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Quantum control of spin-nematic 
squeezing in a dipolar spin-1 
condensate
Yixiao Huang1,2, Heng-Na Xiong3, Yang Yang3, Zheng-Da Hu4 & Zhengjun Xi2

Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached 
an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments 
have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a 
quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, 
with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a 
microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is 
achieved by manipulating the external periodic microwave pulses. The stability diagram for the range 
of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a 
stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed 
region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin 
dynamics are stabilized.

The study of spin squeezing1–3 has stimulated, both theoretically and experimentally, much recent interest because 
of their applications in quantum physics and quantum information processing4,5. Spin squeezing is valuable 
resource of quantum correlations and can be used to detect quantum entanglement6–10. Beside its intrinsically 
fascination, squeezing is demonstrated as one of the most tested schemes in precision measurement to go beyond 
the standard quantum limit (SQL)11,12. Since then, many efforts have been devoted to the generation of squeezing 
in atomic systems, such as generating spin squeezing in atomic ensembles via atom–photon interactions13–19, and 
in Bose-Einstein condensates (BECs) via atomic collisions20,21.

The atomic squeezed states which are introduced in contrast to coherent spin states, were first considered for 
a system of two-level atoms. For spin-1/2 particles, the state can be uniquely specified by different components of 
the total spin vector S = (Sx, Sy, Sz). For the spinor-1 atomic BECs22–33, a natural basis to describe the wavefunction 
can be specified in terms of nematic tensor Qi,j({i, j} ∈ {x, y, z})34–40 in addition to the usual spin vector S. In matrix 
form, Qi,j can be written as Qi,j = SiSj + SjSi − (4/3)δij with δij being the kronecker delta. The nematic moments Qi,j 
and the spin vector S constitute SU(3) Lie algebra which suggests newtrade-off relations between the spin opera-
tor S and the nematic tensor Qi,j. It indicates that not only quantum fluctuations of the spin vector, but also those 
of the nematic tensor can be controlled by manipulating various types of correlations between noncommutative 
spin and nematic-tensor observables. Thus the squeezing can be induced by other types of correlations such as 
spin-nematic and internematic correlations.

Recently, spin-nematic squeezed vacuum was measured experimentally, which improved on the SQL by up 
to 8–10 dB41. Such a squeezing associated with negligible occupation of the squeezed modes, which is analogous 
to optical two-mode vacuum squeezing and widely application in light42–45. The dynamics stabilization was also 
performed in a spinor BEC by manipulating the external periodic microwave pulses, by which the atoms are 
always condensed in one spin component23. The above experiments considered the system with magnetic field 
and neglected the effect of the dipolar interaction. It is well known that the dipolar interaction in spinor alkali 
condensates may play a more prominent role in the squeezing and dynamical stability46–50. In addition, for the 
quantum information, beyond the generation of the squeezing itself, it is desirable to maintain the squeezing and 
also its direction for a long time51,52.
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In this paper, we propose a scheme for storage of the maximal spin-nematic squeezing in a dipolar spinor 
condensate. We consider a system of dipolar spin-1 BEC with an initial state of all atoms in the state of mf = 0. 
The free dynamical process gives rise to quantum spin mixing and spin-nematic squeezing. By manipulating 
an external microwave pulse at a time that maximal spin-nematic squeezing occurs, the squeezing is stored for 
a long time with its squeezing angle maintained in a fixed direction. The dynamic stabilization of the system is 
demonstrated by applying periodic microwave pulses. The range of pulse periods and phase shifts with which the 
condensate can be stabilized is numerical calculated and compares well with a linear stability analysis in the mean 
field approximation. We also show that the existence range of the spin-nematic squeezed vacuum coincides well 
with the stabilization range, which indicates that the spin-nematic squeezed vacuum will always exist as long as 
the system is stabilized.

Results
Model. We consider a spin F = 1 condensate with N atoms trapped in an axially symmetric potential. For 
simplicity, we choose the symmetry axis to be the quantization axis z. The second quantized Hamiltonian of the 
system with short-range collisions and long-range magnetic dipolar interaction reads31

H �
∫ ∫

∫

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

′

′ ′

=












−
∇
+













+

+ ⋅

+
−





− ⋅ ⋅ 



α α α β α β

α α αβ α β β β

α α αβ α β β β

α α αβ α β β β

′

′

′

′ ′

′ ′ ′ ′

′ ′ ′ ′

′ ′

∬

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† † †

† †

† †

† †

d
M

V c d

c d

c d d

r r r r r r r r r

r r r F F r r

r r

r r
r r F F r r

r r F e F e r r

( )
2

( ) ( )
2

( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

3 ( ) ( )( )( ) ( ) ( ) ,
(1)

d

0

2 2

ext
0

2

3

where ψαˆ r( ) is  the atomic f ield annihi lat ion operator associated with atom in spin state 
α α| = = 〉 = ±f m1, ( 0, 1)f , F is the angular momentum operator and e = (r − r′)/|r − r′| is the unit vector. The 

mass of the atom is given by M and the trapping potential Vext(r) is assumed to be spin independent. Collisional 
interaction parameters for the spin-independent and spin-exchange are π= +c a a M4 ( 2 )/(3 )0

2
0 2  and 

π= −c a a M4 ( )/(3 )2
2

2 0 , respectively24,25, where af (f = 0, 2) is the s-wave scattering length for spin-1 atoms in 
the combined symmetric channel of total spin f. The strength of the magnetic dipole-dipole interaction is given 
by µ µ π=c g /4d F B0

2 2  with μ0 being the vacuum magnetic permeability, μB the Bohr magneton, and gF the Landé 
g-factor. For both the 87Rb and 23Na atoms, one has 

c c2 0 and  .c c0 1d 2 . Under these conditions, the single 
mode approximation (SMA) is expected to be valid, and then the field operators can be decomposed as 
ψ φα α

ˆ âr r( ) ( ) 30,31, where αâ  is the annihilation operator of spin component α. The Hamiltonian of the system 
under the SMA (with constant terms dropped) can be remarkably reduced to31
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 with θe being the polar angle of (r − r′). The sign of ′c2 is determined by 

the type of atoms: 87Rb ( ′ <c 02 ) and 23Na ( ′ >c 02 ), the sign and the magnitude of dipolar interaction strength ′cd 
can be tuned via modifying the trapping geometry (see Methods).

Spin-nematic squeezing. Before discussing the dynamic properties of the system, we want to point out that 
the term ′ ˆc S3 d z

2
 commutes with all the other terms in the Hamiltonian. If we start with an initial state that is an 

eigenstate of Ŝz, the dipolar term ′ ˆc S3 d z
2
 has no effect and thus can be neglected. In the following, we consider an 

initially spin-polarized condensate where all atoms are prepared in the spin-0 state, i.e., ψ| = | N(0) 0, 0, , where 
| −N N N, ,1 1 0  denotes the usual Fock states. During the spin-mixing dynamical processing, the spin mixing 
Hamiltonian (2) conserves both the total particle number N and magnetization, the evolution state of the system 
in vector form is

∑ψ 〉 = 〉
=

t a t N k( ) ( ) , ,
(3)k

N

k
0

/2

where N k,  is so-called pairs basis with N the total particle number and k the number of pairs of atom in the 
mf = ±1 states. Thus the expected values of 〈Sx,y,z(t)〉 equals to zero and then the mean spin vanishes and the spin 
squeezing parameter is divergent.

Fortunately, spin-1 has other higher order spin moments which could exhibit squeezing. Based on the com-
mutation relationship of the operators Qi,j, we can define {Sx, Qyz, Q+} and {Sy, Qxz, Q−} as two subspaces of SU(3), 
where Q+ and Q− are defined as Q+ = Qzz − Qyy and Q− = Qxx − Qzz, respectively (see Methods). According to the 
generalized Heisenberg uncertainty relation ∆ ∆ ⩾ ˆ ˆA B A B1/2 [ , ] , only operator pairs with non-zero 
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expectation values for their commutation relations can exhibit squeezing. For the initial state N0, 0, , only two 
of the SU(3) commutators have non-zero expectation values, i.e., 〈Q±〉 ≠ 0. Thus we can obtain a uncertainty 
relationship between a spin operator and a quadrupole nematic operator, i.e, ∆ ∆ +⩾S Q Q1/2x yz  and 
∆ ∆ −⩾S Q Q1/2y xz . From these relations, two spin-nematic squeezing parameters can be defined in terms of 
quadratures of the operators41
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where θ is the quadrature angle. Consider the evolution state of the system with negligible populations of the 
mf = ±1 states, the expectation values for two of the SU(3) commutators are given by 〈[Sx,Qyz]〉 = −2iN and 〈[Sy, 
Qxz]〉 = 2iN. In such a case, the relevant uncertainty relations between quadrupole nematic operators and spin 
operators are given by ∆ ∆ ⩾S Q Nx yz  and ∆ ∆ ⩾S Q Ny xz . Then the squeezing parameter ξx y( )

2  are the ratio 
between the variance of the quadrature operator to the standard quantum limit of N which reduce to41
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and ξ < 1x y( )
2  indicates spin-nematic squeezed vacuum. In Fig. 1, we display the dynamics of the spin component 

mf = 0 (ρ0 = N0/N) and the corresponding spin-nematic squeezing parameter ( ξ10 log x10
2) for different dipolar 

interactions. The spinor interaction strength is chosen as a realistic experimental parameter with π′ = − .c N7 2 /2  
Hz, and c is defined as = ′ ′c c c/d 2 . As the dipolar interaction |c| increases, the speed of spin mixing slows down 
and the corresponding time of maximal squeezing tm becomes larger. It is due to the fact that the enhancement of 
dipolar interaction suppresses the spinor interaction. When the inter-spin interaction reduces to 0, there will be 
no spin mixing and squeezing.

In the recent experiment, the spin-nematic squeezing is measured by using an SU(3) rotation in spin-nematic 
phase space around the −Qzz axis41. The wave function after the rotation is given by
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which corresponds to an additional phase on different states N k, . The rotation (phase shifts) can be experimen-
tally implemented by using 2π Rabi pluses on the | = = 〉f m1, 0f  ↔| = = 〉f m2, 0f  microwave clock transition, 
which can effectively shift the phase of the state | = = 〉f m1, 0f  with an amount θ π∆ = + ∆ + ∆(1 / 1 )0

2 , where 
Δ is the detuning normalized to the on-resonance Rabi rate41.

The microwave pulse can also be used to control the dynamics of spin-nematic squeezing. As shown in Fig. 2, 
a pulse is added at the maximal-squeezing time tm with the phase shift Δθ = −0.98π, we can find that the maximal 
squeezing can be stored for a long time. In addition, with the help of the pulse, the direction of the squeezing can 
also be maintained along a fixed axis. Experimentally, it is possible that the parameter c may deviate from the 
value of c = −0.1. We varied the dipolar interaction parameter c near the value of c = −0.1, and found that the 
spin-nematic squeezing (ξ ≈ −22x

2 dB) can also be maintained for a long time ( ≈150 ms) with many other sizes 
of the microwave pulse parameters, such as δθ = −0.98π, c = −0.09 and δθ = −0.98π, c = −0.11. In this way, the 
storage of spin-nematic squeezing and the direction of the squeezing are realized by applying external microwave 
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Figure 1. Spin population and spin nematic squeezing. (a) The spin component mf = 0 and (b) the 
corresponding spin-nematic squeezing parameter ξx

2 as a function of t with N = 3000.
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pulse. Here, we emphasize that the maintained squeezing is not a squeezed vacuum; as shown in the inset of 
Fig. 2(b), the population in spin components mf = ±1 are macroscopically populated.

Dynamic stabilization and spin-nematic squeezed vacuum. Next we consider a spin-nematic 
squeezed vacuum which is associated with negligible occupation of the squeezed modes, and is analogous to 
optical two-mode vacuum squeezing42–45. To generate the spin-nematic squeezed vacuum, we shall control the 
stability of the dynamics which ensure that there is essentially no population transfer ( <1%) from the mf = 0 
state. In our scheme, the dynamic stabilization is achieved by preventing the buildup of the correlations using the 
periodic phase shifts which is similar to that used in spin-1 condensate with quadratic Zeeman energies23. The 
numerical simulation result demonstration dynamic stabilization of the system are shown in Fig. 3. The spin 
population ρ0 as a function of t is shown for two different microwave pulse parameters with δθ = −0.5π and 
−0.2π, which respectively corresponds to a stabilized condition and a unstable condition. For comparison, the 
unstabilized dynamics showing free evolution spin mixing with δθ = 0 is also displayed. The difference between 
the three different cases is the size of quadrature phase shift applied per pulse. It means that for a proper size of 
quadrature phase shift, the dynamic of the system can be stabilized and then measurement of the spin population 
ρ0 corresponds to a measurement of the projection of the spin nematic sphere on the polar axis. Conceptually, the 
spin-nematic phase space can be represented on a unit sphere with axes {S⊥, Q⊥, x}, where = +⊥S S Sx y

2 2 2, 
= +⊥Q Q Qyz xz

2 2 2 , and x = 2ρ0 − 1 (see Methods).
We have also investigate the range of pulse periods and quadrature phase shifts which provide stabilization 

of the spin dynamics. The numerical result of the spin population ρ0 after 160ms is also shown in Fig. 4, which 
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Figure 2. Spin nematic squeezing and squeezing angle. Time evolution of (a) the squeezing parameter,  
(b) the squeezing angle for the dipolar interaction c = −0.1 with N = 3000. Solid curves: the free evolution case; 
dashed curves: the case for pulse at the time tm indicated by the colored ticks along the horizontal axis.
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Figure 3. Population of spin component mf=0. Numerical result of ρ0 for different applied phase shifts 
Δθ = −0.5π (blue dashed line),0 (red solid line), and −0.2π (black dot line) for stability, free and unstable cases, 
respectively. The ticks represent the pulses. The total particle number N = 3000 and the phase period is 18ms 
with the first pulse applied at 18ms.
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displays a map of the stability region versus pulse period and quadrature phase shift. For the shorter pulse peri-
ods, the system is stabilized with a wider range of quadrature phase shifts. For long pulse periods, the range of 
quadrature phase shifts capable of stabilizing the dynamics shrinks. Here we also note that the direction of the 
shrink only along quadrature phase shifts from 0 to −π.

The nature of the stability can be well understood in the classical spin-nematic phase space. In the mean field 
framework, the evolution dynamics of S⊥ and Q⊥ are given by (see Methods)

= −

= + + .
⊥ ⊥
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S cQ
Q N c x c S

3 ,
[4 (1 ) 3 ]

With the period quadrature phase shift ∆θeiQzz , the stabilization condition of the dynamics is given by the 
inequality

θ τ θ τ∆ Γ +
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2
sin sinh 1,

(7)

where = ′| + + | ′b N c c c c4 (1 ) 32 2 , = − | ′a c c3 2  and Γ = ab . Such an inequality can be used to mark the 
boundaries of the analytic stability region. In Fig. 4, the analytical results of the range of the stabilization are plot-
ted as black lines with dots in the plane of quadrature phase shifts and pulse periods. It is clearly seen that the 
numerical results coincide well with the analytical ones obtained with mean field approximation. Here we empha-
size that the result of Eq. (7) is similar with that obtained in spin-1 condensate with external magnetic field23.

When the condensate is stabilized with ρ0 = 1, the squeezing parameter ξ <10 log 0x10
2 dB indicates the con-

densate exhibits spin-nematic squeezed vacuum. In Fig. 5(a), the evolution of the spin-nematic squeezed vacuum 
parameter are plotted for two different applied phase shifters. In the unstabilize case with Δθ = −0.3π, the 
squeezing phenomenon disappears after a certain time. While the stabilized pulse (Δθ = −0.8π) shows the 
expected periodic evolution of the spin-nematic squeezing and also show a dramatic reduction of the squeezing 
compared with the unstabilized one after a long time evolution. It can be noted that the system always exhibits 
spin-nematic vacuum squeezing with the stabilized pulse.

We also explore the range of pulse periods and quadrature phase shifts that provide the exhibition of 
spin-nematic squeezed vacuum for any time. The numerical results of ξx

2 after 160 ms are shown in Fig. 5(b) 
which displays a map of the squeezed vacuum region versus pulse period and quadrature phase shift. For clearly 
shown in Figure, we set ξ = 2x

2  dB when ξ > 0x
2  dB, which denotes no squeezing. The numerical results are in 

good overall agreement with the stabilization condition, which indicates that the system can always exhibits 
spin-nematic squeezed vacuum as the spin dynamics is stabilized. We shall point out that the the squeezing region 
includes unstable pulse with Δθ = 0 and π, since the squeezing parameter ξx

2 has not enough time to increase 
larger than 0 in 160ms for the marginally unstable case.

Discussion
In this article,we have investigated the coherent control spin-nematic squeezing and dynamic stabilization in a 
spin-1 condensate with dipolar interaction by periodically manipulating the phases of the states. By applying a 
microwave pulses at the time when the maximal spin-nematic squeezing occurs, the maximal squeezing can be 
stored with its squeezing angle maintained in a fixed axis. The dynamic stabilization of system is also demon-
strated by the pulse. The stability diagram for the range of pulse period and phase shifts that stabilize the spin 
dynamics are numerical simulated and coincide well with a stability analysis in a mean field approximation. We 
further study the spin-nematic squeezed vacuum of the system and map the squeezing parameter region on the 
plane of pulse period and quadrature phase shift. The system always exhibits spin-nematic squeezed vacuum as 
the spin dynamics is stabilized.

Our scheme presented above demonstrate for the storage of spin-nematic squeezing and dynamical sta-
bilization of the spin dynamics are quite robust for a wide range of parameters. Although the stabilization is 
demonstrated with a condensate in SMA for which the spatial dynamics are factored out, our scheme should be 
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applicable to the control of the coupled spin or spatial dynamics that lead to domain formation in larger conden-
sates. We hope our scheme will be realized in future experiment and also can be used to explore the quantum 
control of spin dynamics in other spin systems.

Methods
Dipole-dipole interaction. To calculate the parameters ′cd and ′c0,2, we consider φ(r) to be the single-particle 
ground state of the harmonic potential, i.e., φ κ π= κ− − + +er( ) x y z1/4 3/4 ( )/22 2 2

, and then we can obtain
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2 . Figure 6 shows the κ dependence of function χ(κ). It is seen that the 
value of the parameter χ(κ) can be tuned from −1 to 2 by changing the trapping geometry31–33. For κ < 1, the 
dipolar interaction is attractive, and it is repulsive for κ > 1. When κ = 1, we can obtain χ(κ) = 0, which indicates 
that the dipolar interaction disappears.
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2 after 
160 ms of evolution. The black line with dots is the stable boundary obtained by Eq. (7) in mean field approach.
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Spin and nematic operators. According to the definition of the operator Qi,j which are given by
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we define two SU(2) subspaces: {Sx, Qyz, Qzz−Qyy}, {Sy, Qxz, Qxx−Qzz}. The detail commutation relationship for 
these two subspaces is shown in Table 1. In fact, the spin-nematic squeezing is identical in these two subspaces.

Classical spin-nematic phase space. Under the SMA, the spin part of the wave function can be repre-
sented by a complex vector ζ
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i i denotes the amplitude and phase of the ith compo-
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where θL = (θ1 − θ−1)/2 is the Larmor recession phase, and θ = (θ1 + θ−1 − 2θ0)/2 is the quadrature phase. 
Corresponding, the mean field expectation of the operators can be expressed as

ρ ρ θ θ

ρ ρ θ θ

ρ ρ θ θ

ρ ρ θ θ

= −

= − −

= − −

= − − .

S

Q

S

Q

2 (1 ) cos cos ,

2 (1 ) sin cos ,

2 (1 ) cos sin ,

2 (1 ) sin sin

x L

yz L

y L

xz L

0 0

0 0

0 0

0 0

Defining = +⊥S S Sx y
2 2 2, = +⊥Q Q Qyz xz

2 2 2 , and x = 2ρ0 − 1, we obtain

+ + = .⊥ ⊥S Q x 1 (9)2 2 2

We note that S⊥, Q⊥, and x have spin Poisson brackets and thus define as a spin representation which can be 
shown as a sphere.

Stabilization Condition. The free spin mixing dynamics in a dipolar interaction is described by

ρ ρ ρ θ

θ ρ θ

= + −

= + − + .





c

c

2(1 ) (1 )sin 2 ,

2(1 )(1 2 )(1 cos 2 )
0 0 0

0

Then the evolution dynamics of S⊥ and Q⊥ are given by

= −

= + + .
⊥ ⊥

⊥ ⊥





S cQ
Q N c x c S

3 ,
[4 (1 ) 3 ]

To discuss the problem of the dynamical stability, we shall adopt the linear stability analysis that has wide 
applications in various nonlinear systems. First, the infinitesimal variables δS⊥ and δQ⊥ are introduced by 

δ= +⊥ ⊥ ⊥S S S0 , δ= +⊥ ⊥ ⊥Q Q Q0 , and x = x0 + δx, where ⊥S
0, ⊥Q 0 and x0 denote the expectation for the initial state 

which are given by = =⊥ ⊥S Q 00 0 , x0 = 1. Keeping the linear terms and eliminating the higher order terms, the 
linearized equations of motion are derived as

{Sx, Qyz, Q+} Qyz Q+ {Sy, Qxz, Q−} Qxz Q−
Sx iQ + −2iQyz Sy iQ− −2iQxz

Qyz 2iSx Qxz 2iSy

Table 1.  Commutation relationship of the two subspaces {Sx, Qyz, Q+} and {Sy, Qxz, Q−}.
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δ δ= −⊥ ⊥
S c Q3 , (10)

δ δ= + + .⊥ ⊥
Q N c c Q[4 (1 ) 3 ] (11)

Since the expectation value of S⊥ = Q⊥ = 0 for the dynamical process, we will drop the notation δ of the expan-
sion, and then Eqs (10) and (11) reduce to a matrix form

δ

δ

δ
δ










=










⊥

⊥

⊥

⊥





S
Q

Q
S

m ,

where =




−
+ +





c
N c cm 0 3

4 (1 ) 3 0
. In the plane {S⊥, Q⊥}, the quadrature phase shift corresponds to a two 

dimensional plane rotation matrix θ∆ = θ∆R e( ) i Qzz with an rotation angle Δθ. Thus the full dynamics form one 
pulse to another including the quadrature phase shift is given by

θ τ= ∆RM m( )exp( ),

where τ is the pulse period. The term τmexp( ) in the matrix can be written as

τ τ τ
= + ( )ab ab

ab
a

b
m 1exp( ) cosh( ) sinh( ) 0

0
,

where = − | ′a c c3 2  and = ′| + + | ′b N c c c c4 (1 ) 32 2 . Using the same stability analysis technique employed in 
optical resonator theory, the dynamics of S⊥ and Q⊥ stay bounded when the trace of evolution matrix satisfies the 
condition |Tr[M]| < 2. We obtain the inequality

θ τ θ τ∆ Γ +
−
Γ

∆ Γ <
a bcos cosh

2
sin sinh 1,

(12)

where Γ = ab .
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