,77], structural stability, [78,79], reduction in soil
compaction [80], and enhancement of different enzymatic activities such as urease, alkaline
phosphatase, and catalase activities [81,82].

Biochar application reduced the uptake of sodium ions (Na+1), enhanced uptake of
potassium ions (K+) [83–85], influenced processes of Na+1 leaching, and decreased the
sodium adsorption ratio (SAR) and electrical conductivity (EC) [84,86,87].

When coastal saline soils are treated with biochar, sodium can be substituted by
beneficial ions such as potassium, magnesium, and calcium on the soil colloids [88]. Soil
chemical properties such as pH and CEC were significantly affected by the interactive effect
of biochar and farmyard manure, and available potassium was also increased [19,89].

3. Materials and Methods

An experimental area of the Department of Forestry and Range Management (FRM),
University of Agriculture Faisalabad (UAF) (31◦25′57′′ N, 73◦04′21′′ E) was selected for this
experiment. Two-month-old seedlings of Vachellia nilotica and Dalbergia sissoo were planted
in earthen pots. This experiment was conducted for a period of six months. Climatic
conditions during the experiment are given in Table 2.

Table 2. Climatic conditions data during experimental months.

Month Average Max. Temp.
(◦C)

Average Min. Temp.
(◦C)

Precipitation
(mm)

Sunshine Duration
(Hours)

ET0
(mm)

March 27.3 14.2 16.2 07.2 02.7
April 37.7 20.9 28.3 09.2 05.2
May 41.1 26.0 10.1 10.4 05.7
June 39.8 27.3 41.6 09.38 05.3
July 38.5 28.9 117.2 07.0 04.0

August 38.1 28.6 66 07.9 03.8

Soil samples from different localities of Faisalabad district were collected and analyzed,
and soil with low productivity and high electrical conductivity value was chosen for this
study. The procedure of selecting the fields for soil collection and preparation of soil for
experiments was discussed earlier in [19]. Sandy loam soil with 60% sand, 25% silt, and
15% clay was used in this experiment. Different soil physicochemical characteristics were
determined according to the procedures described by the US Salinity Laboratory Staff
1954 [90]. The hydrometer method described by [91] was followed for the determination
of soil texture. The pH was measured using a Jenway pH meter (Model-671P) following
calibration with two buffer solutions of pH 4.00 and 9.00. The EC was measured using
a Jenway conductivity meter (Model-4070) following calibration with a 0.01 N KCl solution.
The EC was converted into total soluble salts using the graph on page 12 of the USDA
Handbook No. 60 [90].

Soluble Ca and Mg were determined by titrating the saturation extract with 0.01 N
EDTA (disodium) solution to a blue endpoint using Erichrome Black T indicator in the
presence of NH4OH + NH4Cl buffer solution. Soluble Na and K were determined using
a Jenway PFP-7 flame photometer with Na or K filters in place. The instrument was cali-
brated with a series of Na or K (0–20 ppm) standards. Standards graphs were separately
plotted for Na and K containing standards and flame photometer readings. Carbonate
content was determined by titrating a saturation extract with 0.01 N H2SO4 to a colorless
endpoint using Phenolphthalein as an indicator. Bicarbonate content was determined by
titrating an aliquot obtained after CO3

2− determination with 0.01 N H2SO4 to a pinkish
yellow endpoint using methyl orange as an indicator. Soluble chloride content was deter-
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mined by titrating the aliquot after HCO3
− determination with 0.01 N AgNO3 solution

to a brick red endpoint using potassium chromate (K2CrO4) as an indicator. Soil OM was
determined following the Walkly–Black method described in [92]. The characteristics of
the soil used in this experiment are given in Table 3.

Table 3. Analysis of selected parameters for soil and other organic amendments used in the experiment.

Parameters Soil FYM PM SL FYMB

pH 8.5 ± 0.3 5.8 ± 0.2 6.3 ± 0.3 6.0 ± 0.3 7.0 ± 0.2
EC (dS/m) 20.5 ± 9 6.55 ± 2.5 7.31 ± 3.2 6.82 ± 3.8 2.08 ± 0.34

TSS (mg/kg) 205 ± 20 65 ± 5.8 73.1 ± 10.2 68.2 ± 8.4 20.8 ± 4.2
CO3

2− (mg/kg) 10 ± 2 (-) (-) (-) (-)
HCO3− (mg/kg) 30 ± 4 10 ± 3.2 6 ± 3.8 12 ± 4.5 8 ± 2.5
Cl− (mg.kg−1) 140 ± 19 8.0 ± 2.2 5 ± 3.2 5 ± 3.2 4 ± 2.1

Ca2+ + Mg2+ (mg/kg) 12 ± 4.5 7.3 ± 4.2 6.3 ± 3.1 6.9 ± 2.5 13.2 ± 2.2
Na+ (mg/kg) 160 ± 15.2 11.6 ± 1.8 15.2 ± 3.4 13.4 ± 2.5 3.4 ± 0.8
K+ (mg/kg) 47 ± 7 9.2 ± 2.7 8.8 ± 2.5 8.9 ± 2.9 7.2 ± 2.2

OM (%) 0.64 ± 0.03 50.8 ± 2.4 67.2 ± 5.5 65.4 ± 4.3 95.4 ± 3.6

Four types of commonly available organic amendments—farmyard manure (FYM),
poultry manure (PM), slurry (SL), and farmyard manure biochar (FYMB)—were applied
in this experiment. Farmyard manure (FYM) is a fertilizer composed of waste products,
typically dung and urine, produced by farm animals, most commonly cows and buffaloes.
Poultry manure (PM), also known as chicken manure, mainly comprised of feces of chicken,
is also an excellent soil amendment. Slurry (SL) is obtained as a byproduct of biogas.
A biogas digester/reactor converts dung into biogas and bioslurry is produced.

These amendments were collected from the farm area of the agronomy department
of the UAF. Dung cakes were used as feedstock material to prepare biochar. Biochar was
prepared at 450 ◦C for the duration of 3 h under slow pyrolysis conditions.

These organic amendments were thoroughly mixed with the soil of the selected field
at the rate of 6% (w/w). Characteristics of the amendments used in this experiment are
given in Table 3.

Uniform-sized, healthy, and disease-free seedlings of the Vachellia nilotica (SP 1) and
Dalbergia sissoo (SP 2) were collected from the nursery of the Department of FRM, UAF.
They were planted in pots containing soil mixed with organic amendments. The internal
diameter and height of the pots were 10 inches, and each pot contained 10 kg of soil. Tap
water with pH (7.29), EC (0.669 dS/m), and RSC (1.8) was used to irrigate the plants from
the nursery of the Forestry Department, UAF. Plants were irrigated with almost a half-liter
of water on alternate days for each pot during the first two months. After that, from May
to August, plants were irrigated with a half-liter of water on a daily basis.

The total number of treatments for this experiment was five: control (T1), FYM (T2),
PM (T3), SL (T4), and FYMB (T5). There were three replications of each treatment, and
for each replication, three plants were selected. Thus, nine plants were selected for each
treatment for both species.

Vernier calipers and measuring tape were used to measure shoot diameter and shoot
length of plants before harvesting. Both plant species’ growth parameters and morphologi-
cal characteristics were determined according to the earlier patterns [16,19,93]. An LCA-4
ADC portable infrared gas analyzer (Analytical Development Company, Hoddesdon, Eng-
land) was used to measure the gas exchange parameters. Each plant’s second upper fully
expanded leaf was selected to measure photosynthetic parameters such as photosynthetic
rate, stomatal conductance, sub-stomatal conductance, and transpiration rate measured
according to the procedures described earlier in [9,94]. To ensure unchanged photon flux
density and temperature, readings were made at a similar time each day (between 10:00 a.m.
and 12:00 p.m.) by clamping the central part of the leaf in the chamber of the instrument.
In terms of SPAD values, chlorophyll measurement was also performed on the third upper
leaf using a chlorophyll meter (SPAD-502, Konika Minolta Sensing Inc., Tokyo, Japan).
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To estimate hydrogen peroxide content in leaves, 50 mg of leaf sample was taken
and standardized with 3 mL of phosphate buffer solution. This sample was then mixed
with 1 mL of titanium sulphate in 20% (v/v) H2SO4. Next, this mixture was subjected
to a centrifugation process at 6000× g resolution for a period of 15 min. After that, the
absorption of the supernatant was calculated using a spectrophotometer at the wavelength
of 410 nm. To calculate malondialdehyde contents of leaves, a 0.2 g leaf sample was
homogenized in 5 mL of trichloroacetic acid (TCA). After that, this sample was passed
through the process of centrifugation at 10,000× g of resolution for a period of 20 min.
In the end, the absorption of supernatant was calculated at three different wavelengths,
namely 450, 532 and 600, to estimate leaf MDA contents by using the following equation.
The details of the determination of the biochemical parameters are given in [94,95].

C (µmol L−1) = 6.45(A532 − A600) − 0.56 A450

0.2 g leaf samples were taken and mixed with 0.05 M buffer solution of phosphate to
determine the activities of SOD and POD. The mixture was passed through the process
of centrifugation at 12,000× g resolution for a period of 20 min. The detailed procedure
for determining the activities of SOD and POD is described earlier in [96,97], while CAT
activity was determined according to the procedure described earlier in [98].

Roots, shoots, and leaves were separately oven-dried at 75 ◦C till the constant weight
was obtained. Oven-dried plant material was ground and then digested using nitric acid
and perchloric acid. According to the procedures explained earlier, sodium and potassium
contents in different plant parts were determined after digestion, using a Jenway-PFP 7
flame photometer [9,99].

4. Statistical Analysis

Two factor factorial analysis under CRD was used to analyze the data with the help of
the computer-based software Statistix 8.1 (Tallahassee, FL, USA). There were two factors
i.e., species and treatments. Their interaction effect was determined using the ANOVA
technique, and the significance of treatments was calculated using Tukey’s HSD Test.

5. Conclusions

Organic amendments showed a positive effect on the growth of Vachellia nilotica
and Dalbergia sissoo under saline conditions. Organic amendments enhanced enzymatic
activities, reduced oxidative stress, increased potassium concentration, and decreased
sodium concentration, resulting in improved growth of both plant species. At the seedling
stage, farmyard manure showed better results for the growth of Vachellia nilotica, whereas
biochar was the most effective amendment for the growth of Dalbergia sissoo. A long-term
field trial is required to determine field feasibility with cost analysis for planting these
trees species under recommended amendments in saline soils. Moreover, the effects of
different biochar and farmyard manure levels on the growth of Dalbergia sissoo and V. nilotica
should also be tested. The findings of this study can be employed during afforestation
and reforestation programs, mainly when performed with the prime objective of saline
soil reclamation.
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