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Abstract. We introduce a new neural network for Data Assimilation
(DA). DA is the approximation of the true state of some physical system
at a given time obtained combining time-distributed observations with
a dynamic model in an optimal way. The typical assimilation scheme is
made up of two major steps: a prediction and a correction of the pre-
diction by including information provided by observed data. This is the
so called prediction-correction cycle. Classical methods for DA include
Kalman filter (KF). KF can provide a rich information structure about
the solution but it is often complex and time-consuming. In operational
forecasting there is insufficient time to restart a run from the beginning
with new data. Therefore, data assimilation should enable real-time uti-
lization of data to improve predictions. This mandates the choice of an
efficient data assimilation algorithm. Due to this necessity, we introduce,
in this paper, the Neural Assimilation (NA), a coupled neural network
made of two Recurrent Neural Networks trained on forecasting data and
observed data respectively. We prove that the solution of NA is the same
of KF. As NA is trained on both forecasting and observed data, after the
phase of training NA is used for the prediction without the necessity of
a correction given by the observations. This allows to avoid the predic-
tion-correction cycle making the whole process very fast. Experimental
results are provided and NA is tested to improve the prediction of oxygen
diffusion across the Blood-Brain Barrier (BBB).
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1 Introduction and Motivations

The current approach to forecasting modelling consists of simulating explicitly
only the largest-scale phenomena, while taking into account the smaller-scale
ones by means of “physical parameterisations”. All numerical models introduce
uncertainty through the selection of scales and parameters. Additionally, any
computational methodology contributes to uncertainty due to discretization,
finite precision and accumulation of round-off errors. Finally the ever growing
size of the computational domains leads to increasing sources of uncertainties.
Taking into account these uncertainties is essential for the acceptance of any
numerical simulation. Numerical forecasting models often use Data Assimilation
methods for the uncertainty quantification in the medium to long-term analysis.
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Data Assimilation (DA) is the approximation of the true state of some physi-
cal system at a given time by combining time-distributed observations with a
dynamic model in an optimal way. DA can be classically approached in two
ways: as variational DA [16] and as filtering [5]. In both cases we seek an opti-
mal solution. The most popular filtering approach for data assimilation is the
Kalman Filter (KF) [15]. Statistically, KF seeks a solution with minimum vari-
ance. Variational methods seek a solution that minimizes a suitable cost func-
tion. In certain cases, the two approaches are identical and provide exactly the
same solution [16]. However, the statistical approach, though often complex and
time-consuming, can provide a richer information structure, i.e. an average and
some characteristics of its variability (probability distribution). During the last
20 years hybrid approaches [11,18] have become very popular as they combine
the two approaches into a single taking advantage of the relative rapidity and
robustness of variational approaches, and at the same time, obtaining an accu-
rate solution [2] thanks to the statistical approach. In this paper, in order to
achieve the accuracy of the KF solution and reduce the execution time, we use
Recurrent Neural Networks (RNN). Today the computational power of RNN is
exploited for several application in different fields. Any non-linear dynamical sys-
tem can be approximated to any accuracy by a Recurrent Neural Network, with
no restrictions on the compactness of the state space, provided that the network
has enough sigmoidal hidden units. This is what the Universal Approximation
Theorem [12,20] claims. Only during the last few years, the DA community is
starting to approach machine learning models to improve the efficiency of DA
models. In [17], the authors combined Deep Learning and Data Assimilation to
predict the production of gas from mature gas wells. They used a modified deep
LSTM model as their prediction model in the EnKF framework for parameter
estimation. Even if the prediction phase is speed up due to the introduction of
Deep Learning, this only partially affects the whole prediction-correction cycle
which is still time-consuming. In [9], the authors presented an approach for
employing artificial neural networks (NNs) to emulate the local ensemble trans-
form Kalman filter (LETKF) as a method of data assimilation. Even if the Feed
Forward NN they implemented is able to emulate the DA process for the time
window they fixed, when they need to assimilate observations in new time steps,
it still needs the prediction-correction cycle and this affects the execution time
which is just 90 times faster than the reference DA model. To further speed
up the process, in [8] the authors combined the power of Neural Networks and
High Performance Computing to assimilate meteorological data. These studies,
alongside others discussed in conferences and still under publication, highlight
the necessity to avoid the prediction-correction cycle by developing a Neural Net-
work able to completely emulate the whole Data Assimilation process. In this
context, we developed a Neural Assimilation (NA) as a Coupled Neural Network
made of two RNNs. NA captures the features of a Data Assimilation process by
interleaving the training of the two component RNNs on the forecasting data
and the observed data. That is, the two component RNNs are trained on fore-
casting and observed data respectively with additional inputs provided by the
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interaction of these two. This NA network emulates the KF and runs much faster
than the KF prediction-correction cycle for data assimilation. In this paper we
develop the NA architecture and proved its equivalence to the KF. The equiva-
lence between NA and KF is independent from the structure on the RNNs. In
this paper we show results we obtained employing two Long short-term mem-
ory (LSTM) architectures for the two RNNs. Then we employ the NA model
to a practical problem in predicting of oxygen (and drugs) diffusion across the
Blood-Brain Barrier (BBB) [1] to justify its correctness and efficiency.

This paper is structured as follows. In Sect. 2 the Data Assimilation problem
is described. The Neural Assimilation is introduced in Sect. 3, where we investi-
gate the accuracy of the introduced method and we present a theorem demon-
strating that the novel model is consistent with the KF result. Experimental
results are provided in Sect. 4. Conclusions and future works are summarised in
Sect. 5.

2 Data Assimilation

Data Assimilation (DA) is the approximation of the true state of some physical
system at a given time by combining time-distributed observations o(t) with a
dynamic model ẋ = M(x, t) in an optimal way. DA can be classically approached
in two ways: as variational DA [3] and as filtering. One of the best known tools for
filtering approach is the Kalman filter (KF) [15]. We seek to estimate the state
x(t) of a discrete-time dynamic process that is governed by the linear difference
equation

x(t) = M x(t − 1) + wt (1)

with an observation o(t):
o(t) = H x(t) + vt (2)

Note that M and H are discrete operators. The random vectors wt and vt

represent the modeling and the observation errors respectively. They are assumed
to be independent, white-noise processes with normal probability distributions

wt ∼ N (0, Bt), vt ∼ N (0, Rt) (3)

where Bt and Rt are covariance matrices of the modeling and observation errors
respectively. All these assumptions about unbiased and uncorrelated errors (in
time and between each other) are not limiting, since extensions of the standard
KF can be developed should any of these not be valid [5]. The KF problem can be
summarised as follows: given a background estimate x(t), of the system state at
time t, what is the best analysis z(t) based on the current available observation
o(t)?

The typical assimilation scheme is made up of two major steps: a prediction
step and a correction step. At time t we have the result of the previous forecast,
x(t) and the result of an ensemble of observations o(t). Based on these two
vectors, we perform an analysis that produces z(t). We then use the evolution
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model to obtain a prediction of the state at time t+1. The result of the forecast
at the prediction step is denoted with x(t + 1)

x(t + 1) = Mz(t), (4)

Bt+1 = M ((1 − KtH)Bt) MT , (5)

and becomes the background for the next correction time step:

Kt+1 = Bt+1H
T (HBt+1H

T + Rt+1)−1, (6)

z(t + 1) = x(t + 1) + Kt+1 (o(t + 1) − Hx(t + 1)) , (7)

We observe that, in case the observed data are defined in the same space of
the state variable, the operator Ht in (2) is the identity matrix and the Eqs. (6)–
(7) can be simplified becoming:

Kt+1 = Bt+1(Bt+1 + Rt+1)−1, (8)

z(t + 1) = x(t + 1) + Kt+1 (o(t + 1) − x(t + 1)) , (9)

Due to the high computational cost in updating the covariance matrices Bt

by Eq. (5), it in operational DA, is often used to assume Bt = Bt+1 ∀t. This
assumption leads to a model which is also called Optimal Interpolation [16].

Statistically, KF seeks a solution with minimum variance. This approach,
though often complex and time-consuming, can provide a rich information struc-
ture (often richer than information provided by variational DA), such as an aver-
age and some characteristics of its variability (probability distribution). In order
to maintain the accuracy of the KF solution and reduce the execution time, we
introduce, in the next section, a Neural Assimilation (NA) which is a network
representing KF but much faster than a KF prediction-correction cycle.

3 Neural Assimilation

For a fixed time window [t0, t1] and a fixed discretization time step Δt, let x(t)
still denote the forecasting result at each time step t ∈ [t0, t1]. Let o(t) denotes
an observation of the state value (Fig. 1). As it does not affect the generality of
our study, we are assuming here the observed data defined in the same space of
the state variable, i.e. the operator Ht in (2) is the identity matrix.

Given the data sets {x(t)}t∈[t0,t1] and {o(t)}t∈[t0,t1], the Neural Assimilation
(NA) is a Coupled Neural Network (for temporal processing) as shown in Fig. 2,
where:

– a first forecasting network NNF is a Recurrent Neural Network trained on
forecasting data x(t) with an additional input provided by a second forecast-
ing network NNO trained on observed data o(t);

– a second forecasting network NNO is a Recurrent Neural Network trained on
observed data o(t) with an additional input provided by a first forecasting
network NNF .
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Fig. 1. Available data in the fixed time window.

A fundamental feature of each network is that it contains a feedback connection,
so the activations can flow round in a loop. That enables the networks to do
temporal processing and learn sequences with temporal prediction. The form of
NA is a RNN with the previous set of hidden unit activations feeding back into
the network along with the inputs.

Fig. 2. Neural Assimilation

Note that the time t is discretized, with the activations updated at each time
step. The time scale might correspond to any time step of size appropriate for the
given problem. A delay unit given by the network NNF needs to be introduced to
hold activations in NNO until they are processed at the next time step and vice
versa. As for simple architectures and deterministic activation functions, learning
will be achieved using similar gradient descent procedures to those leading to
the back-propagation algorithm for feed forward networks.
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The NA scheme is made up of two major steps: a pre-processing step and a
training step. During the pre-processing step, the data set is normalized consider-
ing the information we have about the error estimations and the error covariance
matrices introduced in (3). We consider, to normalise, the inverse of the error
covariance matrices so that, data with big covariance/variance are assumed with
a small weight [5,16]. We pose

x̄(t) = B−1
t x(t) and ō(t) = R−1

t o(t). (10)

The computed vectors x̄(t) and ō(t) are the data used in the training step:

ō(t) = fOO
(WHOO

h(t − 1)) (11)

h(t) = fH (WIH x̄(t − 1) + WHHh(t − 1)) (12)

x̄(t) = fOF
(WHOF

h(t)) (13)

where the vectors x̄(t − 1) are the inputs, the matrices WIH , WHH , WHOF
and

WHOO
are the four connection weight matrices, and fH , fOF

and fOO
are the

hidden and outputs unit activation functions. The state of the dynamical system
is a set of values that summarizes all the information about the past behaviour
of the system that is necessary to provide a unique description of its future
behaviour, apart from the effect of any external factors. In this case the state is
defined by the set of hidden unit activations h(t). The Back propagation Through
Time for this algorithm is a natural extension of standard back propagation that
performs gradient descent on a complete unfolded network ([21], Chapter 5 of
[6]). If the NA training sequence starts at time t0 and ends at time t1, the total
cost function is simply the sum over time of the standard error function C(t) at
each time-step:

Ctotal =
t1∑

t=t0

C(t) (14)

where

C(t) =
1
2

n∑

k=1

(
(ōk(t − 1) − hk(t − 1))2 + (x̄k(t) − hk(t))2

)
(15)

and n is the total number of training samples. The gradient descent weight
updates have contributions from each time-step [19]:

Δwij = −η
∂Ctotal(t0, t1)

∂wij
= −η

t1∑

t=t0

∂C(t)
∂wij

(16)

where η is the learning rate [14]. The constituent partial derivatives ∂C(t)
∂wij

have
contributions from the multiple instances of each weight

wij ∈ {WIH ,WHH ,WHOO
,WHOF

}
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and depend on the inputs and hidden unit activations at previous time steps.
The errors now have to be back-propagated through time as well as through the
network [23].

We prove that the output function h(t) of the NA model corresponds to
the solution of Kalman filter with fixed covariance matrices, i.e. in its Optimal
Interpolation version [16]. The following result held.

Theorem 1. Let h(t) be the solution of NA given by Eqs. (10)–(16) and let z(t)
denote the solution of the KF algorithm as defined in (9). We have

h(t) = z(t), ∀t ∈ [t0, t1] (17)

Proof: Due to the definition of the L2 norm, the loss function in (15) can be
written as

C(t) = ‖ō(t − 1) − h(t − 1)‖22 + ‖x̄(t) − h(t)‖22 (18)

then, from Eq. (1), and except for the numerical errors that will be introduced
later as already included in the data sets, the (18) can be written as:

C(t) = ‖ō(t − 1) − h(t − 1)‖22 + ‖M x̄(t − 1) − M h(t − 1)‖22 (19)

From the properties of the L2 norm, the (19) can be written as

C(t) = (ō(t − 1) − h(t − 1))T (ō(t − 1) − h(t − 1))

+ (Mx̄(t − 1) − Mh(t − 1))T (Mx̄(t − 1) − Mh(t − 1)). (20)

To minimise this loss function, we compute the gradient

∇h(t−1)C(t) = 2(ō(t − 1) − h(t − 1)) + 2MT (Mx̄(t − 1) − M h(t − 1)) (21)

where MT denotes the Adjoint operator of the linear operator M [7] and we
pose ∇h(t−1)C(t) = 0, then we have:

2h(t − 1) = ō(t − 1) + x̄(t − 1) (22)

From the definition of x̄ and ō in (10), the (22) gives:

h(t − 1) (Bt−1 + Rt−1) = Rt−1x(t − 1) + Bt−1o(t − 1) (23)

Then, adding and subtracting the quantity Bt−1x(t − 1) and merging the
common factors, the (23) become

h(t − 1) (Bt−1 + Rt−1) = x(t − 1) (Bt−1 + Rt−1) + Bt−1 (o(t − 1) − x(t − 1))
(24)

Finally, posed Qt−1 = Bt−1 (Bt−1 + Rt−1)
−1, the (24) gives:

h(t − 1) = x(t − 1) + Qt−1 (o(t − 1) − x(t − 1)) (25)

which is the expression of the KF solution z(t − 1) in (9) for the time step
t − 1 and for the case of observed data defined in the same space of the state
variable (i.e. H = I and I is the identity matrix). Qt−1 is the Kalman gain
matrix in (8).
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The Eq. (25) in Theorem 1 represents a condition to assume that NA is con-
sistent with KF.

In Sect. 4, we validate the results provided in this section. We also show that
the employment of NA alleviates the computational cost making the running
less expensive.

4 Experimental Results

In this section we provide experimental results that demonstrate the applicability
and efficiency of NA. In our experiment, the NA is implemented by adopting
Long short-term memory (LSTM) architecture for the two RNNs. The reason
we use LSTMs is that they are suitable to contain information outside the normal
flow of the recurrent network so it is easier to plug two networks together. Also,
LSTMs allow to preserve the error that can be backpropagated through time
and layers which is a very important point for discrete forecasting models. A
description of the NA we implemented is provided in Fig. 3.

Fig. 3. Implementation of Neural Assimilation

The test case we consider is a numerical model to predict the oxygen diffu-
sion across the Blood-Brain Barrier (BBB). Nevertheless the model can be used
for any drugs by replacing the diffusion constant and the initial and boundary
conditions [1]. The Blood-Brain Barrier protects the central nervous system,
controls the entry of compounds into the brain by restricting access for blood
borne compounds and facilitates access for nutrients. This protection makes it
difficult to provide therapeutic compounds to brain cells when they are affected
by brain diseases as Alzheimer, Autism [13]. The BBB is composed of endothelial
cells connected by tight junctions. The main mechanisms allowing the transport
of drugs across the membrane are passive transport, carrier-mediated trans-
port, receptor-mediated transcytosis, and adsorption-mediated transcytosis [22].
The passive transport mechanism is the easiest method of drug transport for
lipophilic and low molecular size molecules. It means a simple diffusion across
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any membrane without application of energy and carrier proteins. Opioids and
steroids are examples of drugs which can be passively diffused [4]. Assuming that
the main transport mechanism is through passive diffusion, the initial three-
dimensional space problem can be reduced to a one-dimensional space problem.
In fact, passive diffusion involves many simplifications as no reaction term, uni-
form movement in all directions and an overall diffusion constant. Therefore, a
1D partial differential equation (PDE) as (26) with one initial condition and two
boundary conditions is an accurate model for this problem [22] where 0 corre-
sponds to the location at which the blood meets the Blood-Brain Barrier and
L = 400 nm is the real average thickness of the Blood-Brain Barrier.

⎧
⎪⎪⎨

⎪⎪⎩

∂x
∂t = D ∂2x

∂y2

x(0, y) = x0,y

x(t, 0) = xt,0

x(t, L) = xt,L

(26)

where t ∈ [0, 10ms] (ms denotes microsecond) and y ∈ [0, L]. We consider that,
at time 0 there is no oxygen, then x0,y = 0. Moreover, for our boundary con-
ditions, we consider that we have a constant concentration of oxygen in the
bloodstream and that at the interface of the barrier and the brain tissue all
oxygen will be consumed xt,0 = 0.02945 L/L blood and xt,L = 0. We assume the
diffusivity of oxygen through the Blood-Brain Barrier to be 3.24 ∗ 10−5 cm2/s
[1].

Equation (26) is discretised by a second order central finite difference in space
with Δy = 8 nm and a backward Euler method in time with Δt = 0.1 ms:

−Fxn
i−1 + (1 + 2F )xn

i − xn
i+1 = xn−1

i−1

where F = D Δt
Δy2 , i = 1, . . . , 50 and n = 1, . . . , 100. As we know that it does

not affect the generality of our study, in this paper we show results of NA using
observed data o(t) provided in [1] by the analytical solution of (26) for the
oxygen diffusion. The model can be used for any drugs by replacing the diffusion
constant and the initial and boundary conditions. Data sets for observed data
can be found in http://cheminformatics.org/datasets/. The NA code and the
pre-processed data can be downloaded using the link https://drive.google.com/
drive/folders/1C O-rk5wyqFsG5U-T7 vugBOddTPmOlY?usp=sharing.

The NA network has been trained using the 85% of the data and tested on
the remaining 15%. Figure 4 shows the value of the Loos function for training
and testing the forecasting network.

NA has been compiled as a sequential neural network with just one LSTM
layer of 48 units using as loss function the mean squared error one and as opti-
miser the Adam one. Weights are automatically initialised by Keras using:

– Glorot uniform for the kernel weights matrix for the linear transformation of
the inputs;

– Orthogonal for the linear transformation of the recurrent state.

http://cheminformatics.org/datasets/
https://drive.google.com/drive/folders/1C_O-rk5wyqFsG5U-T7_vugBOddTPmOlY?usp=sharing
https://drive.google.com/drive/folders/1C_O-rk5wyqFsG5U-T7_vugBOddTPmOlY?usp=sharing
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Fig. 4. Values of the loss function.

Fig. 5. Temporal evolution of the concentration at (a) y = 12 nm and (b) y = 35nm

Figure 5 shows the temporal evolution of the concentration at y = 12 nm
(Fig. 5a) and y = 35 nm (Fig. 5b). The accuracy of the NA results is evaluated
by the absolute error

eNA(t, y) = |z(t, y) − h(t, y)| (27)

and the mean squared error

MSE(h(t, y)) =
‖z(t, y) − h(t, y)‖L2

‖z(t, y)‖L2
(28)

where z(t, y) is the solution of KF performed at each time step. Table 1 shows
values of absolute error computed every 10 time steps. We can see that the
order of magnitude of the error is between e−07 and e−04. The corresponding
values of mean squared error are MSE(h(t, y)) = 1.31e−07 for y = 12 nm and
MSE(h(t, y)) = 8.16e−08 for y = 35 nm where t ∈ [0, 0.10ms]. Figure 6 shows
the comparison of the KF result and the NA result for the temporal evolution of
the concentration at each point of the BBB we are modelling. Values of execution
time are provided in Table 2. The values are computed as mean of execution times
from 100 runnings. We can observe that the time for prediction in NA is 1000
faster than the prediction with KF.
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Table 1. Error computed every 10 time steps at (a) y = 12 nm and (b) y = 35 nm

Time step t eNA(t, y), y = 12 nm eNA(t, y), y = 35nm

0 0 0

10 7.05e−04 6.11e−04

20 4.17e−04 4.88e−04

30 4.29e−04 1.91e−04

40 1.52e−04 6.05e−07

50 2.51e−04 9.11e−05

60 3.40e−05 1.11e−04

70 4.13e−05 1.05e−04

80 4.72e−05 7.35e−05

90 1.11e−04 1.89e−05

100 1.60e−04 3.18e−05

Table 2. Execution time for 100 time steps and all the distances

Executing time (s)

Neural Assimilation (training) 121.47

Neural Assimilation (prediction) 0.117

Kalman filter (prediction) 138

Finally, Table 3 shows the values of mean square forecasting error:

MSEF (x(t, y)) =
‖x(t, y) − o(t, y)‖L2

‖o(t, y)‖L2
(29)

(a) KF (b) NN

Fig. 6. Comparison between Data Assimilation (KF) and the Neural Network version
for t ∈ [0, 10 ms] (ms denotes microsecond) and y ∈ [0, 400 nm].
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and mean square assimilation error:

MSENA(h(t, y)) =
‖h(t, y) − o(t, y)‖L2

‖o(t, y)‖L2
(30)

computed with respect observations o(t, y). The values of the errors in the assim-
ilation results present a reduction of approximately one order of magnitude with
respect to the error in forecasting data.

Table 3. Mean square error forecasting error MSEF and mean square assimilation
error MSENA computed every 10 time steps at y = 12 nm

Time step t MSENA(h(t, y)), y = 12 nm MSEF (x(t, y)), y = 12 nm

0 5.03e−03 1.00e−02

10 5.48e−03 1.00e−02

20 5.34e−03 9.99e−03

30 5.06e−03 9.95e−03

40 4.88e−03 1.00e−02

50 4.80e−03 1.00e−02

60 4.78e−03 1.00e−02

70 4.80e−03 1.00e−02

80 4.83e−03 1.00e−02

90 4.87e−03 1.00e−02

100 4.90e−03 1.00e−02

5 Conclusions and Future Works

We introduced a new neural network for Data Assimilation (DA) that we named
Neural Assimilation (NA). We proved that the solution of NA is the same of KF.
We tested the validity of the provided theoretical results showing values of mis-
fit between the solution of NA and the solution of KF for the same test case.
We provided experimental results on a realistic test case studying oxygen dif-
fusion across the Blood-Brain Barrier. NA is trained on both forecasting and
observed data and it is used for predictions without needing a correction given
by the information provided by observations. This allows to avoid the predic-
tion-correction cycle of a Kalman filter, and it makes the assimilation process
very fast. We show that the time for prediction in NA is 1000 faster than the
prediction with KF. An implementation of NA to emulate variational DA [10]
will be developed as future work. In particular, we will focus on a 4D variational
(4DVar) method [5]. 4DVar is a computational expensive method as it is devel-
oped to assimilate several observations (distributed in time) for each time step
of the forecasting model. We will develop an extended version of NA able to
assimilate set of distributed observations for each time step and, then, able to
emulate 4DVar.
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