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Abstract

Bst-2/Tetherin inhibits the release of HIV by tethering newly formed virus particles to the plasma membrane of infected
cells. Although the mechanisms of Tetherin-mediated restriction are increasingly well understood, the biological relevance
of this restriction in the natural target cells of HIV is unclear. Moreover, whether Tetherin exerts any restriction on the direct
cell-cell spread of HIV across intercellular contacts remains controversial. Here we analyse the restriction endogenous
Tetherin imposes on HIV transmission from primary human macrophages, one of the main targets of HIV in vivo. We find
that the mRNA and protein levels of Tetherin in macrophages are comparable to those in T cells from the same donors, and
are highly upregulated by type I interferons. Improved immunocytochemistry protocols enable us to demonstrate that
Tetherin localises to the cell surface, the trans-Golgi network, and the macrophage HIV assembly compartments. Tetherin
retains budded virions in the assembly compartments, thereby impeding the release and cell-free spread of HIV, but it is not
required for the maintenance of these compartments per se. Notably, using a novel assay to quantify cell-cell spread, we
show that Tetherin promotes the transfer of virus clusters from macrophages to T cells and thereby restricts the direct
transmission of a dual-tropic HIV-1. Kinetic analyses provide support for the notion that this direct macrophage-T cell spread
is mediated, at least in part, by so-called virological synapses. Finally, we demonstrate that the viral Vpu protein efficiently
downregulates the cell surface and overall levels of Tetherin, and thereby abrogates this HIV restriction in macrophages.
Together, our study shows that Tetherin, one of the most potent HIV restriction factors identified to date, can inhibit virus
spread from primary macrophages, regardless of the mode of transmission.
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Introduction

The replication of viruses can be inhibited by a number of

cellular proteins, collectively referred to as restriction factors [1].

In many cases, the expression of restriction factors is induced or

enhanced by type I interferons (IFN), which are upregulated

following infection with intracellular pathogens such as viruses.

The primate lentiviruses, including human immunodeficiency

viruses (HIV), are subject to restriction at multiple stages of their

life cycles [1]. In a number of these cases, viruses have evolved

mechanisms to abrogate the influence of specific cellular restriction

factors. Recently, HM1.24/CD317/Bst-2/Tetherin (Ensembl:

ENSG00000130303) was identified as a restriction factor of

particular significance, as the ability to antagonise Tetherin

appears to have been a major factor in the adaptation of SIVcpz

to man [2–4].

As implied by its name, Tetherin has the ability to tether HIV

particles to the surface of infected cells, and this function is

attributable to its unusual topology. Tetherin contains two

membrane anchors, an N-terminal transmembrane domain and

a C-terminal GPI-anchor [5,6]. During assembly and budding of

HIV particles at the plasma membrane (PM) of infected cells,

Tetherin can be incorporated into nascent virions via one of its

membrane anchors, leaving the second anchor in the PM, and

thereby preventing virus release into the extracellular milieu [7–9].

The failure to release free particles inhibits the cell-free spread of

HIV, which relies on the diffusion of released virus toward its

target cells.

HIV and related viruses have evolved mechanisms to overcome

Tetherin restriction and ensure their efficient propagation. In the

case of HIV-1 main (M) group viruses, the accessory protein Vpu

enhances lysosomal sorting and degradation of Tetherin, thereby

reducing the levels of the restriction factor at the cell surface, and

promoting HIV-1 release [10–12].

In addition to cell-free transmission, HIV can be transferred

across intercellular contacts. This cell-cell spread appears to be

significantly more efficient than cell-free propagation, and has been

proposed to occur via filopodial bridges, membrane nanotubes, and,

most prominently, virological synapses (VS) [13]. VS between T

cells are characterised by the recruitment of viral proteins and HIV

receptors to the cellular interface [14], however, little is known

about VS between HIV-infected macrophages and T cells [15,16].

Moreover, whether Tetherin also inhibits cell-cell spread of HIV, or

whether a direct contact between the infected and the target cell

eliminates the need for HIV to fully detach from its host cell,

remains controversial [17–23].

CD4+ T cells and macrophages are the main cellular targets of

HIV in vivo. Significantly, some aspects of viral replication vary
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with the target cell type. A prominent example is the site of virus

assembly: Whereas in T cells HIV assembles and buds at the cell

surface, in monocyte-derived macrophages (MDM) budding

intermediates are almost exclusively detected on deeply invagi-

nated PM domains [24,25], which we have termed Intracellular

Plasma Membrane-connected Compartments (IPMC) [26].

IPMCs have a neutral pH [27] and contain numerous molecules

typically found at the PM, including phosphatidylinositol-4,5-

bisphosphate [28], the tetraspanins CD9 and CD81, the

hyaluronan receptor CD44 [24], and focal adhesion proteins

including the integrins CD11b, CD11c, and CD18 [26]. Though

IPMCs are also present in uninfected MDMs, and thus not

induced by infection, HIV triggers changes in both the compo-

sition and morphology of the compartments: For example, IPMCs

in HIV-infected MDMs contain the tetraspanin CD63 [24] and

may be larger than in uninfected cells [29].

Given these variations in HIV replication in different cell types, it

is imperative to analyse the localisation, function and antagonism of

Tetherin specifically in macrophages. This notion is re-enforced by

a recent study suggesting important differences in Tetherin

antagonism in macrophages and non-monocytic cells, namely that

in MDMs Tetherin is only mildly induced by IFN, and that cell

surface Tetherin is inefficiently antagonised by Vpu [21].

Here we show that Tetherin expression in primary MDMs is as

sensitive to IFN as in primary T cells. At steady state, endogenous

Tetherin localises to the cell surface, the trans-Golgi network

(TGN), and IPMCs. Vpu efficiently antagonises cell surface

Tetherin in MDMs and, in cells devoid of Vpu, Tetherin retains

mature HIV particles in IPMCs, which may cause a virus particle-

induced expansion of the assembly compartments. Furthermore,

our experiments indicate that cell-cell transmission allows efficient

spread of HIV from MDMs to autologous CD4+ T cells. Using a

novel assay that strongly favours cell-cell over cell-free propaga-

tion, we show that Tetherin can restrict cell-cell transmission of

HIV from macrophages to T cells. Thus, our data indicate that

Tetherin has the potential to impose a major restriction to HIV

spread, regardless of the mode of transmission.

Results

Type I interferons upregulate Tetherin expression in
primary macrophages

Numerous studies have shown that type I IFNs induce the

expression of Tetherin in cell lines and primary T cells, but

whether this is also true for primary macrophages remains

controversial [21,30]. To determine whether type I IFNs induce

endogenous Tetherin expression in macrophages, we isolated

monocytes and CD4+ T cells from buffy coats of HIV-negative

donors, differentiated the monocytes into MDMs in vitro, and

proliferated the T cells in the presence of lectin and IL-2.

Subsequently, all cells were stimulated with 544 U/ml (2 ng/ml)

IFN-b for 24 h, and analysed by RT-qPCR and western blotting.

Increased mRNA levels of the IFN-induced gene IFIT1 in both

MDMs and T cells confirmed that the IFN-b preparation was

biologically active and induced the IFN pathway (Fig. 1A).

Notably, IFN-b treatment of MDMs upregulated both the

mRNA and protein levels of Tetherin by approximately one

order of magnitude (Fig. 1A,B). In autologous T cells, IFN-b
treatment increased the Tetherin levels two- to five-fold

(Fig. 1A,B).

We next examined the concentration dependence of the

Tetherin upregulation by type I IFNs. Following treatment of

MDMs with 20–500 U/ml IFN-b, we observed significant

increases in both IFIT1 and Tetherin mRNA levels (Fig. 1C), as

well as Tetherin protein levels (Fig. 1D), even at the lowest IFN-b
concentration tested. Together our data demonstrate that primary

MDMs upregulate Tetherin expression, even at low concentra-

tions of a type I IFN, to an extent comparable to autologous CD4+

T cells.

Tetherin localises to the cell surface, TGN, and IPMCs in
MDMs

We selected two commonly used, commercially available

antibodies to examine the cellular distribution of endogenously

expressed Tetherin in primary MDMs. Immunolabelling was

performed on live cells, as all Tetherin antibodies tested exhibited

reduced binding efficiency when applied after aldehyde fixation.

When we incubated unpermeabilised MDMs in antibody-

containing media on ice, then fixed and stained with a fluorescent

secondary antibody, endogenous Tetherin was readily detected on

the surface of primary MDMs (Fig. 2A). Consistent with an

increase in mRNA and overall protein levels (Fig. 1), the levels of

cell surface Tetherin were increased following IFN treatment

(Fig. 2A).

We next permeabilised MDMs and incubated them with

polyclonal antibodies against Tetherin and TGN46, or monoclo-

nal antibodies against Tetherin and CD9, on ice. In both cases

Tetherin was detected in two distinct intracellular locations: In

almost all cells Tetherin was found in spots (double arrows in

Fig. 2B,C), often distributed around the nucleus, which co-

localised with TGN46 (double arrows in Fig. 2B). Some MDMs

showed additional accumulations of Tetherin (arrowheads in

Fig. 2B,C), which co-stained for the IPMC protein CD9

(arrowheads in Fig. 2C). Also in permeabilised MDMs, Tetherin

levels were higher in IFN-stimulated than in untreated cells

(compare Fig. 2B,C to Fig. S1A,B).

We conclude that in primary MDMs, endogenous Tetherin

localises to the cell surface, TGN, and IPMCs, without any

obvious enrichment of the protein in IPMCs. This is consistent

with the notion that IPMCs are continuous with, and biochem-

ically similar to, the PM [24,25].

Author Summary

Tetherin is a cellular protein that inhibits (or restricts) a
broad range of enveloped viruses, including HIV, by
physically ‘‘tethering’’ nascent particles to the plasma
membrane of infected cells. CD4+ T cells and macrophages
are the main targets of HIV in vivo, and both cell types
express Tetherin. Although the mechanisms of Tetherin-
mediated restriction in model cell lines and T cells are
increasingly well understood, experimental data from
macrophages are sparse, and partially contradict observa-
tions made in other cell types. Here we investigate the
sensitivity of Tetherin expression to interferon, and the
subcellular localisation of the restriction factor in primary
human macrophages. We find that Tetherin inhibits HIV
release by retaining nascent particles in macrophage HIV
assembly compartments, and can also restrict the trans-
mission of HIV across intercellular contacts between
macrophages and T cells. Finally, we demonstrate that
the HIV protein Vpu efficiently counteracts Tetherin in
macrophages, and thereby ensures viral propagation. Our
results, together with other published data, show that
Tetherin can efficiently inhibit viral replication in both
major target cell types of HIV, regardless of the mode of
transmission. These data support the view that efficient
counteraction of Tetherin was a crucial factor for the
global spread of HIV.

Tetherin Can Restrict HIV Spread from Macrophages
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Vpu efficiently antagonises Tetherin in MDMs
To investigate whether HIV-1 Vpu antagonises endogenous

Tetherin in primary macrophages, we disrupted the Vpu gene of

the dual-tropic HIV-1 strain NL4.3-R3A (from hereon referred to

as R3A-(+)): R3A-(2) carries a start codon mutation, and R3A-

Udel an internal deletion in Vpu (Fig. 3A). We used both Vpu

mutants, R3A-(2) and -Udel, since MDMs infected with a Vpu

start codon-deleted HIV-1 have been suggested to express

increased levels of Env, which may affect Tetherin antagonism

and viral infectivity [31]. Western blot analyses confirmed that

Vpu was expressed in MDMs infected seven days after monocyte

isolation with R3A-(+) for seven days, but not in cells infected with

R3A-(2) or -Udel (Fig. 3B). Significant differences in Env

expression were not detected (Fig. 3B) and, consistently, single-

cycle infectivity assays indicated that MDM-derived R3A-(2) and

-Udel were as infectious as R3A-(+) (Fig. 3C).

We performed western blot analyses to test whether Vpu

antagonises Tetherin in primary MDMs. We found that Tetherin

levels in MDMs infected with R3A-(+) for seven days were

decreased compared to R3A-(2) and –Udel-infected cells (Fig. 3B),

showing that Vpu reduces the overall levels of endogenous

Tetherin in MDMs. The higher Tetherin levels detected in

infected compared to uninfected MDMs were most likely due to a

cellular IFN response. Consistently, western blotting showed that

Tetherin levels in R3A-infected MDMs were reduced when we

infected and cultured the cells in the presence of 1 mg/ml of an

IFN-a/b receptor antibody that has been shown to prevent

activation of the IFN receptor (Fig. S2, [32]).

To analyse the effects of Vpu on cell surface Tetherin in

MDMs, we immunolabelled R3A-infected cells in media contain-

ing Tetherin antibody on ice. Following fixation, the MDMs were

permeabilised and immunolabelled with a p24 Gag antiserum,

which also recognises cytosolic p55 Gag and thus allows the

unambiguous identification of infected cells. Compared to

uninfected cells of the same populations, the levels of cell surface

Tetherin were slightly reduced on R3A-(+)-infected, but signifi-

cantly increased on R3A-(2) and -Udel-infected MDMs (Fig. 4A).

Flow cytometry analyses confirmed these observations, with

Tetherin levels on R3A-(2) and –Udel-infected MDMs at least

two-fold higher than on R3A-(+)-infected cells (Fig. 4B,C).

Interestingly, the cell surface Tetherin levels on uninfected MDMs

within infected cell populations were higher than on completely

untreated cells (Fig. 4B,C). These observations are consistent with

our hypothesis that long-term HIV infection can trigger a cellular

Figure 1. Type I interferons upregulate Tetherin expression in primary macrophages. (A–B) Primary MDMs and autologous lectin/IL-2-
activated CD4+ T cells were stimulated for 24 h with 544 U/ml (2 ng/ml) IFN-b eight days post isolation from buffy coats. (A) IFIT1 and Tetherin mRNA
levels were determined by RT-qPCR and normalised to GAPDH. Bars represent the means 6 standard deviations (SD) from four donors relative to
untreated MDMs (2IFN, set at 1). (B) Tetherin protein levels were determined by western blot analysis of whole cell lysates containing equal amounts
of total protein. Numbers above each lane indicate the Tetherin band intensities relative to untreated MDMs (2IFN, set at 1). (C–D) MDMs were
stimulated for 24 h with 0–500 U/ml IFN-b eight days post isolation from buffy coats. (C) mRNA levels were determined as described for (A). Bars
represent the means 6 SD from three donors relative to untreated MDMs (set at 1). (D) Tetherin protein levels were determined by western blot
analysis of whole cell lysates.
doi:10.1371/journal.ppat.1004189.g001
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IFN response, which would lead to the secretion of IFNs and an

upregulation of Tetherin in surrounding cells. A cellular IFN

response could also explain the increased cell surface Tetherin

levels seen on R3A-(2) and –Udel-infected compared to

uninfected MDMs (Fig. 4B,C).

Together, our data show that Vpu reduces the overall levels

of endogenous Tetherin in MDMs. The high efficiency of

Tetherin labelling we achieved allowed us to also detect Vpu-

induced downregulation of the restriction factor from the cell

surface.

Tetherin retains HIV in the IPMCs of MDMs
We next sought to examine if and where Tetherin retains HIV

on primary macrophages. When we infected MDMs with R3A for

seven days and performed western blot analyses of the cell lysates,

we found significantly more p24 Gag associated with R3A-(2) and

Figure 2. Tetherin localises to the cell surface, TGN, and IPMCs. (A) Untreated MDMs (2IFN), or MDMs treated for 24 h with 544 U/ml IFN-b (+
IFN), were incubated for 1 h on ice in media containing 10 mg/ml polyclonal Tetherin (THN) antibody (B02P), or VSV-G antibody as a negative control.
Cells were fixed and labelled with a fluorescent secondary antibody. (B–C) IFN-b-treated MDMs were incubated for 20 min on ice with 10 mg/ml
polyclonal Tetherin antibody (B02P) and 2.5 mg/ml anti-TGN46, or with 10 mg/ml monoclonal Tetherin antibody (M15) and 2 mg/ml anti-CD9, in the
presence of 0.05% saponin. Cells were fixed and labelled with fluorescent secondary antibodies. Arrowheads point at structures reminiscent of IPMCs,
double arrows indicate TGN-like staining patterns. All images are single confocal sections. Scale bars = 10 mm.
doi:10.1371/journal.ppat.1004189.g002
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–Udel, than with R3A-(+)-infected cells (Fig. 5A). p24 and p17

Gag are predominantly found in mature HIV particles, matura-

tion involving the cleavage of p55 Gag during or shortly after

budding. The increased p24 Gag levels therefore indicated that, in

the absence of Vpu, budded HIV particles were retained on

MDMs, presumably by the elevated levels of Tetherin. Consis-

tently, when we depleted MDMs of Tetherin by RNAi, only low

levels of p24 Gag were associated with R3A-(+), -(2) and –Udel-

infected cells (Fig. 5B).

To directly test whether Tetherin-mediated retention of virus

impedes the release and thus cell-free spread of HIV from primary

macrophages, we quantified virus released from R3A-(+), -(2), and

–Udel infected MDMs. p24 ELISAs showed that HIV release into

the supernatant was lower in the absence of Vpu than in its

presence (Fig. 5C), and this restriction was overcome by depleting

MDMs of Tetherin (Fig. 5D).

To examine the localisation of retained HIV particles, we

immunostained R3A-infected MDMs with a p17 Gag antibody

that specifically labels mature HIV particles, and a p24/p55 Gag

antiserum to identify infected cells. Consistent with the western

blot analyses, more p17 Gag was associated with R3A-(2) and –

Udel than with R3A-(+)-infected MDMs (Fig. 6A,B), and

quantification of this effect by flow cytometry revealed a two- to

three-fold difference in the p17 Gag mean fluorescence intensities

(Fig. S3). Most retained HIV was intracellular (Fig. 6A,B), and co-

staining experiments showed that both in the presence and

absence of Vpu the intracellular virus co-localised with the IPMC-

enriched tetraspanin CD9 (Fig. 6A), but not with the lysosomal

marker LAMP1 (Fig. 6B).

Thus, in the absence of Vpu, endogenous Tetherin retains

mature HIV in the IPMCs of primary MDMs, and restricts cell-

free viral spread.

Tetherin is not required to maintain IPMCs
Tetherin-mediated retention of HIV in the IPMCs of MDMs

likely leads to a passive expansion of the assembly compartments,

but it is unclear whether the restriction factor is required for the

integrity of IPMCs per se. When we co-stained R3A-infected

Figure 3. Vpu efficiently antagonises Tetherin in MDMs. (A) Schematic representation of the R3A molecular clones used in this study. R3A-(+)
expresses a Vpu protein, R3A-(2) and -Udel do not. (B) MDMs were infected with R3A-(+), -(2), or -Udel for seven days, lysed, and analysed by western
blotting. The Tetherin band intensities were quantified and normalised to the c-adaptin levels, respectively. Bars represent the means 6 SD of
duplicate samples from three donors relative to R3A-(+) (set at 1). (C) Cell-free culture supernatants from R3A-infected MDMs were collected, p24 Gag
levels adjusted, and single-cycle infectivities determined using TZM-bl cells. Bars represent the means 6 SD of triplicate samples from four donors
relative to R3A-(+) (set at 100%).
doi:10.1371/journal.ppat.1004189.g003
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MDMs for Tetherin, CD9 and p17 Gag, as expected, Tetherin

was found to accumulate in the IPMCs of R3A-(2) and –Udel-

infected cells (Fig. 7A). Tetherin levels in the IPMCs of R3A-(+)-

infected cells were lower than in R3A-(2) or -Udel-infected

MDMs, even when IPMCs of similar sizes, which contained

similar amounts of virus, were compared (Fig. 7A). These

observations indicated that Vpu reduces Tetherin levels also in

IPMCs, but that the assembly compartments are maintained even

at low concentrations of the restriction factor. Consistently, when

we treated uninfected MDMs with Tetherin or control siRNA and

quantified the proportion of cells with intracellular co-localisation

of the IPMC proteins CD9 and CD81, around 40% of MDMs

contained IPMCs regardless of the Tetherin levels (Fig. 7B–D).

Overall, these data show that Tetherin is not required to maintain

IPMCs in primary MDMs.

HIV is transmitted from MDMs to T cells via virological
synapses

To determine whether Tetherin restricts cell-cell spread of HIV

from macrophages to autologous CD4+ T cells, we initially

Figure 4. Vpu antagonises cell surface Tetherin in MDMs. (A) R3A-infected MDMs were incubated for 1 h on ice in media containing 10 mg/ml
polyclonal Tetherin (THN) antibody (B02P). Cells were fixed, permeabilised, labelled with a p24/p55 Gag antiserum, and stained with fluorescent
secondary antibodies. Asterisks mark infected cells. Single confocal sections are shown. Scale bars = 10 mm. (B–C) Cell surface Tetherin on uninfected
and R3A-infected MDMs was labelled as described for (A), uninfected MDMs were incubated with VSV-G antibody as a negative control, and all cells
were analysed by flow cytometry. Uninfected cell populations were left ungated, infected cell populations gated on the uninfected or infected
subpopulations. (B) shows the results of a representative experiment, the bars in (C) represent the average Tetherin mean fluorescence intensities
(MFI) 6 SD from three donors relative to the gated, uninfected subpopulations (set at 100%).
doi:10.1371/journal.ppat.1004189.g004
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examined the mode, kinetics, and efficiency of the direct MDM-T

cell transmission.

Immunofluorescence studies showed that primary CD4+ T cells

readily associated with uninfected as well as HIV-1 BaL-infected

MDMs within 2.5 h of co-culture (Fig. S4). When T cells were

associated with infected MDMs, clusters of p17 Gag were

occasionally found at the intercellular junctions, and in some

cases CD4 co-clustered as well (Fig. 8A and Fig. S4). Junctions

between infected MDMs and uninfected T cells characterised by

an accumulation of mature HIV particles are from hereon referred

to as virological synapses (VS). It has been suggested that MDM-T

cell VS form by re-localisation of virus-filled IPMCs in MDMs to

Figure 5. Tetherin retains HIV on infected MDMs. (A) MDMs were infected with R3A-(+), -(2), or -Udel for seven days, lysed, and analysed by
western blotting. Note that the c-adaptin blot from this donor is shown in Fig. 3B. The p24 Gag band intensities were quantified and normalised to
the p55 Gag levels. Bars represent the means 6 SD of duplicate samples from three donors relative to R3A-(+) (set at 1). (B) MDMs were infected with
R3A and transfected with control or Tetherin siRNA the next day. Cells were lysed six days later and analysed by western blotting. (C) p24 Gag
concentrations in cell-free culture supernatants from R3A-infected MDMs were determined using ELISAs. Bars represent the means 6 SD of triplicate
samples from three donors relative to R3A-(+) (set at 100%). p values were calculated using a paired Student’s t-test before normalisation. (D) p24 Gag
concentrations in cell-free culture supernatants from R3A-infected, siRNA-treated MDMs were determined using ELISAs. Bars represent the means 6
SD of triplicate samples from a representative experiment, relative to control RNAi/R3A-(+) (set at 100%).
doi:10.1371/journal.ppat.1004189.g005

Tetherin Can Restrict HIV Spread from Macrophages

PLOS Pathogens | www.plospathogens.org 7 July 2014 | Volume 10 | Issue 7 | e1004189



Tetherin Can Restrict HIV Spread from Macrophages

PLOS Pathogens | www.plospathogens.org 8 July 2014 | Volume 10 | Issue 7 | e1004189



the MDM-T cell interface [16]. We observed that the IPMC

proteins CD9 (Fig. S5A) and CD81 (Fig. S5B), as well as the b2

integrin CD18 (Fig. S5C), were also occasionally enriched at VS.

To determine the kinetics of MDM-T cell association and VS

formation, we co-cultured BaL-infected MDMs with uninfected

autologous CD4+ T cells, and fixed and immunostained the cells at

30 min intervals from 0 min (no T cells added) to 240 min.

Though T cells rapidly associated with MDMs, few VS were

detected after the first 30 min of co-culture (Fig. 8B). The

proportion of infected MDMs with VS gradually increased

between 30 and 120 min, and then remained relatively constant

(Fig. 8B).

These observations suggested that the transfer of HIV from

MDMs to T cells is mediated by VS. However, successful infection

requires the fusion of viral particles with a target cell membrane,

and reverse transcription of viral RNA genomes. We used qPCR

to quantify the levels of HIV Gag DNA in T cells after co-culture

with BaL-infected MDMs. Low levels of HIV DNA were detected

in T cells after 1 and 2.5 h of co-culture (Fig. 8C), when VS

formation had already peaked (Fig. 8B), but significantly higher

levels were detected after 6 h (Fig. 8C). The reverse transcriptase

inhibitor nevirapine (NVP) prevented HIV DNA accumulation,

confirming that the qPCR assay detected only newly synthesised

viral DNA (Fig. 8C).

We conclude that on co-culture of CD4+ T cells with autologous

MDMs, T cell association with MDMs precedes VS formation,

which in turn precedes the efficient MDM to T cell transfer of

HIV, and T cell infection. This suggests that VS formation is an

active process that plays a major role in the transmission of HIV

from macrophages to T cells.

Finally, we determined the relative efficiencies of cell-cell and

cell-free transmission of HIV. T cells co-cultured for 6 h with BaL-

or R3A-infected MDMs contained at least ten times more HIV

DNA than T cells incubated with cell-free virus released by the

same MDMs during the preceding 6 h period (Fig. 8D and Fig.

S6).

Tetherin restricts cell-cell transmission of a dual-tropic
HIV-1 from macrophages to T cells

Having shown that short-term co-cultures strongly favour cell-

cell over cell-free HIV transmission (Fig. 8D and Fig. S6), we used

this assay to study whether endogenous Tetherin can restrict the

direct cell-cell spread of HIV from primary MDMs to autologous

CD4+ T cells. Following 6 h of MDM/T cell co-culture, the T

cells were washed off the MDMs with PBS, incubated further, and

their overall infection assayed by western blotting (Fig. 9A). This

approach allowed us to accurately determine the levels of T cell-

associated p55 Gag, which is important when comparing the

infection levels of cells that express, or do not express Vpu, as

Tetherin alters the ratios of p24/p55 Gag (Fig. 5A). When we co-

cultured T cells with R3A-(+), -(2), and –Udel-infected MDMs,

and continued to incubate the T cells separately for two days, only

the Vpu-containing R3A-(+) efficiently infected the T cells

(Fig. 9B). This observation indicated that Tetherin can inhibit

cell-cell transmission of HIV.

Control experiments were performed to confirm that the p55

Gag detected in the T cells after the co-culture was synthesised in

these cells, and did not derive from the MDMs. As expected, no

p55 Gag was detected in T cells that were harvested immediately

after the co-culture with MDMs, or exposed to NVP during and

after the co-culture, and no viral or cellular proteins were detected

in the recovered media when the T cells were omitted (Fig. 9B).

Further control experiments showed that Vpu expression in R3A-

infected MDMs did not influence their adhesion to T cells (Fig.

S7).

To demonstrate that Tetherin inhibits the transmission of HIV-

1 from MDMs to T cells, and not the subsequent replication of the

virus in T cells, we limited replication to a single round, either by

adding NVP to the T cells immediately after the co-culture, or by

harvesting the T cells after only one day. We still observed efficient

infection of the T cells only with R3A-(+) (Fig. 9C). Notably, when

we depleted R3A-infected MDMs of Tetherin before the co-

culture (Fig. 9A), T cell infection with the Vpu-negative R3A-(2)

and –Udel was rescued (Fig. 9D).

Tetherin may restrict MDM-T cell transmission by
promoting the transfer of HIV clusters

We next sought to investigate the mechanism by which Tetherin

inhibits cell-cell transmission of HIV from macrophages to T cells.

Hardly any p17 Gag accumulations were observed between R3A-

infected MDMs and T cells, rendering us unable to quantify VS

(Fig. S8A). We hypothesise that the p17 Gag accumulations at

MDM-T cell interfaces are more transient when MDMs are

infected with the dual-tropic R3A than with the CCR5-tropic

BaL, as significantly more primary CD4+ T cells express CXCR4

than CCR5 at their surface (Fig. S8B,C), which may accelerate

R3A entry into T cells.

We next used Gag qPCR to investigate the early events of T cell

infection following cell-cell transmission from MDMs. Intriguingly,

similar levels of HIV DNA were detected in T cells immediately

after their co-culture with R3A-(+), -(2) or -Udel-infected MDMs,

although only R3A-(+)-infected T cells from the same experimen-

tal samples contained significant HIV protein levels two days later

(Fig. 10A). Addition of NVP to the T cells during the co-culture

inhibited the accumulation of HIV DNA (Fig. 10A). Since high

Tetherin levels retain mature HIV particles on MDMs, we

hypothesised that during cell-cell transmission in the absence of

Vpu, infectious virus clusters may be transferred from MDMs to T

cells, and lead to high HIV DNA levels in a few T cells, but overall

a low proportion of infected cells. To test this hypothesis, we co-

cultured R3A-(+), -(2), or –Udel-infected MDMs with T cells,

immunostained the T cells for p17 Gag immediately after the co-

culture and analysed them by flow cytometry. We found that T

cells carried significantly more HIV clusters in the absence of Vpu

than in its presence, and the difference was particularly

pronounced for medium and large clusters (Fig. 10B,C). More-

over, when we incubated the T cells for longer times following

their co-culture with MDMs, we found that R3A-(+) DNA

accumulated much faster than R3A-(2) or –Udel DNA, and

significantly higher R3A-(+) DNA levels were detected in the T

cells after three days (Fig. 11A). Consistently, when we quantified

the proportion of HIV-infected T cells by flow cytometry five days

after their co-culture with infected MDMs, only T cells that had

been co-cultured with R3A-(+)-infected MDMs contained a

significant proportion of Gag-positive cells (Fig. 11B,C).

Together these data show that only in the presence of Vpu, do

MDMs transmit sufficient HIV to initiate a spreading infection in

T cells. In the absence of Vpu, endogenous Tetherin inhibits the

cell-cell transmission of HIV from primary MDMs to autologous

Figure 6. In the absence of Vpu, HIV accumulates in IPMCs. (A–B) MDMs were infected with R3A-(+),-(2), or -Udel for seven days, fixed, and
immunostained for the indicated proteins. Single confocal sections are shown. Scale bars = 15 mm.
doi:10.1371/journal.ppat.1004189.g006
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CD4+ T cells, presumably by promoting the transfer of infectious

virus clusters to a limited number of target cells.

Discussion

In recent years, an increasing number of cellular proteins that

inhibit, or restrict, virus replication have been identified. Of these,

Tetherin (HM1.24/CD317/Bst-2) stands out in that its efficient

counteraction appears to have been crucial for the global spread of

HIV [4]. Though SIV has crossed the species barrier from apes to

man on at least four different occasions, giving rise to HIV-1 group

M, N, O and P viruses, only group M HIVs, which have a fully

functional antagonist of Tetherin, the Vpu protein, have spread

globally [4,33–35].

In the absence of an antagonist, Tetherin restricts cell-free

propagation of HIV by physically linking mature virus particles to

the surface of infected cells [2,3,7,8]. Tetherin can also activate the

NFkB signalling pathway, which may contribute to restriction

[36]. A recent study showed that in addition to the full-length

protein, cell lines and primary cells express a short isoform of

Tetherin that lacks 12 N-terminal residues, is less sensitive to

antagonism by Vpu, and cannot activate the NFkB pathway [37].

However, there is an increasingly strong view that direct cell-cell

transmission of HIV is more efficient than cell-free propagation

[13]. In this study we found that Tetherin can also restrict cell-cell

transmission of HIV from macrophages to CD4+ T cells.

Macrophages, including neural microglia, are targets of HIV

infection in vivo and, at least partially, responsible for HIV-

associated dementia and neuropathy [38]. Several aspects of HIV

replication in macrophages differ from other cell types: Whereas T

cells are rapidly depleted early after HIV infection, macrophages

appear to be more resistant to the cytopathic effects of HIV, and

can survive for weeks to months following infection. This has led to

the suggestion that macrophages may serve as reservoirs for HIV,

particularly at the late stages of AIDS, when T cells are largely

depleted [38].

Although both T cells and macrophages are major targets for

HIV infection, the cell biology of virus replication in macrophages

can differ to that seen in T cells. In infected tissue culture

macrophages at least, the assembly of new virions is thought to

occur predominantly in IPMCs (or virus containing compartments

[VCC]), and not at the cell surface as seen in T cells [24,25]. Some

controversy exists as to whether IPMCs can transiently detach

from the PM [39], but most data indicate that the majority of these

compartments are contiguous with the cell surface [24,25,28].

IPMCs are thought to be largely impermeable to antibodies

[40,41]. In vivo, this may shield sites of HIV assembly from

circulating neutralising antibodies, which may help HIV-infected

macrophages to evade detection by the host immune system, and

contribute to their long-term survival. Virus assembly and budding

into IPMCs may also allow HIV release to be regulated, for

example through VS [15,16].

Because of the influence of Tetherin on the pandemic spread of

HIV, the contribution of macrophages to HIV pathogenesis, and

the cell type-specific differences in HIV replication, it is imperative

to understand the effects of Tetherin on HIV replication in

macrophages. To address this issue, we have relied almost entirely

on primary human cells, i.e. macrophages derived from monocytes

isolated from HIV-negative donors, and CD4+ T cells separated

from the peripheral blood mononuclear cells of the same donors.

This approach ensured that we studied cells expressing endoge-

nous levels of Tetherin, thus avoiding possible effects of aberrant

glycosylation and trafficking inherent to overexpression [7].

Moreover, we relied exclusively on HIV Env-mediated infection,

avoiding possible artefacts that might result from the use of

aberrant entry pathways and/or high multiplicities of infection of

pseudotyped HIV.

By analysing both mRNA and protein, we found that type I

IFNs upregulate the expression of Tetherin in MDMs even at low

concentrations, and to an extent similar to that seen in IFN-treated

T cells (Fig. 1). In the course of our study, we observed striking

differences between western blots of Tetherin under non-reducing

and reducing conditions: When we lysed MDMs in Laemmli

buffer devoid of any reducing agent, Tetherin appeared as a

prominent smear at ,60–100 kDa and a weaker smear at

,40 kDa (Fig. S9). These bands likely correspond to dimeric

and monomeric forms of glycosylated Tetherin, respectively.

Consistently, both bands completely disappeared upon Tetherin

RNAi (Fig. 5B, 9D). Blotting the same lysates in the presence of 2-

mercaptoethanol revealed a sharp, prominent band at ,24 kDa,

and a higher molecular weight smear appeared only with longer

exposures of the blots (Fig. S9). We propose that the sharp band

seen after reduction masks changes in Tetherin levels observed

under non-reducing conditions, and may explain why a recent

study found only moderate upregulation of Tetherin protein when

treating MDMs with high levels of IFN [21].

Our immunofluorescence studies show that in uninfected

MDMs, endogenous Tetherin localises to the cell surface, IPMCs,

and TGN, without any obvious enrichment in IPMCs (Fig. 2). In

cells infected with Vpu-deleted HIV, Tetherin retains virus in

IPMCs (Fig. 6), which may result in a passive enrichment of

Tetherin (Fig. 7A). As we know that accumulating virus expands

IPMCs [29], tethered HIV will also cause a passive expansion of

the size of the assembly compartments. These data, and the

observation that less mature HIV is associated with MDMs

following Tetherin RNAi (Fig. 5B), explain why a recent study

detected smaller and fewer virus-filled IPMCs when depleting

MDMs of Tetherin [21]. When investigated on uninfected

MDMs, where IPMCs are not passively expanded by accumulat-

ing virus, we find no evidence that Tetherin plays an active role in

the formation and/or maintenance of IPMCs (Fig. 7).

The improved Tetherin immunofluorescence labelling we

achieved allowed us to detect cell surface Tetherin on MDMs,

and Vpu-induced downregulation (Fig. 2A, Fig. 4), which was not

observed in a recent study [21]. Low cell surface levels of Tetherin

in the presence of Vpu corresponded with decreased overall levels

(Fig. 3B). However, even in the presence of Vpu, HIV-infected

MDM populations showed higher overall Tetherin levels than

uninfected cells (Fig. 3B). We believe that this is caused by an IFN

response to long-term HIV infection. Vpu would partially

Figure 7. Tetherin is not required to maintain IPMCs. (A) IFN-b-treated MDMs were incubated for 20 min on ice with 10 mg/ml monoclonal
Tetherin antibody (M15) and 2 mg/ml anti-CD9 in the presence of 0.05% saponin. Cells were fixed, labelled with anti-HIV-1 p17 Gag, and
immunostained with fluorescent secondary antibodies in the presence of 0.1% Triton X-100. Scale bars = 10 mm. (B) MDMs were left untreated, or
transfected with Tetherin or control siRNA for seven days. All cells were fixed and immunostained for CD9 and CD81. Arrowheads point at examples
of structures identified as IPMCs. All images are single confocal sections. Scale bar = 10 mm. (C) Parallel cultures to the ones shown in (B) were lysed
seven days after siRNA treatment and analysed by western blotting. (D) MDMs were treated as described for (B), and the proportion of cells showing
any intracellular CD9/CD81 co-localisation was quantified on nine random confocal stacks for each condition. Between 255 and 407 cells were
counted for each data point. The graphs show the means 6 SD from five donors, and each donor is represented by differently shaped data points.
doi:10.1371/journal.ppat.1004189.g007
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counteract the increased Tetherin expression in infected cells, but

released IFN would lead to high Tetherin levels in the uninfected

MDMs of the same population. In this situation, western blot

analysis would show an increase in the overall Tetherin levels in

the population (Fig. 3B), whereas flow cytometry, gated to the

infected cells only, would detect decreased levels of cell surface

Tetherin (Fig. 4B,C). Consistently, cell surface levels of Tetherin

on uninfected cells within infected MDM populations were higher

than on completely untreated cells (Fig. 4B,C), and Tetherin levels

in R3A-infected MDMs decreased when we prevented activation

of the IFN-a/b receptor using antibodies (Fig. S2). Nevertheless,

our data show that HIV-1 Vpu efficiently antagonises endogenous

Tetherin in primary macrophages. Residual Tetherin restriction

may occur even in the presence of Vpu, as even less HIV was

retained (Fig. 5B), and more released (Fig. 5D), upon Tetherin

RNAi than in the presence of Vpu alone, but these differences

were less pronounced and not statistically significant.

VS between infected and uninfected cells have been suggested

to facilitate the cell-cell spread of HIV [13]. Although VS between

infected macrophages and T cells have been observed [15],

evidence that these are involved in HIV transmission is missing. In

this study, we report that structures reminiscent of VS form

between HIV-infected MDMs and autologous CD4+ T cells

(Fig. 8A, Fig. S4). The temporal appearance of these VS is

consistent with them mediating cell-cell transmission of virus, i.e.

they succeed MDM-T cell interaction, but precede the appearance

of HIV DNA in T cells (Fig. 8B,C). However, we cannot rule out

the possibility that other modes of cell-cell transfer, including

filopodial bridges and membrane nanotubes, may also contribute

to HIV transmission from macrophages to T cells.

We have developed a novel co-culture assay to examine the

effects of Tetherin on the cell-cell spread of HIV from infected

MDMs to T cells (Fig. 9A). In contrast to other studies, in which

infected and target cells were co-cultured for up to several days

[18,19,21–23], we limited the co-culture to only 6 h. This

approach prevented the accumulation of cell-free virus, and thus

strongly favoured cell-cell transmission (Fig. 8D, Fig. S6). Our

assay was sensitive enough to reliably detect even low levels of

infection, as seen in our experiments as a result of the short co-

culture and the use of primary cells. Finally, and again in contrast

to other studies [17,18,21,22], our assay allowed us to detect

infection using the levels of p55 Gag only.

Using this assay, we found that Tetherin can inhibit cell-cell

transmission of HIV from MDMs to autologous CD4+ T cells, and

this effect was independent of whether or not the virus was allowed to

replicate in the T cells (Fig. 9, Fig. 10, Fig. 11). On-going replication

led to increasing levels of T cell infection at one and two days after

their co-culture with R3A-(+)-infected MDMs, and intermediate

infection levels were detected when NVP was added to the T cells for

the two day-incubation after the co-culture. However, efficient T cell

infection always depended on the downregulation of Tetherin in the

MDMs, either by Vpu (Fig. 9B, C), or by RNAi (Fig. 9D).

Immediately after their co-culture with R3A-(+), -(2) or –Udel-

infected MDMs, all T cells contained similar levels of HIV DNA,

but only in the presence of Vpu was significant infection detected

two days later (Fig. 10A). We hypothesise that, in the absence of

Vpu, high Tetherin levels on MDMs promote the transfer of

infectious clusters of HIV to T cells, which lead to high HIV DNA

levels in a few T cells, but overall a low proportion of infected cells.

Consistently, immediately after their co-culture with infected

MDMs, we detected more and larger HIV clusters on T cells in

the absence of Vpu than in its presence (Fig. 10B,C), and when

HIV DNA and protein levels were assessed three or five days later,

respectively, significantly more HIV DNA and a higher proportion

of infected T cells were detected when Tetherin was antagonised

by Vpu (Fig. 11). These observations are consistent with a previous

study, which showed that in the absence of Vpu, HIV clusters are

transferred from infected to uninfected T cells, but fail to initiate

productive infection [17]. Notably, similar DNA levels in T cells

immediately after their co-culture with infected MDMs confirmed

that R3A-(2) and -Udel are as infectious as R3A-(+).

Recent evidence suggests that an accumulation of HIV DNA in

activated or resting T cells may trigger innate immune responses,

and lead to cell death by apoptosis or pyroptosis, respectively [42–

44]. Therefore, during macrophage-T cell transmission of Vpu-

deficient HIV, the accumulation of viral DNA in target cells may

promote cell death, which could contribute to inefficient T cell

infection. However, when we labelled T cells with a dead cell stain

0, 6, 18, and 30 h after their co-culture with HIV-infected MDMs,

we did not detect increased T cell death in the absence of Vpu

(Fig. S10).

In vitro at least, cell-cell transmission of HIV is thought to be

more efficient than cell-free propagation. The high evolutionary

pressure on SIV/HIV to maintain a Tetherin antagonist suggests

that Tetherin inhibits both the cell-cell and cell-free spread of

HIV. Although our data are consistent with this notion, there may

be cell type-specific differences. For example, VS between T cells

are thought to involve polarised budding of HIV into the synaptic

cleft [14], whereas VS between monocytic cells and T cells may

form by re-localisation of virus-filled IPMCs to the site of VS

formation [16]. HIV that accumulates in IPMCs before reaching

the VS may be more susceptible to clustering by Tetherin than

newly budded virions in the T cell-T cell synapse. Consistently,

most studies using monocytic cells, i.e. MDMs and monocyte-

derived dendritic cells, found that Tetherin restricts cell-cell

transmission of HIV [21,22]. Similarly, Vpu-deficient HIV-1, as

well as virus strains encoding mutated Vpu proteins, have been

shown to inefficiently spread in macrophage populations [45].

Whether Tetherin also inhibits T cell-T cell spread remains

controversial. A recent study suggested that Tetherin increases the

number of VS formed between T cells, and thereby enhances

target cell infection [18]. Consistently, in a previous study a Vpu-

deficient HIV-1 clone emerged during selection of viruses that

efficiently spread in a rapid-turnover culture of T cells [46].

Figure 8. HIV is transmitted from MDMs to T cells via virological synapses. (A) MDMs were infected with HIV-1 BaL for seven days, co-
cultured with autologous CD4+ T cells for 2.5 h, fixed and immunostained for the indicated proteins. Arrows indicate VS. Scale bars = 10 mm. (B) BaL-
infected MDMs were co-cultured with autologous T cells for the indicated times, fixed, and immunostained for p17 Gag and CD4. No T cells were
added to a control sample of MDMs (0 min). The proportion of infected MDMs that associated with T cells (black+grey bars), and formed VS (black
bars) was counted on seven random confocal images with a total of 146–208 infected MDMs for each time point. (C) BaL-infected MDMs were co-
cultured with autologous T cells for the indicated times, the T cells were washed off the MDMs, and Gag DNA levels in the T cells were quantified by
qPCR. As controls, T cells were incubated for 6 h with uninfected MDMs (uninf), or with infected MDMs in the presence of 500 nM NVP (6 h/NVP). (D)
Autologous CD4+ T cells were incubated for 6 h with BaL-infected MDMs, or with cell-free supernatants collected from the same MDMs during the
preceding 6 h period. All T cells were collected and Gag DNA levels in the T cells quantified by qPCR. (C–D) Gag DNA levels were normalised to
GAPDH. For cell-cell transmission experiments, the levels of contaminating MDM-derived Gag and GAPDH DNA were subtracted from the total DNA
levels. Graphs show the means 6 SD of triplicate samples from a representative experiment relative to 6 h (set at 100%), or cell-free (set at 1).
doi:10.1371/journal.ppat.1004189.g008

Tetherin Can Restrict HIV Spread from Macrophages

PLOS Pathogens | www.plospathogens.org 13 July 2014 | Volume 10 | Issue 7 | e1004189



Figure 9. Tetherin restricts cell-cell transmission of a dual-tropic HIV-1 from MDMs to T cells. (A) Schematic outline of the assay used to
quantify cell-cell transmission from MDMs to autologous CD4+ T cells. (B) R3A-(+), -(2), or -Udel-infected MDMs, or uninfected control MDMs, were co-
cultured with autologous CD4+ T cells for 6 h, the T cells were washed off the MDMs with PBS and lysed immediately (0 days), or after another two
day-incubation (2 days). As a control, 500 nM NVP was added to parallel MDM-T cell co-cultures, and to the T cells after the co-culture (T cells/NVP
during and after co-culture). No T cells were added to infected MDMs, and the culture supernatants treated as the T cells, as another control (no T
cells). All T cell lysates were analysed by western blotting. (C) T cells were co-cultured with R3A-infected MDM for 6 h, separated from the MDMs, and
incubated for another zero to two days (0–2 days), or for two days in the presence of 500 nM NVP (2 days/NVP after co-culture). The T cells were lysed
and analysed by western blotting. Note that parallel cultures of the MDMs used for the experiments in (B) and (C) were analysed by western blotting
to confirm equal infection levels (Fig. S11). (D) MDMs were infected with R3A and transfected with control (control RNAi) or Tetherin (Tetherin RNAi)
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However, other studies argue that Tetherin restricts the direct T

cell-T cell transmission of HIV. In one study, clusters of Vpu-

deficient HIV particles were seen to be transferred from infected to

uninfected cells, but impaired in their ability to fuse with and thus

infect target cells [17]. Still, Tetherin did not seem to perturb the

formation of VS [17].

Overall our study shows that in MDMs Tetherin is upregulated

even by low concentrations of type I IFNs, and localises to the cell

surface, TGN, and IPMCs. Vpu efficiently antagonises Tetherin

and, in the absence of Vpu, mature HIV accumulates in IPMCs.

Although Tetherin-bound virus may expand IPMCs, there is no

indication that Tetherin plays an active role in the formation and/

or maintenance of the HIV assembly compartments. Finally, we

find that Tetherin can restrict cell-cell transmission of HIV from

MDMs to T cells, and the assay applied in this study may help

elucidate whether the restriction factor also inhibits transmission

between other cell types. Thus, this study provides crucial insight

into one of the most potent HIV restriction factors identified to

date, in one of the main target cells for HIV infection.

Materials and Methods

Reagents and antibodies
Tissue culture media and supplements were purchased from

Life Technologies (Paisley, UK), Fetal Calf Serum (FCS) Gold

from PAA (Yeovil, UK), human AB serum from PAA and Sigma-

Aldrich (Dorset, UK), tissue culture plastic from Thermo Fisher

Scientific (Waltham, USA) and TPP (Trasadingen, Switzerland),

and chemicals from Sigma-Aldrich, unless specified otherwise.

IFN-b was provided by M. Noursadeghi (UCL, London, UK), and

nevirapine obtained from the AIDS Research and Reference

Reagent Program (NIAID, Bethesda, USA).

Antibodies to CD4 (Q4120), HIV-1 p24/p55 Gag (38:96K and

EF7) and HIV-1 p17 Gag (4C9), as well as an antiserum to HIV-1

p24/p55 Gag (ARP432), were obtained from the NIBSC Centre for

AIDS Reagents (South Mimms, UK). Anti-CD68 (KP1) was

provided by R. da Silva (University of Oxford, Oxford, UK), anti-

CD81 (M38) by F. Berditchevski (University of Birmingham,

Birmingham, UK), anti-CD81 (1.337) by J. Grove (UCL, London,

UK), anti-CXCR4-Alexa Fluor 488 (12G5) by J. Hoxie (UPenn,

Philadelphia, USA), anti-VSV-G (P5D4) by T. Kreis (UNIGE,

Geneva, Switzerland), and antisera to Env gp120, HIV-1 p17 Gag

(UP595) and Vpu (U2-3) by N. Haigwood (OHSU, Portland, USA),

M. Malim (KCL, London, UK) and K. Strebel (NIAID, Bethesda,

USA), respectively. Anti-HIV-1 p24/p55 Gag (Kal-1) was pur-

chased from Dako (Ely, UK), anti-CD9 (MCA469G) and anti-

TGN46 (AHP500G) from AbD Serotec (Kidlington, UK), anti-

CD18 (MEM-48) and anti-CD3 (MEM-57) from Abcam (Cam-

bridge, UK), anti-c-adaptin (88/Adaptin c), anti-CD3-PerCP (SK7),

anti-CD3 (UCHT1), anti-CD4-FITC (RPA-T4), anti-CD195-PE

(2D7/CCR5), anti-CD14-APC (M5E2) and anti-LAMP-1 (H4A3)

from BD Biosciences (Oxford, UK), anti-actin (I-19) from Santa

Cruz Biotechnology (Santa Cruz, USA), anti-IFN-a/b R2

(MMHAR-2) and mouse IgG2A isotype control (20102) from

R&D Systems (Abingdon, UK), monoclonal and polyclonal anti-Bst-

2 (M15 and B02P, respectively) from Abnova (Taipei, Taiwan),

Alexa Fluor-conjugated antibodies from Life Technologies, and

HRP-conjugated antibodies from Thermo Fisher Scientific.

Plasmids and virus stocks
The Nef-negative HIV-1 molecular clone NL4.3-R3A, here

referred to as R3A-(+), was provided by J. Hoxie (UPenn,

Philadelphia, USA) [47], and used to avoid Nef-specific effects on

Tetherin. To obtain R3A-(2), the Vpu start codon of R3A-(+) was

mutated using the primers 59-CTCTC TATCA AAGCA

GTAAG TAGTA CATGT AGTGC AATCT TTACA AA-

TAT-39 and 59-ATATT TGTAA AGATT GCACT ACATG

TACTA CTTAC TGCTT TGATA GAGAG-39 and the

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent

Technologies, Wokingham, UK) according to the manufacturer’s

instructions. To obtain R3A-Udel, two unique XbaI restriction

sites were introduced into the Vpu gene of R3A-(+) using the

primers 59-GTAAG TAGTA CATGT AATGC AATCT

TTACA AATTC TAGAA ATAGT AGCAT TAGTA GTAGC

AGC-39 and 59-GCTGC TACTA CTAAT GCTAC TATTT

CTAGA ATTTG TAAAG ATTGC ATTAC ATGTA CTACT

TAC-39, and 59-GTATG GTCCA TAGCA CTCAT AGAAT

ATAGG AAAAT ATCTA GACAA AGAAA AATAG ACA-39

and 59-TGTCT ATTTT TCTTT GTCTA GATAT TTTCC

TATAT TCTAT GAGTG CTATG GACCA TAC-39, and the

QuikChange II XL kit as described above. The resulting plasmid

was digested with XbaI (Promega, Southampton, UK) and re-

ligated without the 82 bp fragment of Vpu.

To produce virus stocks from molecular clones, HEK 293T cells

were transfected with proviral DNA using FuGENE HD

(Promega). Culture supernatants were harvested after two days

and cleared of cell debris by centrifugation and filtration

(0.45 mm). Viruses were pelleted through 25% sucrose cushions

for 2 h at 100,000 g and 4uC and resuspended in complete

medium (RPMI 1640, 100 U/ml penicillin, 0.1 mg/ml strepto-

mycin, and 10% human AB serum). Stocks of HIV-1 BaL were

prepared as described previously [24].

p24 ELISA assay
p24 levels in cell-free supernatants from HIV-1-infected cells

were quantified using the HIV-1 p24CA Antigen Capture Assay

Kit (AIDS and Cancer Virus Program, National Cancer Institute,

Frederick, USA), or the QuickTiter HIV Lentivirus Quantitation

Kit (Source BioScience, Nottingham, UK), according to the

manufacturers’ instructions.

Single-cycle infectivity assay
The single-cycle infectivities of virus stocks were determined

using TZM-bl indicator cells (provided by J. Martin-Serrano,

KCL, London, UK). Cells were infected for 2 h at 1,300 g with

dilutions of virus stocks containing 0.5–2 ng of p24 Gag or

reference virus of known titres. b-galactosidase expression was

quantified 24 h later using the Galacto-Star b-Galactosidase

Reporter Gene Assay System (Life Technologies) and a PHER-

Astar Plus microplate reader (BMG LABTECH, Aylesbury, UK).

Single-cycle infectivities of MDM-derived R3A were determined

by incubating TZM-bl indicator cells with cell-free virus-contain-

ing culture supernatants containing 2–5 ng of p24 Gag and

quantifying b-galactosidase expression 24 h later as described

above.

siRNA the next day. Six days later, autologous T cells were co-cultured with the infected MDMs for 6 h, separated from the MDMs, and lysed
immediately (0 days) or incubated for another two days in the presence of 500 nM NVP (2 days). The T cell lysates (T cells), and lysates of the MDMs
(MDMs) used for the experiment, were analysed by western blotting. Note that residual Tetherin levels in the MDMs had to be ,5% to see a rescue of
the T cell infection with R3A-(2) and -Udel.
doi:10.1371/journal.ppat.1004189.g009
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Figure 10. Tetherin promotes the transfer of infectious HIV clusters to T cells. (A) R3A-(+), -(2), or -Udel-infected MDMs, or uninfected
control MDMs, were co-cultured with autologous CD4+ T cells for 6 h. As a control, 5 mM NVP was added to parallel MDM-T cell co-cultures. All T cells
were separated from the MDMs, and aliquoted for qPCR and western blot analyses. For qPCR analysis, T cells were lysed immediately, and Gag DNA
levels quantified by qPCR and normalised to GAPDH. The levels of contaminating MDM-derived Gag and GAPDH DNA were subtracted from the total
DNA levels. Graphs for the ‘‘no NVP’’ samples show the means 6 SD of triplicate samples from a representative experiment relative to R3A-(+) (set at
100%). Single values are shown for the ‘‘5 mM NVP’’ samples. For western blot analyses, T cells were lysed immediately (0 days), or after another two
day-incubation (2 days). (B–C) T cells were co-cultured with R3A-infected MDMs for 6 h, separated from the MDMs, fixed, immunostained for p17 Gag
and CD3, and analysed by flow cytometry. (B) shows the results of a representative experiment, and the numbers next to the gates indicate the
proportions of cells with small (16), medium (36), and large (106) p17 Gag clusters. (C) shows the mean proportions of cells with small (16), medium
(36), and large (106) p17 Gag clusters 6 SD of duplicate samples from three donors, normalised to the MDM infection levels. Each donor is
represented by differently shaped data points.
doi:10.1371/journal.ppat.1004189.g010

Figure 11. Tetherin can prevent MDMs from initiating a spreading infection in T cells. (A) R3A-(+), -(2), or -Udel-infected MDMs, or
uninfected control MDMs, were co-cultured with autologous CD4+ T cells for 6 h, the T cells separated from the MDMs and lysed immediately (0
days), or after another one to three day-incubation (1–3 days). Gag DNA levels in the T cells were quantified by qPCR and normalised to GAPDH. As a
control, 500 nM NVP was added to parallel MDM-T cell co-cultures, and to the T cells after the co-culture [(+)+500 nM NVP]. The levels of
contaminating MDM-derived Gag and GAPDH DNA were subtracted from the total DNA levels. Graphs show the means 6 SD of triplicate samples
from a representative experiment relative to R3A-(+) after three days (set at 100%). (B–C) T cells were co-cultured with R3A-infected MDMs for 6 h,
separated from the MDMs and fixed immediately (0 days), or incubated for another five days (5 days). The T cells were immunostained for p24/p55
Gag and CD3, and analysed by flow cytometry. (B) shows the results of a representative experiment, and the numbers above the gates indicate the
proportions of Gag-positive cells. (C) shows the mean proportions of Gag-positive cells 6 SD from three donors.
doi:10.1371/journal.ppat.1004189.g011

Tetherin Can Restrict HIV Spread from Macrophages

PLOS Pathogens | www.plospathogens.org 17 July 2014 | Volume 10 | Issue 7 | e1004189



Cells and infections
MDMs were prepared from peripheral blood mononuclear cells

(PBMC), isolated from buffy coats from HIV-negative blood

donors (National Blood Service, Essex, UK), as described

previously [48], and differentiated in complete medium containing

10 ng/ml of M-CSF (R&D Systems, Abingdon, UK) for two days.

Where indicated, seven day-old MDMs were infected with HIV-1

(3 MOI/cell) by spinoculation for 2 h at 1,300 g and cultured for a

further seven days. Unless specified otherwise, the MDMs were

used after 14 days in culture.

To obtain autologous CD4+ T cells, the non-adherent fraction

of the PBMCs was frozen and defrosted after nine days, unless

specified otherwise. The cells were activated for three days with

1 mg/ml lectin from Phaseolus vulgaris (Sigma-Aldrich) and 5 ng/ml

IL-2 (R&D Systems) in complete medium. CD4+ T cells were

isolated using the CD4+ T Cell Isolation Kit (Miltenyi Biotec,

Bisley, UK) according to the manufacturer’s instructions, and

cultured for a further two days in complete medium containing

5 ng/ml IL-2.

For co-cultures of MDMs and autologous CD4+ T cells, 3 T

cells/MDM were added to the MDMs in complete medium and,

unless specified otherwise, incubated for 6 h at 37uC and 5% CO2.

The T cells were separated from the MDMs, residual T cells

washed off with PBS, and all T cells lysed immediately or cultured

in complete medium containing 5 ng/ml IL-2.

Tetherin RNAi
MDMs were transfected with 60 nM Stealth siRNA targeting

Tetherin (oligo ID HSS101115, Life Technologies), or Stealth

siRNA Negative Control Med GC (Life Technologies), using

Lipofectamine RNAiMAX (Life Technologies) according to the

manufacturer’s instructions. Transfection complexes were re-

moved one day after transfection.

DNA/RNA isolations, reverse transcription and
quantitative PCR

Total DNA was isolated from T cells using the DNeasy Blood

and Tissue Kit (QIAGEN, Manchester, UK) according to the

manufacturer’s instructions. 20–40 ng of DNA were used to

quantify the levels of Gag and GAPDH using 500 nM of the

previously characterised primers 59-ACATC AAGCA GCCAT

GCAAA T-39 and 59-ATCTG GCCTG GTGCA ATAGG-39,

and 59-ACCAC AGTCC ATGCA TCACT-39 and 59-GGCCA

TCACG CCACA GITT-39 [49], respectively, the DyNAmo Flash

SYBR Green qPCR Kit (Thermo Fisher Scientific), and a

Mastercycler ep realplex 2 (Eppendorf, Stevenage, UK) with the

following programme: 95uC for 7 min, and 40 cycles at 95uC for

10 s and 65uC for 30 s. Serial dilutions from one experimental

sample were prepared for the standard curve. For MDM-T cell co-

culture experiments, the levels of contaminating MDM-derived

Gag and GAPDH DNA were subtracted from the total DNA

levels. To determine the levels of MDM-derived DNA, medium

only was added to HIV-infected MDMs and subsequently treated

as the co-cultured T cells. MDM-derived Gag DNA levels were

typically between 5 and 27% of the total levels for HIV-1 BaL, and

between 5 and 17% for HIV-1 R3A. MDM-derived GAPDH

levels were max. 2% of the total levels. Gag DNA levels were

normalised to GAPDH.

Total RNA was isolated from cells using the RNeasy Plus Mini

Kit (QIAGEN), and 50 ng of RNA reverse transcribed using the

QuantiTect Reverse Transcription Kit (QIAGEN) according to

the manufacturer’s instructions. qPCR was performed as described

above using 200 nM of IFIT1 and GAPDH primers from the

IFNr qRT-Primer Set (Source BioScience), 200 nM of Bst-2

primers from the RT2 qPCR Primer Assay (QIAGEN), and the

following cycler programme: 95uC for 10 min, 40 cycles at 95uC
for 15 s, 60uC for 30 s and 72uC for 30 s, and 72uC for 10 min.

No reverse transcriptase was added to control samples to confirm

the complete elimination of genomic DNA. IFIT1 and Bst-2 RNA

levels were normalised to GAPDH.

Western blot analysis
For western blot analysis cells were washed in PBS and lysed in

Laemmli Sample Buffer (Sigma-Aldrich) for 10 min at 95uC. The

lysates were separated on SDS-polyacrylamide gels and trans-

ferred to Immobilon-P PVDF membranes (Millipore, Watford,

UK) at 20 V for 1 h under semi-dry blotting conditions. Blots

were quenched in 0.1% Tween/5% non-fat milk/PBS for 1 h at

room temperature, incubated with primary antibody at 4uC
overnight, washed three times with 0.1% Tween/PBS, and

incubated with the appropriate HRP-conjugated secondary

antibody for 1 h at room temperature. After five washes with

0.1% Tween/PBS, membranes were briefly incubated in Super-

Signal West Pico/Dura/Femto Chemiluminescent Substrate

(Thermo Fisher Scientific) and signals detected with Amersham

Hyperfilm ECL (GE Healthcare Life Sciences, Little Chalfont,

UK). For the comparison of Tetherin levels in T cells and MDMs,

cells were lysed in non-reducing Laemmli buffer without

bromophenol blue (10% SDS, 15% glycerol, 0.2 M Tris-HCl

pH 6.8), total protein concentrations determined using the Bio-

Rad DC Protein Assay (Bio-Rad, Hemel Hempstead, UK)

according to the manufacturer’s instructions, and 5 mg protein

used for western blot analysis as described above. All Tetherin

blots were performed under non-reducing conditions and using

the polyclonal Bst-2 antibody B02P. Blots were scanned and

quantified with Fiji.

Immunofluorescence
For immunofluorescence, MDMs were washed with PBS, fixed

in 4% PFA, quenched with 50 mM NH4Cl and permeabilised

with 0.1% Triton X-100/0.5% BSA/6 mg/ml human IgG/PBS.

Cells were labelled for 1.5 h with primary antibodies diluted in

0.5% BSA/6 mg/ml human IgG/PBS, washed in 0.5% BSA/PBS

and incubated for 1 h with appropriate combinations of fluores-

cent secondary antibodies. Samples were washed, DNA stained

with 10 mg/ml Hoechst 33258 in PBS, and coverslips mounted in

Mowiol. Confocal images were acquired with an inverted Leica

TCS SP5 confocal microscope, 636oil objective (NA 1.4) and LAS

AF software, and processed using Fiji. Where indicated live,

unpermeabilised MDMs were incubated for 1 h on ice in complete

medium containing the appropriate primary antibodies before

fixation. For immunostaining of live, permeabilised MDMs, cells

were incubated for 20 min on ice in 0.05% saponin/0.5% BSA/

6 mg/ml human IgG/PBS containing the appropriate primary

antibodies, washed with ice-cold PBS, fixed, and labelled with

secondary antibodies in the presence of 0.1% saponin as described

above. Where indicated, live, permeabilised MDMs were immu-

nostained, fixed, and immunostained with additional primary

antibodies in the presence of 0.1% Triton X-100 as described

above.

Flow cytometry analysis
For flow cytometry analysis of cell surface Tetherin levels on

infected MDMs, cells were incubated for 1 h on ice in complete

medium containing 10 mg/ml polyclonal Bst-2 antibody (B02P).

Cells were washed once with ice-cold PBS, fixed in 4% PFA,

scraped off the tissue culture dish, permeabilised with 0.1%
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saponin/1% human AB serum/6 mg/ml human IgG/2 mM

EDTA/0.05% sodium azide/PBS, labelled for 1 h with a-p24/

p55 rabbit serum (ARP432), washed three times in 0.1% saponin/

1% human AB serum/2 mM EDTA/0.05% sodium azide/PBS,

incubated for 30 min with appropriate Alexa Fluor-conjugated

secondary antibodies, washed three times and analysed on an LSR

II flow cytometer (BD Biosciences). For flow cytometry analysis of

T cells and MDMs following their co-culture, cells were washed

with PBS, fixed in 4% PFA, and immunostained with the

appropriate primary and subtype specific Alexa Fluor-conjugated

secondary antibodies as described above. For flow cytometry

analysis of cell surface proteins on primary CD4+ T cells, cells

were incubated for 30 min at 4uC in 1% FCS/6 mg/ml human

IgG/2 mM EDTA/0.05% sodium azide/PBS, labelled for 1 h at

4uC with primary antibodies conjugated to fluorescent dyes, and

washed three times in 1% FCS/2 mM EDTA/0.05% sodium

azide/PBS. Data were analysed using FlowJo software (TreeStar,

Ashland, USA).

To analyse the proportion of dead cells, primary T cells were

washed with PBS, labelled with Violet Dead Cell Stain (Life

Technologies) according to the manufacturer’s instructions,

washed with PBS, fixed in 4% PFA, and analysed by flow

cytometry.

Statistical analysis
Unless specified otherwise, p values were calculated using an

unpaired Student’s t-test.

Supporting Information

Figure S1 Tetherin localises to the cell surface, TGN,
and IPMCs. (A,B) Untreated MDMs were incubated for 20 min

on ice with 10 mg/ml polyclonal Tetherin (THN) antibody (B02P)

and 2.5 mg/ml anti-TGN46, or with 10 mg/ml monoclonal

Tetherin antibody (M15) and 2 mg/ml anti-CD9, in the presence

of 0.05% saponin. Cells were fixed and labelled with fluorescent

secondary antibodies. Arrowheads point at structures reminiscent

of IPMCs. Double arrows indicate TGN-like staining patterns. All

images are single confocal sections. Scale bars = 10 mm.

(TIF)

Figure S2 Long-term HIV infection of MDMs triggers
an IFN-dependent upregulation of Tetherin. MDMs were

pre-incubated for 30 min at 37uC with 1 mg/ml of IFN-a/b
receptor antibody (IFNR AB), or an isotype-matched control

antibody (control AB), and subsequently infected with R3A-(+), -

(2), or -Udel for seven days in the presence of the same antibodies.

All cells were lysed and analysed by western blotting. Numbers

above the lanes indicate the Tetherin band intensities relative to

uninfected, control antibody-treated MDMs (set at 1).

(TIF)

Figure S3 Tetherin retains mature HIV on MDMs.
MDMs were infected with R3A-(+), -(2), or -Udel for seven days,

fixed, permeabilised, labelled with p24/p55 and p17 Gag

antibodies, stained with fluorescent secondary antibodies, and

analysed by flow cytometry. Uninfected cell populations were left

ungated, infected cell populations gated on the p24/p55 Gag-

positive subpopulations, and the p17 Gag fluorescence was

analysed. (A) shows the results of a representative experiment,

the lines in (B) indicate the average p17 Gag mean fluorescence

intensities (MFI) 6 SD of duplicate samples from four donors

relative to R3A-(+)-infected cells (set at 1). In (B), each donor is

represented by differently shaped data points.

(TIF)

Figure S4 Virological synapses form between HIV-
infected MDMs and autologous T cells. MDMs were

infected with HIV-1 BaL for seven days, co-cultured with

autologous CD4+ T cells for 2.5 h, fixed and immunostained for

the indicated proteins. The lower panels show magnifications of

the boxed areas in the upper panels. Arrows indicate VS. Scale bar

in upper panel = 20 mm, lower panel = 10 mm.

(TIF)

Figure S5 Tetraspanins and integrins localise to the
MDM-T cell VS. (A–C) MDMs were infected with HIV-1 BaL

for seven days, co-cultured with autologous CD4+ T cells for 2.5 h,

fixed and immunostained for the indicated proteins. Arrows

indicate VS. Scale bars = 10 mm.

(TIF)

Figure S6 HIV-1 R3A spreads more efficiently by cell-
cell than by cell-free transmission. Autologous CD4+ T cells

were incubated for 6 h with R3A-(+)-infected MDMs, or with cell-

free supernatants collected from the same MDMs during the

preceding 6 h period. All T cells were collected, and Gag DNA

levels in the T cells quantified by qPCR and normalised to

GAPDH. For cell-cell transmission, the levels of contaminating

MDM-derived Gag and GAPDH DNA were subtracted from the

total DNA levels. Bars represent the means 6 SD of triplicate

samples from a representative experiment relative to cell-free (set

at 1).

(TIF)

Figure S7 Vpu expression in R3A-infected MDMs does
not influence their adhesion to T cells. (A) R3A-(+), -(2), or

-Udel-infected MDMs, or uninfected control MDMs, were co-

cultured with autologous CD4+ T cells for 6 h. T cells were then

washed off the MDMs with PBS, fixed and counted. Bars

represent the mean proportions of recovered T cells 6 SD of

duplicate samples from three donors. (B–E) R3A-infected MDMs,

or uninfected control MDMs, were co-cultured with autologous

CD4+ T cells for 6 h. No T cells were added to uninfected MDMs

as a control. T cells were washed off the MDMs with PBS. The

MDMs were fixed with PFA, immunostained for the T cell marker

CD3, the MDM marker CD68, and HIV-1 p24/p55 Gag in the

presence of 0.1% saponin, and analysed by flow cytometry. (B)

shows CD3/CD68 plots from a representative experiment, and

the numbers within the gates indicate the relative frequencies of

MDMs (set at 1), and T cells that had detached during the staining

procedure and had therefore loosely interacted with MDMs. The

bars in (C) represent the mean ratios of T cells to MDMs 6 SD of

duplicate samples from four donors. (D) shows CD3 plots of

CD68-positive, uninfected or infected MDMs from a representa-

tive experiment, and the gates are set to discriminate between

MDMs without T cells and MDMs that had remained associated

with T cells during the staining procedure, and had therefore

formed tight interactions. (E) shows the mean proportions of

MDMs that had formed tight interactions with T cells 6 SD of

duplicate samples from three donors, and each donor is

represented by differently shaped data points.

(TIF)

Figure S8 R3A-infected MDMs may form transient VS.
(A) MDMs were infected with HIV-1 R3A for seven days, co-

cultured with autologous CD4+ T cells for 2.5 h, fixed and

immunostained for the indicated proteins. Scale bar = 10 mm. (B–

C) Unpermeabilised primary CD4+ T cells were immunostained

for the indicated proteins and analysed by flow cytometry. (B)

shows the results from a representative experiment. The red

graphs represent stained T cells, the grey graphs unstained control
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cells. (C) shows the mean proportions of positive cells 6 SD from

four donors, where each donor is represented by differently shaped

data points.

(TIF)

Figure S9 Western blotting conditions effect Tetherin
quantification. MDMs were stimulated for 24 h with 0–

2,721 U/ml (0–10 ng/ml) IFN-b eight days post isolation from

buffy coats, and lysed in non-reducing Laemmli buffer. Untreated

lysates (non-reduced) and lysates treated with 2-mercaptoethanol

(reduced) were separated on SDS-polyacrylamide gels, and

Tetherin levels were analysed by western blotting.

(TIF)

Figure S10 T cells remain viable after their co-culture
with HIV-infected MDMs. (A) To confirm the reactivity of the

dead cell stain, primary CD4+ T cells from one donor were

incubated for 20 min at 60uC, labelled with dead cell stain, fixed,

and analysed by flow cytometry. Cells were kept at 37uC and

labelled with the same stain (37uC), or left unlabelled (no stain), as

controls. (B–C) R3A-(+), -(2), or -Udel-infected MDMs, or

uninfected control MDMs, were co-cultured with autologous

CD4+ T cells for 6 h. T cells were washed off the MDMs with

PBS, and labelled with a Violet Dead Cell Stain immediately, or

after another 6-, 18-, or 30 h-incubation. The cells were fixed,

immunostained for CD3, and analysed by flow cytometry. (B)

shows the results of a representative experiment, and the numbers

in the top right quadrants indicate the proportions of dead CD3+

cells. (C) shows the mean proportions of dead CD3+ cells 6 SD

from duplicate samples of three donors.

(TIF)

Figure S11 MDMs infected with R3A-(+), -(2) and –Udel
for seven days show similar infection levels. MDMs were

infected with R3A-(+), -(2), or -Udel for seven days. (A–B) The

cells were lysed, and analysed by western blotting. The blots in (A)

and (B) are from parallel cultures of the MDMs used for the cell-

cell transmission experiments shown in Fig. 9B and Fig. 9C,

respectively. (C–D) The cells were fixed, permeabilised, labelled

with p24/p55 Gag antibodies, and stained with fluorescent

secondary antibodies. The proportions of p24/p55 Gag-positive

MDMs were analysed by flow cytometry. (A) shows the results of a

representative experiment, the lines in (B) indicate the means of

duplicate samples from four donors, where each donor is

represented by differently shaped data points. Note that the

analyses shown in (C) and (D) were performed on the same

samples used for Fig. S3.

(TIF)
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