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Information criteria for Firth’s penalized
partial likelihood approach in Cox
regression models
Kengo Nagashima*† and Yasunori Sato

In the estimation of Cox regression models, maximum partial likelihood estimates might be infinite in a monotone
likelihood setting, where partial likelihood converges to a finite value and parameter estimates converge to infi-
nite values. To address monotone likelihood, previous studies have applied Firth’s bias correction method to Cox
regression models. However, while the model selection criteria for Firth’s penalized partial likelihood approach
have not yet been studied, a heuristic AIC-type information criterion can be used in a statistical package. Applica-
tion of the heuristic information criterion to data obtained from a prospective observational study of patients with
multiple brain metastases indicated that the heuristic information criterion selects models with many parame-
ters and ignores the adequacy of the model. Moreover, we showed that the heuristic information criterion tends
to select models with many regression parameters as the sample size increases. Thereby, in the present study,
we propose an alternative AIC-type information criterion based on the risk function. A Bayesian information
criterion type was also evaluated. Further, the presented simulation results confirm that the proposed criteria
performed well in a monotone likelihood setting. The proposed AIC-type criterion was applied to prospective
observational study data. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd

Keywords: Akaike’s information criterion; model selection; monotone likelihood; penalized partial likelihood;
survival analysis

1. Introduction

The Cox regression model [1] is one of the most useful and widely used tools in survival analysis. In
Cox regression model estimations, maximum partial likelihood estimates may be infinite in monotone
likelihood situations [2]. In such cases, partial likelihood converges to a finite value, and the parameter
estimates and standard errors converge to infinite values; hence, these results are not interpretable. Such
problems arise, for example, in the presence of unbalanced covariates, large parameter effects, and/or
heavy censoring.

To address this monotone likelihood problem, Heinze and Schemper proposed Firth’s penalized partial
likelihood approach [3]. They directly applied to the Cox regression model Firth’s bias correction method
[4], which aims to remove asymptotic bias from maximum likelihood estimates in exponential families
with canonical link functions. Firth’s penalized partial likelihood approach reduces asymptotic bias and
addresses the monotone likelihood problem [3, 5]. Firth’s bias correction method was also applied to
logistic regression models to address the separation problem [5–7], which is similar to the monotone
likelihood problem. This approach reduces asymptotic bias and also overcomes the separation problem.

In this study, we discuss the model selection criteria for Firth’s penalized partial likelihood approach
based on Akaike’s information criterion (AIC) [8] and Bayesian information criterion (BIC) [9]. Although
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model selection is an important issue in data analysis, the model selection criteria for Firth’s penal-
ized partial likelihood approach have never been studied. To our best knowledge, only the SAS PHREG
procedure can be used to obtain an AIC-type heuristic information criterion, AIC∗ = −2log(maximum
penalized partial likelihood)+2p, where p is the number of regression parameters, and other major statis-
tical software (e.g., Stata and R) can only output the log penalized partial likelihood. However, AIC∗ is
not theoretically justified, and especially, we find that AIC∗ tends to select a model that has a large number
of regression parameters as n → ∞, where n is the sample size; that is, AIC∗ does not have the impor-
tant property of avoiding over-fitting. This result indicates that AIC∗ is not a suitable model selection
criterion. Similarily, the SAS PHREG procedure implements a BIC-type heuristic information criterion,
BIC∗ = −2log(maximum penalized partial likelihood)+ log d, where d is the number of events. BIC∗ is
not also theoretically justified. Therefore, we consider alternative model selection criteria in this setting.

The remainder of this paper is organized as follows. In Section 2, we introduce motivating data and
issues of AIC∗. Section 3 briefly reviews Firth’s bias correction method and penalized partial likelihood
approach, discusses the fundamental problems of AIC∗ and BIC∗, and proposes appropriate information
criteria. Section 4 presents the simulation results to demonstrate the performance of the criteria and to
check the property of AIC∗ holds. Section 5 applies the proposed method to real data, and Section 6
concludes the paper with a brief discussion.

2. Motivating example

Yamamoto et al. [10] collected time-to-event (e.g., death, local recurrence, and leptomeningeal dissem-
ination) data for 1194 cancer patients with multiple brain metastases. Secondary end points of this study
include time to leptomeningeal dissemination (the data on 928 patients were censored, while the MRI
results of 121 patients (10%), that is, those who suffered an early death or who deteriorated markedly soon
after stereotactic radiosurgery, were not available; 145 patients had an event). We analyzed the following
covariates: age (<65, ≥65), sex (female, male), kps (Karnofsky performance status; ≥80, ≤70), ntumor
(number of tumors; 1, 2–4, 5–10), diameter (maximum diameter of largest tumor; <1.6 cm, ≥1.6 cm),
volume (cumulative tumor volume; <1.9 mL, ≥1.9 mL), ptumor (primary tumor category; lung, breast,
gastrointestinal, kidney, other), status (extracerebral disease status; not controlled, controlled), and neuro
(neurological symptoms; no, yes). To analyze the competing risk end point, leptomeningeal dissemina-
tion, we used cause-specific proportional hazard models, which are identical to usual Cox regression
models [11].

The descriptive statistics for the study data are shown in Table I. The data have heavy censoring, and
the number of events differs considerably for the primary tumor categories. In particular, the kidney
cancer group has no events. Further, as we illustrate below, monotone likelihood was observed in these
data because of the primary tumor categories, while the parameter estimate of the kidney cancer group
converges to −∞.

Next, we consider the model selection based on AIC∗, the results of which are shown in Table II.
The full model, which includes all the covariates, was selected by AIC∗ as the best. In the best model,
the hazard ratios were estimated by using Firth’s penalized partial likelihood approach (Table III). To
illustrate the problem of monotone likelihood, the hazard ratios estimated by using a usual Cox regression
model are also shown. For the usual Cox regression model, when monotone likelihood occurred, the
hazard ratio of the kidney cancer group was 0.00 (= exp(−∞)), standard error was 543.30, p-value of the
Wald test was 0.98, and p-value of the likelihood ratio test was <0.01. Although the number of events for
lung cancer was considerably larger than that for kidney cancer (Table I), a large p-value was observed in
the Wald test. On the contrary, the results derived by using Firth’s penalized partial likelihood approach
were plausible. The hazard ratio was 0.12, and standard error was 1.43 (Table III); therefore, usual Cox
regression models were unsatisfactory in the presence of monotone likelihood.

Now, we return to the model selection result based on AIC∗ when using Firth’s penalized partial like-
lihood approach. As shown in Table II, model selection based on AIC∗ tends to select models that have
many parameters, and to support this statement, we discuss the theoretical property of AIC∗ in Section 3.3.
In Table III, the best model under AIC∗ includes variables that have considerably small effects such as age
(HR = 1.00, p-value = 0.98) and status (HR = 1.03, p-value = 0.89), whose p-values were very large.
Although these variables have little association with the time-to-event, such variables were included in
the best model and subsequent models ranked in the top 5. Indeed, because model selection based on
AIC∗ performs badly, we propose an alternative approach herein to address this problem.
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Table I. Number of events (leptomeningeal dissemination) and
censored values for the study data (n = 1073).

Covariate Group Event Censored % Censored

age <65 69 393 85.1
≥65 76 535 87.6

sex Female 62 370 85.6
Male 83 558 87.1

kps ≥80 132 810 86.0
≤70 13 118 90.1

ntumor 1 49 365 88.2
2–4 61 412 87.1
5–10 35 151 81.2

diameter <1.6 cm 76 455 85.7
≥1.6 cm 69 473 87.3

volume <1.9 mL 75 459 86.0
≥1.9 mL 70 469 87.0

ptumor Lung 116 705 85.9
Breast 17 95 84.8

Gastrointestinal 9 66 88.0
Kidney 0 32 100.0
Other 3 30 90.9

status Not controlled 103 634 86.0
Controlled 42 294 87.5

neuro No 105 656 86.2
Yes 40 272 87.2

Total 145 928 86.5

Note: ntumor, number of tumors; kps, Karnofsky performance status;
diameter, maximum diameter of largest tumor; volume, cumulative
tumor volume; ptumor, primary tumor category; status, extracerebral
disease status; neuro, neurological symptoms.

Table II. The top five models based on AIC∗ for the study data.

Model AIC∗

age sex kps ntumor diameter volume ptumor status neuro 1731.50
age sex ntumor diameter volume ptumor status neuro 1731.80
age sex kps ntumor diameter ptumor status neuro 1731.85
age sex kps ntumor volume ptumor status neuro 1731.85
age sex ntumor volume ptumor status neuro 1732.16

Note: ntumor, number of tumors; kps, Karnofsky performance status; diameter, maximum diam-
eter of largest tumor; volume, cumulative tumor volume; ptumor, primary tumor category;
status, extracerebral disease status; neuro, neurological symptoms; AIC, Akaike’s information
criterion.

3. Infomation criteria for Firth’s penalized partial likelihood approach

3.1. Cox regression model

We consider Cox regression models [1] with Andersen and Gill’s [12] counting process formulation. A
triplet (Ω,F,P) is a probability space, and {Ft, t ∈ [0, 1]} is an increasing right continuous family of sub
𝜎-algebras of F that includes failure time and covariate histories to scaled time t and censoring histories to
t+. Let 𝐍 = (N1,… ,Ni,… ,Nn)T for i = 1,… , n be an n-component multivariate counting process, where
Ni(t) counts the number of failures (0 or 1) for the ith individual in scaled time t ∈ [0, 1]. The sample
paths N1,… ,Ni,… ,Nn are step functions, with 0 at time 0 and no two components having simultaneous
jumps. Now, suppose that Ni(t) has a random intensity process hi(t) = Yi(t)h0(t) exp{𝜷T

0𝐙i(t)}, where
h0(t) is a baseline hazard function, Yi(t) is a predictable process taking the value of 1 if the ith individual
is at risk at time t and 0 otherwise, 𝜷0 = (𝛽01,… , 𝛽0p)T is a p-dimensional vector of the true regression
parameters, and the p-dimensional vector 𝐙i = (Zi1,… ,Zip)T is the predictable covariate process for the
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Table III. Parameter estimates of the best model based on AIC∗ for the study data.

Usual Cox Firth’s penalized partial
Covariate regression model likelihood approach

HR SE 95% CI p (Wald) p (LR) HR SE 95% CI p (LR)

age (≥65 vs. <65) 1.01 0.17 0.72 1.40 0.98 0.98 1.00 0.17 0.72 1.40 0.98
sex (male vs. female) 1.20 0.19 0.83 1.73 0.34 0.33 1.19 0.19 0.83 1.72 0.34
ntumor

1 vs. 2–4 0.72 0.20 0.49 1.06 0.09 0.09 0.72 0.20 0.49 1.06 0.09
5–10 vs. 2–4 1.58 0.22 1.03 2.41 0.04 0.04 1.59 0.22 1.04 2.43 0.04

kps (≥80 vs. <70) 1.04 0.32 0.55 1.96 0.90 0.90 1.07 0.32 0.57 2.00 0.83
diameter (≥1.6 vs. <1.6) 0.90 0.33 0.47 1.69 0.73 0.73 0.90 0.33 0.47 1.70 0.74
volume (≥1.9 vs. <1.9) 1.10 0.32 0.59 2.08 0.76 0.76 1.11 0.32 0.59 2.08 0.76
ptumor

Breast vs. lung 1.03 0.29 0.58 1.83 0.91 0.91 1.05 0.29 0.60 1.87 0.85
GI vs. lung 1.55 0.37 0.75 3.21 0.24 0.26 1.61 0.37 0.79 3.31 0.21
Kidney vs. lung 0.00 543.30 0.00 – 0.98 <0.01 0.12 1.43 0.01 1.91 0.02
Others vs. lung 0.77 0.59 0.24 2.45 0.66 0.64 0.89 0.55 0.30 2.63 0.83

status (nc. vs. controlled) 1.02 0.19 0.71 1.47 0.92 0.92 1.03 0.19 0.71 1.48 0.89
neuro (yes vs. no) 1.50 0.23 0.96 2.36 0.07 0.08 1.51 0.23 0.97 2.37 0.07

Note: HR, hazard ratio; kps, Karnofsky performance status; ntumor, number of tumors; diameter, maximum diameter
of largest tumor; volume, cumulative tumor volume; ptumor, primary tumor category; status, extracerebral disease
status; neuro, neurological symptoms; GI, gastrointestinal; nc., not controlled; LR, likelihood ratio; SE, standard error.

ith individual. Note that the superscript ‘T’ indicates the transpose of a matrix or a vector. We assume
that (Ni,Yi,𝐙i) are independent and identically distributed. In this case, the processes Mi(t) = Ni(t) −∫ t

0 hi(x) dx are independent local square integrable martingales on the scaled time interval [0, 1]. Ni, Yi,
and 𝐙i are assumed to be adapted to {Ft, t ∈ [0, 1]}.

Under these settings, the log-partial likelihood function is defined as

l(𝐍,𝐘,𝐙; 𝜷) =
n∑

i=1
∫

1

0
𝜷T𝐙i(x) − log

{
nS(0)(𝜷, x)

}
dNi(x),

the score function is defined as

𝐔(𝜷) = 𝜕l(𝐍,𝐘,𝐙; 𝜷)
𝜕𝜷

=
n∑

i=1
∫

1

0

{
𝐙i(x) −

𝐒(1)(𝜷, x)
S(0)(𝜷, x)

}
dNi(x),

and the observed information matrix is defined as

𝐈(𝜷) = 𝜕2l(𝐍,𝐘,𝐙; 𝜷)
𝜕𝜷𝜕𝜷T =

n∑
i=1

∫
1

0

[
𝐒(2)(𝜷, x)
S(0)(𝜷, x)

−
{

𝐒(1)(𝜷, x)
S(0)(𝜷, x)

}⊗2]
dNi(x),

where 𝐘 = (Y1,… ,Yn)T, 𝐙 = (𝐙1,… ,𝐙n)T, the scalar function S(0), the vector function 𝐒(1), and the
matrix function 𝐒(2) are defined as 𝐒(k)(𝜷, t) = n−1 ∑n

i=1 Yi(t)𝐙i(t)⊗k exp{𝜷T𝐙i(t)} for k = 0, 1, 2. Here,
for a vector 𝐛, 𝐛⊗0 = 1, 𝐛⊗1 = 𝐛, and 𝐛⊗2 = 𝐛𝐛T. By using this notation, the usual Cox regression
estimator �̂�Cox is obtained by solving 𝐔(𝜷) = 𝟎.

3.2. Firth’s bias correction method for Cox regression models

Heinze and Schemper [3] directly applied Firth’s bias correction method [4] to Cox regression models to
overcome monotone likelihood. They proposed an estimation method based on the penalized log-partial
likelihood, l∗(𝐍,𝐘,𝐙; 𝜷) = l(𝐍,𝐘,𝐙; 𝜷)+0.5 log |𝐈(𝜷)|, and the modified score function𝐔∗(𝜷) = 𝐔(𝜷)+
𝐚(𝜷), where |𝐈(𝜷)| is the determinant of the observed information matrix, 𝐚(𝜷) = {a1(𝜷),… , ap(𝜷)}T are
modification terms, and aj(𝜷) = tr [{𝐈(𝜷)}−1{𝜕𝐈(𝜷)∕𝜕𝛽j}]∕2. The penalized partial likelihood estimator
�̂� is obtained by solving𝐔∗(𝜷) = 𝟎, which is different from the usual Cox regression estimator, �̂�Cox. They
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only assessed the empirical performance of these methods by using simulation studies. These simulation
results confirm the satisfactory performance of the penalized likelihood ratio test and profile penalized
likelihood confidence interval under monotone likelihood.

The modification term 𝐚(𝜷) can be derived by using an asymptotic expansion of E[𝐔∗(𝜷)]. It
will be convenient to employ the notation of Cox and Snell [13] and Firth [4]. Let Uj(𝜷) =
𝜕l(𝐍,𝐘,𝐙; 𝜷)∕𝜕𝛽j, Ujk(𝜷) = 𝜕2l(𝐍,𝐘,𝐙; 𝜷)∕𝜕𝛽j𝜕𝛽k, Ujkl(𝜷) = 𝜕3l(𝐍,𝐘,𝐙; 𝜷)∕ 𝜕𝛽j𝜕𝛽k𝜕𝛽l, the null
cumulants are 𝜅j,k = n−1E[Uj(𝜷0)Uk(𝜷0)], 𝜅jk = n−1E[Ujk(𝜷0)], 𝜅j,kl = n−1E[Uj(𝜷0)Ukl(𝜷0)], 𝜅j,k,l =
n−1E[Uj(𝜷0)Uk(𝜷0)Ul(𝜷0)], and 𝜅jkl = n−1E[Ujkl(𝜷0)]. Based on the asymptotic expansion, the bias of
the estimator of the mth regression parameter is given by

E[n−1∕2(𝛽m − 𝛽0m)] = n−1𝜅 l,j
{
−1

2
𝜅k,l(𝜅j,k,l + 𝜅j,kl) + 𝛼j(𝜷0)

}
+ O(n−3∕2), (1)

where 𝜅k,l denotes the inverse of the Fisher information matrix, Einstein summation convention is applied,
and 𝛼j(𝜷0) = E[aj(𝜷0)]. From Eq. 1, if 𝛼j(𝜷0) = 𝜅k,l(𝜅j,k,l + 𝜅j,kl)∕2, then the first-order bias term
disappears. Moreover, if 𝜅j,k + 𝜅jk = 0, 𝜅j,k,l + 𝜅j,kl + 𝜅k,jl + 𝜅l,jk + 𝜅jkl = 0, and 𝜅j,kl = 0, then

𝛼j(𝜷) =
1
2
𝜅k,l(𝜅j,k,l + 𝜅j,kl) =

1
2
𝜅k,l𝜅j,k,l = −1

2
𝜅k,l𝜅jkl.

From the aforementioned result and paying attention to the summation convention, the modification term
can be written as

aj(𝜷) =
1
2

tr [{𝐈(𝜷)}−1{𝜕𝐈(𝜷)∕𝜕𝛽j}].

However, the relationships 𝜅j,k,l + 𝜅j,kl + 𝜅k,jl + 𝜅l,jk + 𝜅jkl = 0 and 𝜅j,kl = 0 are a nontrivial result in Cox
regression models, and thus, they have never been evaluated. Nevertheless, we proved that these relation-
ships are true in Cox regression models under independent and identically distributed (see Appendix A
for more details).

3.3. Problem in heuristic information criteria

As noted earlier, although model selection is an important issue in data analysis, the model selection
criteria for the penalized partial likelihood approach have never been studied. To our best knowledge, only
the SAS PHREG procedure can be used to obtain an AIC-type heuristic information criterion, AIC ∗ =
−2l∗(𝐍,𝐘,𝐙; �̂�) + 2p = −2l(𝐍,𝐘,𝐙; �̂�) + 2p − log |𝐈(�̂�)|. Moreover, other major statistical software
(e.g., Stata and R) can only output the penalized log-partial likelihood. However, AIC∗ is not theoretically
justified.

Now, we discuss a property of AIC∗. After some algebra,

AIC ∗ = −2l(𝐍,𝐘,𝐙; �̂�) + (2 − log n)p − log{n−p|𝐈(�̂�)|}.
The last term on the right-hand side − log{n−p|𝐈(�̂�)|} converges to a constant because n−1𝐈(�̂�)

P
−→

𝚺(𝜷0) (see Appendix B for more details) and |n−1𝐈(�̂�)| = n−p|𝐈(�̂�)| P
−→ |𝚺(𝜷0)| as n → ∞, where

𝚺(𝜷0) = ∫ 1
0 𝐯(𝜷0, x)s(0)(𝜷0, x)h0(x) dx, 𝐯 = (𝐬(2)∕s(0)) − {𝐬(1)∕s(0)}⊗2, s(0)(𝜷, t) = E[S(0)(𝜷, t)], 𝐬(1)(𝜷, t) =

E[𝐒(1)(𝜷, t)], and 𝐬(2)(𝜷, t) = E[𝐒(2)(𝜷, t)]. If n ≥ 8, then 2 − log n is negative. Because AIC∗ includes the
term (2 − log n)p, this criterion tends to select models with large p as n → ∞. Importantly, this result
indicates that AIC∗ does not avoid over-fitting.

Similarly, the SAS PHREG procedure implements a BIC-type heuristic information criterion, BIC ∗ =
−2l∗(𝐍,𝐘,𝐙; �̂�)+p log d, where d is the number of events [14]. Let c = 1−d∕n ∈ (0, 1] be the proportion
of censoring, BIC ∗ = −2l(𝐍,𝐘,𝐙; �̂�) + p log(1− c) − log{n−p|𝐈(�̂�)|}. Because log(1− c) < 0, BIC∗ has
a negative penalty term in proportion to the number of regression parameters.

3.4. Proposed criteria

As an alternative approach to address the issue discussed in Section 3.3, we propose a criterion termed
herein AIC for Firth’s penalized partial likelihood approach (AICF). AIC is a model selection criterion
used to measure the goodness of fit of a model by using the risk function based on Kullback–Leibler
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(KL) information between the true model and the candidate model, which is a measure of discrepancy
from the true model.

Xu et al. [15] provided a theoretical justification for the use of partial likelihood in AIC under
usual Cox regression models, which was also extended to proportional hazards mixed models. These
authors developed a profile AIC [16] for selecting a model with minimum KL information based
on the profile likelihood under Cox regression models. It is well known that partial likelihood can
be considered as profile likelihood [17–19]. Suppose that f denotes the true distribution and g𝜷,𝝀 =
g(⋅;𝜷,𝝀) denotes candidate models, where 𝝀 ∈ 𝚲 is the nuisance parameter and 𝚲 is the param-
eter space of 𝝀. The KL information can be written as KL( f , g𝜷,𝝀) = E(N,Y ,𝐙)∼f [log f (N, Y ,𝐙) −
log g𝜷,𝝀(N, Y ,𝐙)]. Here and subsequently, we write EN = E(N,Y ,𝐙)∼f for convenience. Focusing on
the regression parameters 𝜷 alone and ignoring the constant term EN[log f (N, Y ,𝐙)] in KL, the mini-
mum KL information is given at 𝜷0 such that EN[log g𝜷0

(N, Y ,𝐙)] = max𝜷 EN[log g𝜷(N, Y ,𝐙)], where
EN[log g𝜷(N, Y ,𝐙)] = max𝝀 EN[log g𝜷,𝝀(N, Y ,𝐙)]. If the model is correctly specified (i.e., f = g𝜷0

),
EN[log g𝜷0

(N, Y ,𝐙)] = ∫Ω log g𝜷0
(N, Y ,𝐙) dP. Under Cox regression models, the log profile likelihood

can be written as max𝝀

∑n
i=1 g𝜷(Ni,Yi,𝐙i; 𝜷,𝝀) = l(𝐍,𝐘,𝐙; 𝜷). Xu et al. [15] showed that the risk func-

tion, ENEÑ[−2l(�̃�, �̃�, �̃�; �̂�Cox)] based on the log profile likelihood, and profile AIC, −2l(�̃�, �̃�, �̃�; �̂�Cox)+
2p, as an approximately unbiased estimator of the risk function, where (�̃�, �̃�, �̃�) is a future observation.
Based on Akaike [8], the minimum risk function corresponds to the minimum KL information using a
future observation.

Therefore, we consider a partial likelihood-based risk function, RISK = ENEÑ[−2l(�̃�, �̃�, �̃�; �̂�)], and
derive AICF as an approximately unbiased estimator of RISK. In the definition of RISK, the estimator
�̂� was not the usual Cox regression estimator �̂�Cox, but rather the Firth’s penalized partial likelihood
estimator. When we simply estimate RISK by −2l(𝐍,𝐘,𝐙; �̂�), we need to correct bias B. Here, B is
defined as

B = ENEÑ[2l(𝐍,𝐘,𝐙; �̂�) − 2l(�̃�, �̃�, �̃�; �̂�)]
= b1 + b2 + b3,

where

b1 = EN[EÑ[2l(�̃�, �̃�, �̃�; 𝜷0)] − EÑ[2l(�̃�, �̃�, �̃�; �̂�)]],
b2 = EN[2l(𝐍,𝐘,𝐙; 𝜷0)] − EÑ[2l(�̃�, �̃�, �̃�; 𝜷0)],

and
b3 = EN[2l(𝐍,𝐘,𝐙; �̂�) − 2l(𝐍,𝐘,𝐙; 𝜷0)].

According to this definition, B includes the true parameter vector 𝜷0. Therefore, we need approximate B.
A second-order Taylor expansion of EÑ[l(�̃�, �̃�, �̃�; �̂�)] around �̂� = 𝜷0 gives

EÑ[l(�̃�, �̃�, �̃�; �̂�)] ≈ EÑ[l(�̃�, �̃�, �̃�; 𝜷0)] −
1
2
{
√

n(�̂� − 𝜷0)T}𝚺(𝜷0){
√

n(�̂� − 𝜷0)}, (2)

a first-order Taylor expansion of 𝐔∗(�̂�) = 𝟎 around �̂� = 𝜷0 gives√
n(�̂� − 𝜷0) ≈ {n−1𝐈∗(𝜷0)}−1{n−1∕2𝐔∗(𝜷0)}, (3)

and a second-order Taylor expansion of l(𝐍,𝐘,𝐙; 𝜷0) around 𝜷0 = �̂� gives

l(𝐍,𝐘,𝐙; 𝜷0) ≈ l(𝐍,𝐘,𝐙; �̂�) − 1
2
{
√

n(�̂� − 𝜷0)T}{n−1𝐈(�̂�)}{
√

n(�̂� − 𝜷0)} + {𝐚(�̂�)}T(�̂� − 𝜷0), (4)

where 𝐈∗(𝜷) = −𝜕𝐔∗(𝜷)∕𝜕𝜷T = 𝐈(𝜷) − 𝜕𝐚(𝜷)∕𝜕𝜷T. From the fact E[ f (𝐃)] = E[ tr { f (𝐃)}] for a scalar
function f and a random vector 𝐃, and by substituting Eqs 2-4 into b1, we can show that

b1 ≈ EN[ tr {𝚺(𝜷0){n−1𝐈∗(𝜷0)}−1{n−1𝐉∗(𝜷0)}{n−1𝐈∗(𝜷0)}−1}],

where 𝐉∗(𝜷) =
∑n

i=1{𝐋
∗
i (𝜷)}

⊗2, 𝐋∗
i (𝜷) = 𝐋i(𝜷) − 𝐚(𝜷)∕n, and 𝐋i(𝜷0) = ∫ 1

0 {𝐙i(x) −
𝐒(1)(𝜷0, x)∕S(0)(𝜷0, x)} dMi(x). Similarly,

b3 ≈ EN[ tr {{n−1𝐈(�̂�)}{n−1𝐈∗(𝜷0)}−1{n−1𝐉∗(𝜷0)}{n−1𝐈∗(𝜷0)}−1 − 2{𝐚(�̂�)}T(�̂� − 𝜷0)}].
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Under the true model n−1𝐉∗(𝜷0)
P

−→ 𝚺(𝜷0), n−1𝐈∗(𝜷0)
P

−→ 𝚺(𝜷0), n−1𝐈(�̂�)
P

−→ 𝚺(𝜷0), and 𝐚(�̂�) = Op(1)
(see Data S1 and Appendix B). Therefore, by applying the continuous mapping theorem, we obtain

tr {𝚺(𝜷0){n−1𝐈∗(𝜷0)}−1{n−1𝐉∗(𝜷0)}{n−1𝐈∗(𝜷0)}−1}
P

−→ tr {𝚺(𝜷0){𝚺(𝜷0)}−1𝚺(𝜷0){𝚺(𝜷0)}−1} = p,

and

tr {{n−1𝐈(�̂�)}{n−1𝐈∗(𝜷0)}−1{n−1𝐉∗(𝜷0)}{n−1𝐈∗(𝜷0)}−1 − 2{𝐚(�̂�)}T(�̂� − 𝜷0)}
P

−→ tr {𝚺(𝜷0){𝚺(𝜷0)}−1𝚺(𝜷0){𝚺(𝜷0)}−1} = p,

as n → ∞. Moreover, it is obvious that b2 = 0. Further details are presented in Data S1. Hence, b1 ≈ p,
b3 ≈ p, and bias B = b1+b2+b3 can be approximated by 2p. From the aforementioned results, we define
AICF as

AICF = −2l(𝐍,𝐘,𝐙; �̂�) + 2p.

The AICF does not include the penalty term of AIC∗, 0.5 log |𝐈(�̂�)|. Even in the penalized partial likeli-
hood setting, non-penalized likelihood should be used for risk estimation. Sometimes, penalty terms for
parameter estimation have a strong effect on a model selection criterion.

Similarly, based on the results of a previous study [14], we propose BIC for Firth’s penalized partial
likelihood approach

BICF = −2l(𝐍,𝐘,𝐙; �̂�) + p log d.

The detailed derivation is omitted, but is similar to that described previously [14].
Note that SAS and R programs for AICF and BICF are provided in Data S3.

4. Simulation

4.1. Simulation conditions

Simulation studies were conducted to investigate the performance of model selection critera (AICF, BICF,
AIC∗, and BIC∗) in a monotone likelihood setting and to check that the property of AIC∗ discussed in
Section 3.3 holds. We set the simulation conditions by referring to [3] and the generated observations
{Ni,Yi,𝐙i} from exponential distributions with hazard functions hi(t) = h0(t)𝛾i(t) = h0(t) exp{𝜷T

0𝐙i},
where h0(t) = 1, 𝜷0 = (log 𝜃, log 𝜃, log 𝜃, 0, 0)T, 𝐙i = (Zi1,Zi2,Zi3,Zi4,Zi5)T, and Zij ∼ Bernoulli (q). We
further set the proportion of covariates as q = 0.5 or 0.8, the regression parameters as 𝜃 = 1.3, 2, 4, or 16,
the proportion of censoring as c = 0, 50, or 90 (%), and the total sample size as n = 100, 200, or 1000.
We generated data under simple type I censoring; the observations of each individual were censored
at a suitable time 𝜏 for each simulation. Time 𝜏 was determined to achieve an expected 50% and 90%
censoring. We find monotone likelihood in situations of high censoring and high parameter values. For
each data configuration, we generated R = 20, 000 simulations. For each simulation, we calculated AICF,
AIC∗, BICF, and BIC∗ for the following 11 models:

Model 1: log 𝛾i(t) = 𝛽1Zi1
Model 2: log 𝛾i(t) = 𝛽4Zi4
Model 3: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2
Model 4: log 𝛾i(t) = 𝛽1Zi1 + 𝛽4Zi4
Model 5: log 𝛾i(t) = 𝛽4Zi4 + 𝛽5Zi5
Model 6: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2 + 𝛽3Zi3 (the true model)
Model 7: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2 + 𝛽4Zi4
Model 8: log 𝛾i(t) = 𝛽1Zi1 + 𝛽4Zi4 + 𝛽5Zi5
Model 9: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2 + 𝛽3Zi3 + 𝛽4Zi4
Model 10: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2 + 𝛽4Zi4 + 𝛽5Zi5
Model 11: log 𝛾i(t) = 𝛽1Zi1 + 𝛽2Zi2 + 𝛽3Zi3 + 𝛽4Zi4 + 𝛽5Zi5 (the full model)
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Model 6 is the true model, and Model 11 is the full model, that is, the model with maximum p.
Because it is well known that AIC is designed for optimal prediction and BIC is designed to identify

the true model, we assessed the predictive performance of AICF and AIC∗. We evaluated the mean of the
difference between the estimated mean risk (MR) and value of the information criterion in each model
and its 5 and 95 percentiles, as well as the estimated MR for the selected model based on new data. The
MR and its estimator, M̂R, are defined as

MR = 1
R

R∑
r=1

EÑ

[
−2l(�̃�, �̃�, �̃�; �̂�r)

]
and

M̂R = − 2
R

R∑
r=1

n∑
i=1

∫
1

0

[
�̂�
T
r �̃�ri(x) − log

{
n∑

j=1

Ỹrj(x) exp{�̂�T
r �̃�rj(x)}

}]
dÑri(x),

where (�̃�, �̃�, �̃�) is another dataset of the same size, �̂�r is the model estimate of each replication, and 𝐙ri
is the covariate vector in each model and replication. The absolute value of the mean difference between
the M̂R and the value of the information criterion should be small because AIC is an estimator of risk
function; thus, the mean difference can be regarded as an empirical bias of an AIC-type criterion. The
estimated MR for the selected model, M̂Rsel, is defined as

M̂Rsel = − 2
R

R∑
r=1

n∑
i=1

∫
1

0

[
�̂�
T
r,sel�̃�ri(x) − log

{
n∑

j=1

Ỹrj(x) exp{�̂�T
r,sel�̃�rj(x)}

}]
dÑri(x),

where �̂�r,sel is an estimate of the selected model. The M̂Rsel should be small and is considered to be a
performance indicator for prediction, as it measures the goodness of fit for the selected model to a future
data as a mean deviance.

To assess the performance of the criteria, we evaluated model selection probability Pm, where
m = 1, 2,… , 11. We estimate the model selection probability by P̂m = {# of the model m selected}∕
{# of replication (R = 20, 000)}, the relative frequency of the model obtained by minimizing the infor-
mation criterion.

4.2. Simulation results

The mean of the difference between the estimated MR and value of information criterion and its 5 and
95 percentiles for Models 6 and 11 for q = 0.5 is shown in Table IV. The mean differences for AICF
were smaller than those for AIC∗ under all conditions. The mean differences for AIC∗ increased with the
number of events. The 5 and 95 percentiles for AICF were approximately symmetric around 0, whereas
the percentiles for AIC∗ were not symmetric. For instance, in the case with c = 0%, 𝜃 = 1, n = 100, and
Model 6 (true model), the mean difference and its percentiles for AICF and AIC∗ were −0.4 (−9.9, 5.9)
and −9.8 (−19.2, −3.5); in the case with c = 0%, 𝜃 = 1, n = 100, and Model 11 (full model), the mean
difference and its percentiles for AICF and AIC∗ were −1.1 (−11.2, 6.0) and −16.7 (−26.7, −9.7). Thus,
AIC∗ is clearly biased downward, as AIC∗ includes unnecessary negative terms (Section 3.3). Larger bias
was observed in models with large p-values. Therefore, these models cannot estimate the risk function.
The estimated MR for the selected model based on another new dataset, M̂Rsel, for q = 0.5 is shown in
Table IV. The M̂Rsel for AICF was smaller than that for AIC∗, except in a case with c = 50%, 𝜃 = 4,
and n = 1000, and c = 0%, 𝜃 = 1, and n = 200. Thus, the model selection based on AICF showed small
deviance for future data. These results revealed that AICF shows better prediction performance.

The selection probability of Models 6 (the true model) and 11 (the full model) for AICF and AIC∗

when q = 0.5 is shown in Table V. For larger parameter values, larger sample sizes, and less censoring,
the selection probability of the true model is larger for AICF than for AIC∗. For smaller parameter values,
smaller sample sizes, and more censoring, the selection probability of the true model is larger for AIC∗

than for AICF. The selection probability of the full model for AICF is smaller than that for AIC∗. On
the contrary, the selection probability of the full model for AIC∗ increases with the number of events. In
particular, for n = 1000, the selection probability of the full model for AIC∗ is equal to one because of
the term (2 − log n)p in AIC∗, as discussed in Section 3.3.
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Table V. The selection probability (the proportion of covariates: q = 0.5; the number of
simulations: R = 20, 000).

c (%) 𝜃 n Model 6 (true model) Model 11 (full model)
AICF AIC∗ BICF BIC∗ AICF AIC∗ BICF BIC∗

90 1.3 100 0.060 0.106 0.050 0.087 0.008 0.039 0.007 0.016
90 1.3 200 0.058 0.121 0.026 0.094 0.005 0.239 0.001 0.016
90 1.3 1000 0.059 0.000 0.005 0.094 0.005 1.000 0.000 0.019
90 2 100 0.063 0.110 0.052 0.092 0.008 0.041 0.007 0.019
90 2 200 0.060 0.116 0.024 0.093 0.005 0.238 0.001 0.018
90 2 1000 0.062 0.000 0.006 0.096 0.004 1.000 0.000 0.018
90 4 100 0.061 0.106 0.052 0.086 0.008 0.042 0.007 0.018
90 4 200 0.061 0.115 0.026 0.092 0.006 0.239 0.001 0.018
90 4 1000 0.055 0.000 0.005 0.090 0.005 1.000 0.000 0.019
90 16 100 0.062 0.110 0.052 0.091 0.008 0.043 0.006 0.018
90 16 200 0.058 0.119 0.023 0.093 0.006 0.234 0.001 0.017
90 16 1000 0.060 0.000 0.005 0.098 0.005 1.000 0.000 0.020
50 1.3 100 0.062 0.000 0.011 0.095 0.007 1.000 0.000 0.021
50 1.3 200 0.064 0.000 0.006 0.104 0.006 1.000 0.000 0.022
50 1.3 1000 0.091 0.000 0.003 0.135 0.007 1.000 0.000 0.027
50 2 100 0.082 0.000 0.018 0.122 0.010 1.000 0.000 0.027
50 2 200 0.099 0.000 0.015 0.140 0.010 1.000 0.000 0.031
50 2 1000 0.258 0.000 0.028 0.294 0.025 1.000 0.000 0.070
50 4 100 0.109 0.000 0.030 0.148 0.017 1.000 0.000 0.039
50 4 200 0.154 0.000 0.031 0.194 0.020 1.000 0.000 0.052
50 4 1000 0.469 0.000 0.142 0.462 0.053 1.000 0.000 0.116
50 16 100 0.133 0.000 0.044 0.172 0.022 1.000 0.002 0.050
50 16 200 0.203 0.000 0.054 0.242 0.029 1.000 0.001 0.066
50 16 1000 0.596 0.000 0.305 0.544 0.072 1.000 0.000 0.143
0 1.3 100 0.270 0.000 0.087 0.304 0.033 1.000 0.001 0.067
0 1.3 200 0.468 0.000 0.188 0.468 0.054 1.000 0.001 0.108
0 1.3 1000 0.778 0.000 0.919 0.658 0.085 1.000 0.001 0.155
0 2 100 0.745 0.000 0.820 0.662 0.091 1.000 0.007 0.145
0 2 200 0.778 0.000 0.968 0.670 0.086 1.000 0.003 0.150
0 2 1000 0.786 0.000 0.991 0.670 0.081 1.000 0.001 0.149
0 4 100 0.772 0.000 0.959 0.676 0.089 1.000 0.007 0.144
0 4 200 0.773 0.000 0.971 0.664 0.085 1.000 0.004 0.150
0 4 1000 0.786 0.000 0.990 0.670 0.081 1.000 0.001 0.149
0 16 100 0.774 0.000 0.958 0.690 0.088 1.000 0.007 0.137
0 16 200 0.779 0.000 0.974 0.679 0.085 1.000 0.003 0.144
0 16 1000 0.788 0.000 0.991 0.668 0.081 1.000 0.001 0.151

Note: c, proportion of random censoring; 𝜃, regression parameters; n, total sample size. The values
that are superior to other are highlighted.

The selection probability of Models 6 (true model) and 11 (full model) for BICF and BIC∗ when
q = 0.5 is shown in Table V. For larger parameter values, larger sample sizes, and less censoring, the
selection probability of the true model was larger for BICF than for BIC∗. For smaller parameter values,
smaller sample sizes, and more censoring, the selection probability of the true model was larger for BIC∗

than for BICF. The selection probability of the full model for BICF showed the smallest value. Although
a BIC-type criterion was designed to identify the true model as n → ∞, the selection probability of the
true model of BIC∗ was smaller than that of BICF for a large number of samples. For instance, in the
case with c = 0%, 𝜃 = 16, and n = 1000, the selection probability of the true model for BICF and BIC∗

were 0.991 and 0.668, while the selection probability of the full model for BICF and BIC∗ were 0.001
and 0.151. This is because of the properties of BIC∗ discussed in Section 3.3.

The results of the other models and conditions are presented in Data S2 (Tables S1–S8 for bias, Table
S9 for prediction performance, and Tables S10–S17 for selection probability); these results reveal the
same tendencies as discussed previously.

In summary, AICF can estimate the risk function and shows better prediction performance than AIC∗.
By contrast, because AIC∗ selects models that have many parameters and ignores the adequacy of the

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd Statist. Med. 2017, 36 3422–3436
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model as the number of events increase, it is not as efficient and not recommended for model selection.
BICF can select the true model as n → ∞. In contrast, because the selection probability of the true model
for BIC∗ was smaller than that for BICF for a large number of samples, this method is not as efficient in
selecting the true model.

5. Application of the prospective observational study data

Next, we apply the proposed method to the study introduced in Section 2. We select a model based on
AICF as in that section, with the result shown in Table VI. As AIC∗ tends to select models that have
many parameters (Table II), the model that includes ntumor (number of tumors), ptumor (primary tumor
category), and neuro (neurological symptoms) was selected by AICF as the best. The best model under
AICF does not include unnecessary covariates such as age and status whose hazard ratios were almost
equal to one (Table II).

The estimated hazard ratios for the best model are shown in Table VII. The best model under AICF
included ntumor (1 vs. 2–4: HR = 0.71, p-value = 0.08; 5–10 vs. 2–4: HR = 1.57, p-value = 0.04),
ptumor (breast vs. lung: HR = 0.94, p-value = 0.82; gastrointestinal vs. lung: HR = 1.60, p-value =
0.21; kidney vs. lung: HR = 0.12, p-value = 0.02; others vs. lung: HR = 0.87, p-value = 0.79), and
neuro (HR = 1.53, p-value = 0.04). The selected covariates under AICF are better than age (Table III;
HR = 1.00, p-value = 0.98) and status (Table III; HR = 1.03, p-value = 0.85). Therefore, the best
model under AICF seems to be plausible and may be more appropriate than the best model under AIC∗.
Additionally, the best model under AICF is clinically interpretable because the selected variables are
prognostic factors for brain metastases [20–22].

6. Discussion and conclusion

One solution to the monotone likelihood problem, which is an important issue in Cox regression models,
is Firth’s penalized partial likelihood approach. However, the model selection criteria for this approach are
yet to be studied, and heuristic criteria, AIC∗ and BIC∗, are used in the SAS PHREG procedure. Therefore,

Table VI. The top five models based on AICF for the study data.

Model AICF

ntumor ptumor neuro 1753.84
ntumor neuro 1754.72

sex ntumor ptumor neuro 1754.90
ntumor diameter ptumor neuro 1755.83
ntumor ptumor status neuro 1755.83

Note: ntumor, number of tumors; diameter, maximum diameter of largest tumor; ptumor, pri-
mary tumor category; status, extracerebral disease status; neuro, neurological symptoms; AICF,
AIC for Firth’s penalized partial likelihood approach.

Table VII. Parameter estimates of the best model based on
AICF for the study data.

Covariate HR SE 95% CI p (LR)

ntumor
1 vs. 2–4 0.71 0.19 0.49 1.05 0.08
5–10 vs. 2–4 1.57 0.21 1.03 2.38 0.04

ptumor
Breast vs. lung 0.94 0.26 0.57 1.57 0.82
GI vs. lung 1.60 0.36 0.79 3.26 0.21
Renal cell vs. lung 0.12 1.43 0.01 1.99 0.02
Others vs. lung 0.87 0.55 0.30 2.56 0.79

neuro (yes vs. no) 1.53 0.20 1.04 2.24 0.04

Note: HR, hazard ratio; ntumor, number of tumors; ptumor, pri-
mary tumor category; neuro, neurological symptoms; GI, gastroin-
testinal; LR, likelihood ratio; SE, standard error.
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in this study, we proposed alternative criteria, AICF and BICF, which work for Firth’s penalized partial
likelihood approach. Moreover, we discussed the justification for adopting Firth’s bias correction method
in Cox regression models.

We showed that AICF, an estimator of the risk function based on KL information, does not include
the penalty term of AIC∗, 0.5 log |𝐈(�̂�)|. Even in the penalized partial likelihood setting, non-penalized
likelihood should be used for risk estimation. In addition, AICF is more efficient than AIC∗ in simulations
and works well when addressing monotone likelihood. The simulation results revealed systematic bias in
AIC∗, and the model selection based on AICF showed superior predictive performance. In any case, AIC∗

is not recommended for model selection. An application using real data concluded that AICF has better
properties than AIC∗ and that the latter leads to incorrect results. Moreover, we showed that BIC∗ has a
negative penalty term in proportion to the number of regression parameters. The selection probability of
the true model for BIC∗ was smaller than that of BICF for a large number of samples, indicating that it
is not as efficient for selecting the true model. In summary, we showed that AICF or BICF is appropriate
for model selection in monotone likelihood cases. AICF would be used for prediction, while BICF can
be used for selecting the true model.

Because we obtained impressive results with alternative criteria, future studies should aim to examine
other model evaluation criteria such as the C-index [23, 24]. Moreover, a similar problem occurs if one
uses AIC and BIC based on the penalized log-likelihood under separation in logistic regression models.

Appendix A. Justification for using Firth’s bias correction method in Cox
regression models

Firth’s bias correction method is based on the relationships 𝜅j,k+𝜅jk = 0, 𝜅j,k,l+𝜅j,kl+𝜅k,jl+𝜅l,jk+𝜅j,k,l =
0, and 𝜅j,kl = 0, as discussed in Section 3.2. However, the relationships 𝜅j,k,l +𝜅j,kl +𝜅k,jl +𝜅l,jk +𝜅j,k,l = 0
and 𝜅j,kl = 0 have not yet been evaluated in Cox regression models. Therefore, we only prove that 𝜅j,kl = 0;
it is well known that 𝜅j,k + 𝜅jk = 0, and we can easily show that 𝜅j,k,l + 𝜅jkl = 0.

Lemma 1 (𝜅j,kl = 0.)

Proof
If we insert 𝜷0 in the functions Uj(𝜷) and Ukl(𝜷),

Uj(𝜷0) =
n∑

i=1
∫

1

0
Hij(x) dMi(x),

Hij(t) = Zij(t) −
S(1)

j (𝜷0, t)

S(0)(𝜷0, t)
,

and

Ukl(𝜷0) = ⟨Ukl(𝜷0)⟩(1) + n∑
i=1

∫
1

0
Gkl(x) dMi(x),

Gkl(t) =
S(2)

kl (𝜷0, t)
S(0)(𝜷0, t)

−
S(1)

k (𝜷0, t)S
(1)
l (𝜷0, t)

{S(0)(𝜷0, t)}2
,

where S(1)
j (𝜷, t) = n−1 ∑n

i=1 Yi(t)Zij(t) exp{𝜷T𝐙i(t)}, S(2)
kl (𝜷, t) = n−1 ∑n

i=1 Yi(t)Zik(t)Zil(t) exp{𝜷T𝐙i(t)},

and ⟨Ukl(𝜷0)⟩(t) = n ∫ t
0 Gkl(x)S(0)(𝜷0, x)h0(x) dx.

We note that Hij and Gkl are predictable processes according to the assumption made in Section 3.1.
Here,

Uj(𝜷0)Ukl(𝜷0) = ⟨Ukl(𝜷0)⟩(1) n∑
i=1

∫
1

0
Hij(x) dMi(x)+{
n∑

i=1
∫

1

0
Hij(x) dMi(x)

}{
n∑

i=1
∫

1

0
Gkl(x) dMi(x)

}
.
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From theorem 2.4.4 of [25], we have

𝜅j,kl = n−1E
[⟨Ukl(𝜷0)⟩(1) n∑

i=1
∫

1

0
Hij(x) dMi(x)+

n∑
h=1

n∑
i=1

∫
1

0
Hhj(x)Gkl(x) d⟨Mh,Mi⟩(x)].

Because Mi(t) is the counting process martingale,

E

[
n∑

i=1
∫

1

0
Hij(x) dMi(x)

]
= 0,

and from the orthogonality of martingales

⟨Mh,Mi⟩(t) = { ∫ t
0 Yh(x) exp{𝜷T

0𝐙h(x)}h0(x) dx, h = i
0, h ≠ i

It follows that

𝜅j,kl = 0 + n−1E
[
∫

1

0

[ n∑
i=1

{
Zij(x) −

S(1)
j (𝜷0, x)

S(0)(𝜷0, x)

}
Yi(x) exp{𝜷T

0𝐙i(x)}
]

Gkl(x)h0(x) dx

]
= 0.

Therefore, the relationships 𝜅j,k + 𝜅jk = 0, 𝜅j,k,l + 𝜅j,kl + 𝜅k,jl + 𝜅l,jk + 𝜅jkl = 0, and 𝜅j,kl = 0 are also true
in Cox regression models.

Appendix B. Consistency of �̂�

In this section, we discuss the consistency of �̂�. The following list of conditions will be assumed:

(A) ∫ 1
0 h0(x) dx < ∞.

(B) There exists a neighborhood B of 𝜷0 and a scalar function, s(0), a vector function, 𝐬(1), and a matrix
function, 𝐬(2), defined on B × [0, 1] such that for k = 0, 1, 2,

sup
t∈[0,1],𝜷∈B

||𝐒(k)(𝜷, t) − 𝐬(k)(𝜷, t)|| P
−→ 0.

(C) There exists 𝛿 > 0 such that

n−1∕2 sup
t∈[0,1],1≤i≤n

|𝐙i(t)|Yi(t)1{𝜷T
0𝐙i(t)>−𝛿|𝐙i(t)|} P

−→ 0,

where 1{} is an indicator function.
(D) For all 𝜷 ∈ B, t ∈ [0, 1]: s(0)(𝜷, t), 𝐬(1)(𝜷, t) = 𝜕s(0)(𝜷, t)∕𝜕𝜷, and 𝐬(2)(𝜷, t) = 𝜕𝐬(1)(𝜷, t)∕𝜕𝜷T are
continuous functions of 𝜷 ∈ B, uniformly in t ∈ [0, 1], s(0), 𝐬(1), and 𝐬(2) are bounded on B × [0, 1]; s(0)

is bounded away from zero on B × [0, 1], and the matrix 𝚺(𝜷0) is positive definite.

These conditions are identical to those given by Andersen and Gill [12].

Lemma 2 (�̂� → 𝜷0.)

Proof
Consider the process

X∗
n (𝜷, 1) = n−1{l∗(𝐍,𝐘,𝐙; 𝜷) − l∗(𝐍,𝐘,𝐙; 𝜷0)}

= Xn(𝜷, 1) + 0.5n−1{log |𝐈(𝜷)| − log |𝐈(𝜷0)|},
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where Xn(𝜷, 1) = n−1{l(𝐍,𝐘,𝐙; 𝜷)−l(𝐍,𝐘,𝐙; 𝜷0)}. To prove the consistency of the usual Cox regression
estimator �̂�Cox, Andersen and Gill [12] showed that Xn(𝜷, 1) is a concave function and proved that Xn(𝜷, 1)
converges in probability to

A(𝜷, 1) = ∫
1

0

[
(𝜷 − 𝜷0)T𝐬(1)(𝜷0, x) − log

{
s(0)(𝜷, x)
s(0)(𝜷0, x)

}
s(0)(𝜷0, x)

]
h0(t) dx,

for each 𝜷 ∈ B. The first derivative of A(𝜷, 1) is zero at 𝜷 = 𝜷0, and the second derivative is minus a
positive definite matrix. In other words, A(𝜷, 1) is a concave function of 𝜷 with a unique maximum at

𝜷 = 𝜷0. If Xn(𝜷, 1) is a concave function, then �̂�Cox

P
−→ 𝜷0 by applying theorem II.1 of [12].

In the same manner, if X∗
n (𝜷, 1) is concave and X∗

n (𝜷, 1) converges to a concave function of 𝜷 with a
unique maximum at 𝜷 = 𝜷0, the consistency of �̂� can be shown by applying theorem II.1 of [12].

In monotone likelihood settings, the partial log-likelihood function converges to a finite value. Fixing
𝛽1, 𝛽2,… , 𝛽j−1, 𝛽j+1,… , 𝛽p to be 𝛽1, 𝛽2,… , 𝛽j−1, 𝛽j+1,… , 𝛽p, for the parameter 𝛽j, a real number c, and a
constant d,

∃c,∀𝛽j ≥ c, l(𝐍,𝐘,𝐙; 𝛽1, 𝛽2,… , 𝛽j−1, 𝛽j, 𝛽j+1,… , 𝛽p) = d,

or
∃c,∀𝛽j ≤ c, l(𝐍,𝐘,𝐙; 𝛽1, 𝛽2,… , 𝛽j−1, 𝛽j, 𝛽j+1,… , 𝛽p) = d,

in monotone likelihood settings. Therefore, Xn(𝜷, 1) is a concave function. Note that l(𝐍,𝐘,𝐙; 𝜷0) and
log |𝐈(𝜷0)| are obviously finite constants. Thus, it is sufficient to show that log |𝐈(𝜷)| is a concave function.
Now, 𝐈(𝜷) is a positive semidefinite matrix (see also Prentice [26]) because l(𝐍,𝐘,𝐙; 𝜷) is a concave
function. Generally, the function log |𝐂|, where |𝐂| is the determinant of a positive semidefinite matrix
𝐂, is concave [27]. Therefore, X∗

n (𝜷, 1) is a sum of concave functions.
We next show that X∗

n (𝜷, 1) converges in probability to A(𝜷, 1). According to the aforementioned
result, Xn(𝜷, 1) converges in probability to A(𝜷, 1). Conditions (B) and (D) imply that, for each 𝜷 ∈ B,

n−1𝐈(𝜷)
P

−→ 𝚺(𝜷). Thus,

log |𝐈(𝜷)| − log |𝐈(𝜷0)| = log |n ⋅ n−1𝐈(𝜷)| − log |n ⋅ n−1𝐈(𝜷0)|
= log |n−1𝐈(𝜷)| − log |n−1𝐈(𝜷0)|
= log{n−p|𝐈(𝜷)|} − log{n−p|𝐈(𝜷0)|}

converges in probability to some finite quantity. Therefore,

0.5n−1
{

log |𝐈(𝜷)| − log |𝐈(𝜷0)|} P
−→ 0,

and X∗
n (𝜷, 1) converges in probability to A(𝜷, 1), which is a concave function of 𝜷 with a unique maximum

at 𝜷 = 𝜷0.

These facts establish that �̂�
P

−→ 𝜷0 as n → ∞.

Moreover, from this consistency, we can apply theorem 3.2 of [12]; therefore, n−1𝐈(�̂�)
P

−→ Σ(𝜷0) in
monotone likelihood settings.
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