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Purpose: We quantitatively analyzed the characteristics of cone-beam computed
tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then
built a novel nomogram model integrating clinical features and dosimetric parameters for
predicting radiation pneumonitis (RP) in patients with esophageal squamous cell
carcinoma (ESCC).

Methods: At our institute, a retrospective study was conducted on 96 ESCC patients for
whom we had complete clinical feature and dosimetric parameter data. CBCT images of
each patient in three different periods of RT were obtained, the images were segmented
using both lungs as the region of interest (ROI), and 851 image features were extracted.
The least absolute shrinkage selection operator (LASSO) was applied to identify candidate
radiomics features, and logistic regression analyses were applied to construct the rad-
score. The optimal period for the rad-score, clinical features, and dosimetric parameters
were selected to construct the nomogram model and then the receiver operating
characteristic (ROC) curve was used to evaluate the prediction capacity of the model.
Calibration curves and decision curves were used to demonstrate the discriminatory and
clinical benefit ratios, respectively.

Results: The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD),
and tumor stage were independent predictors of RP and were finally incorporated into the
nomogram. When the three time periods were modeled, the first period was better than
the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95%
confidence interval (CI) 0.568–0.832), and in the independent validation cohort, the AUC
was 0.765 (95% CI 0.588–0.941). In the nomogram model that integrates clinical features
and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700–
0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799–1.000). The
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nomogram model exhibits excellent performance. Calibration curves indicate a favorable
consistency between the nomogram prediction and the actual outcomes. The decision
curve exhibits satisfactory clinical utility.

Conclusion: The radiomics model based on early lung CBCT is a potentially valuable tool
for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The
developed nomogrammodel has a better prediction ability than any of the other predictors
and can be used as a quantitative model to predict RP.
Keywords: esophageal cancer, cone beam computed tomography, radiation pneumonitis, prediction
model, radiomics
INTRODUCTION

Among malignant tumors, the incidence rate of esophageal
cancer (EC) is the seventh highest, and the mortality rate is
sixth worldwide (1). Radiotherapy (RT) is still one of the main
treatments for locally advanced EC (2, 3). However, radiation
pneumonitis (RP) is one of the major toxicities of thoracic
radiation therapy. If RP occurs, it seriously affects the patient’s
quality of life and survival prognosis (4). Therefore, it is
imperative for EC patients undergoing RT to identify this
toxicity at the earliest possible time. More importantly, the
accurate prediction of RP is essential to facilitate individualized
radiation dosing that leads to maximized therapeutic gain. At
present, the risk assessment of RP is mainly predicted by using
lung dosimetric parameters (5, 6), such as the relative volume of
total lung irradiated above a specified threshold dose (VX) or
mean lung dose (MLD): Although several metrics have appeared
promising, the results vary across institutions, so these metrics
do not seem to be perfect at predicting RP (7, 8). In addition to
dosimetric parameters, some clinical features (tumor stage,
smoking history, preexisting lung diseases, concurrent
chemotherapy, and radiation dose) are also considered to be
related to RP occurrence. However, the consensus on the
comparative importance of these related predictors remains
unavailable at present. Consequently, in order to individually
and precisely discern RP, an accurate predictive model
incorporating multiple types of factors with superior clinical
utility is urgently needed.

Computed tomography (CT) images play an essential role in
the diagnosis and treatment of RP. As early as the end of the 20th
century, RP could be identified by CT. However, RP cannot be
predicted by superficial CT manifestations. Therefore, the focus
of later research is on the accurate prediction of RP (9). In recent
years, with the rapid development of radiomics analysis
technology, increasing attention has been paid to the research
of RT effect and side effect predictions based on radiomics
features (10–13). Among them, one study found that there is a
dose-dependent relationship between the changes in some
radiomics features and RP ≥2 grade determined by extracting
local lung CT images after RT (12). Another study successfully
established a differential model of high- and low-risk RP by
analyzing the region of interest (ROI) of the whole lung tissue
before RT (13). In short, radiomics features can capture the
2

capability of lung texture features, which help describe the
potential RP risk (14, 15).

At present, cone-beam computed tomography (CBCT) has
become a routine online method of image-guided radiotherapy
(IGRT) for EC. If we can perform quantitative analysis on CBCT
radiomics features in a certain period of RT and then combine
these radiomics features with clinical features and dosimetric
parameters to predict RP in EC, it will help guide clinical
treatment strategies in a timely manner.

Therefore, the initial aim of this study was to investigate
whether the early changes in CBCT radiomics features could be
used as potential markers for predicting RP. In the present study,
a comprehensive nomogram, which is a conveniently applicable
predictive model integrating CBCT radiomics features, clinical
features, and dosimetric parameters, was built for the
individualized risk assessment and precise prediction of RP.
MATERIALS AND METHODS

Patients
The entire cohort of this retrospective study was obtained from the
records of our institutional picture archiving and communication
system (PACS) from January 2017 to June 2019, which was used
to identify esophageal squamous cell carcinoma (ESCC) patients
receiving RT treatment. The inclusion criteria were as follows: (1)
Karnofsky performance score (KPS) ≥70, (2) no previous history
of thoracic RT, (3) intensity-modulated radiotherapy (IMRT) and
received ≥50 Gy RT, and (4) CBCT scan performed at least once a
week during RT with the scanning range of the CBCT imaging
including at least two thirds of the lungs. The exclusion criteria
were as follows: (1) low image quality, (2) general pulmonary
infection unrelated to RT, and (3) treatment break of more than 7
days during RT. A total of 96 consecutive patients with thoracic
middle segment ESCC were identified and divided into two
cohorts at a 7:3 proportion using computer-generated random
numbers. Sixty-seven patients were allocated to the primary
cohort, and 29 patients were allocated to the verification cohort.
Our institutional research ethics board approved this retrospective
study (SDTHEC201703014). It waived the need to obtain
informed consent from the patients due to the retrospective
nature of the investigation (retrospective single-institution
cohort study).
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Clinical Data and RT Parameters
The clinical data were all acquired from the institute’s medical
records. Specifically, clinicopathological parameters included
age, sex, KPS, smoking status, diabetes history, chronic
obstructive lung disease (COPD), pathological diagnosis, tumor
location, TNM stage, radiation dose, and concurrent
chemoradiotherapy lack thereof. In addition, the lung
dosimetric parameters involved in this study included V5–V40
(relative volume of total lung treated with ≥5–40 Gy) and MLD.
In short, the parameters mentioned above were used to establish
a comprehensive nomogram after univariate analysis or least
absolute shrinkage selection operator (LASSO) feature selection.

The Eclipse Treatment Planning System (Varian Medical
Systems, Palo Alto, CA, Version 13.5.35) was adopted for RT
planning design. IMRT adopts a fixed-field, static intensity
modulation technique, and 5–7 fields of coplanar irradiation
are uniformly divided according to the specific situation in each
case. The required target parameters are then set, and the dose
distribution is obtained by inverse calculation of the treatment
planning system. The dose distribution is then graded
(stratified), and each field is decomposed into a series of
subfields. IMRT does not include sIMRT or volumetric
intensity-modulated arc therapy (VMAT). The target area
includes tumor volume (GTV), including CT imaging of visible
esophageal tumors and positive lymph nodes. The clinical target
volume (CTV) refers to the upper and lower expansion of the
esophageal tumor by 3 cm and 6 mm around the tumor and
related lymphatic drainage area. The planned target volume
(PTV) is formed by CTV extending 8 mm outward. IMRT was
administered by a Varian Linac Accelerator with a 6-MVX ray
and 95% PTV, and radiation doses of 50–66 Gy (median dose of
60 Gy) and 1.8–2.0 Gy/fraction 5 times/week were prescribed.

Normal tissue constraints were prioritized in the following
order for treatment planning purposes: maximum spinal cord
dose of 45 Gy, relative volume of total lung treated with ≥5 Gy
(V5) ≤60%, relative volume of total lung treated with ≥20 Gy
(V20) ≤28%, MLD ≤20 Gy, relative volume of the heart treated
with ≥30 Gy (V30) ≤40%, and relative volume of the heart
treated with ≥40 Gy (V40) ≤30%.

Follow-up and Evaluation of RP
Follow-up items included chest CT, physical examination, and
clinical symptoms. Patients were evaluated weekly during RT,
followed up at 1 month after completion of the initial treatment,
and then followed up every 2–3 months until at least 6 months
after the end of RT. The grading of RP was confirmed by two
senior oncologists and one radiologist. The National Cancer
Institute Common Terminology Criteria for Adverse Events 4.03
(CTCAE 4.03) was used to evaluate the degree of RP. In the
present study, grade ≥2 was used as the cutoff for diagnosing RP.

CBCT Scanning Method and Image
Acquisition
Using the on-board imager (OBI) system mounted on the Varian
Trilogymedical linear accelerator, the hardware portion included a
diagnostic (kV) level X-ray source (KVS) and an amorphous silicon
flat-panel kV detector (KVD). The CBCT image was obtained by
Frontiers in Oncology | www.frontiersin.org 3
rotating the frame at an angle. This is a slow CBCT acquisition
setting. The acquisition time is 67 s, and the patient keeps breathing
evenly during this process. Standard body scan conditions were
voltage (125 kVp), current (80 mA), exposure time (13 ms),
exposure (680 mAs), rotation angle (178°–182°), pixel matrix size
(384×384),field of view (FOV, 45×18 cm), slice thickness (2.5mm),
and fan-beam type (half-fan). Among fan-beam types, the half-fan
mode was used for the image acquisition of lung tissue structures
larger than 24 cm. In this study, lung CBCT image acquisition was
carried out in three different periods, and then the images were
imported into 3D Slicer (version 4.10.2; http://www.slicer.org) in a
DICOM format to extract and analyze the radiomics features. It
should be noted that these three different periods were artificially
divided according to the experimental design and corresponded to
the early stages: the third, fourth, and fifth weeks of RT (PTV
prescription dose range of EC: 18–22Gy, 27–32Gy, and 36–44Gy).

Image Segmentation and Feature
Extraction
Images from both lungs were segmented by a semiautomatic
segmentation method (16, 17) based on a threshold-based
algorithm. The specific steps are as follows: First, the background
was removed to obtain the internal region of the chest. Second, the
appropriate threshold was found to segment the lung and the
tissues outside the lung contour to the greatest extent. Finally,
the manual segmentation method (18) was used to erase the extra
parts outside the large trachea and lung parenchyma to obtain both
lungs as the ROI. Image segmentation was performed by an
experienced radiologist and then verified by a senior radiologist.
All features were extracted by using the radiomics plug-in in
3D Slicer. A total of 851 radiomics features were extracted,
including 13 morphological features, 18 histogram features,
74 original texture features, and 746 high-order features (wavelet
transform features).

Radiomics Feature Selection and
Radiomics Signature Construction
First, the extracted radiomics features were preprocessed. Based on
the Spearman rank correlation test, the features with correlations
greater than 0.9 and multicollinearity were deleted, and
independent features were preliminarily screened. Meanwhile,
based on the Mann–Whitney U test, the characteristics with
significant differences between the RP (≥2 grade) and non-RP
(<2 grade) groups were screened out. Finally, the LASSO method
(19) was used to select the final features, and the RP prediction
model of rad-score was constructed based on logistic regression
analysis. The LASSO method minimizes the sum of squared
residuals by using the case in which the sum of the absolute
values of the coefficients is less than the tuning parameter (l).
To prevent overfitting of the model, (20–22) during model
building, features are selected by constantly adjusting l. With
the increasing penalty, more regression coefficients are reduced
to zero, (23, 24) and then the remaining nonzero coefficient
is selected. The nonzero coefficient of the selected features is
the rad-score. Each patient’s rad-score is calculated as a linear
combination of selected features that have their own
coefficient weighting.
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In this study, 50 iterations of 10-fold nested cross-validation
were utilized, similarly to Xu et al. (25). Random sampling
was conducted in an attempt to balance the class distributions
within the cross-validation partitions. The cross-validation
loop provides a profile of model performance. It serves to
estimate how well the LASSO applied to a given set of candidate
predictors may generalize to other data sets. Model performance
was assessed by computing the area under the curve (AUC) for
each constructed model on a test partition. The inner cross-
validation loop was applied to determine the optimal value for l
such that the resulting model was guarded against overfitting. The
value of l for each cross-validation partition was selected by
determining the value that produced the most regularized model
such that the AUCwas within one standard error of the maximum
(26). The use of 50 resampled iterations with 10-fold nested cross-
validation constructs 500 models used to generate a distribution of
AUC values to estimate how well model construction with LASSO
generalizes to other data sets.
Frontiers in Oncology | www.frontiersin.org 4
Construction and Validation of the
Nomogram
First, the prediction efficiency of the three different periods was
compared, and then the best period was selected. Second, 96
patients were divided into the RP (39 cases) and non-RP (57
cases) groups, and 16 clinical features and dosimetric
parameters were collected. The best clinical features and
dosimetric parameters were determined by LASSO feature
selection. Final ly , a comprehensive nomogram was
established. The receiver operating characteristic (ROC) curve
was used to evaluate the prediction capacity of the model. The
calibration curve was used to determine whether the predicted
and observed probabilities for RP were in concordance. The
decision curve was performed to evaluate the clinical benefit
ratio of the nomogram.

This research process can be divided into four parts: image
acquisition, ROI segmentation, feature extraction, and radiomics
model construction as shown in Figure 1.
FIGURE 1 | Flow chart of radiomics.
December 2020 | Volume 10 | Article 596013
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Statistical Analysis
All statistical analyseswere basedonSPSS20.0 (IBM,Armonk,NY,
USA) or R software (R Foundation for Statistical Computing,
Vienna, Austria, https://www.R-project.org/). The c2 test or Fisher
exact probability test was used to classify data between the two
groups. Two independent-sample t tests were used for counting
data (continuous data). The Mann–Whitney U test was used to
compare the differences in clinical features between the primary
and validation cohorts. The model was evaluated with respect to
sensitivity, specificity, ROC curve, and 95% confidence interval
(CI). P values ≤ 0.05 were considered statistically significant.
RESULTS

Analysis of Clinical Features and
Dosimetric Parameters Associated With
RP
The 96 patients were divided into RP (39 cases) and non-RP (57
cases) groups, and 9 clinical features and 7 dosimetric parameters
that might be related to the occurrence of RP were included.
Univariate analysis showed that tumor stage was correlated with
≥2 grade RP (c2 = 2.650, P = 0.008), and other factors, including
age, sex, concurrent chemoradiotherapy or lack thereof, COPD
status, smoking status, and RT dose, showed no significant
differences between the two groups (all Ps > 0.05). V5, V10,
V15, V20, V30, and MLD of both lungs were associated with the
occurrence of grade ≥2 RP (all Ps < 0.05). The characteristics of
the enrolled population are listed in Tables 1 and 2.

There were no significant differences in age, sex, tumor stage,
V5, and MLD between the primary group and the validation
group, which indicates that the groupings were reasonable (all Ps
> 0.05) as shown in Table 3. Seven factors (tumor stage, V5, V10,
V15, V20, V30, and MLD) remained after univariate analysis.
The LASSO feature selection method was used to screen these
seven factors, and three potential factors (V5, MLD, and tumor
stage) remained as shown in Figures 2A, B. The AUC values of
prediction efficiency for V5, MLD, and tumor stage were 0.698,
0.685, and 0.662, respectively. To observe the overall predictive
performance of V5, MLD, and tumor stage, we established a full
clinical–dosimetric feature combined model. The AUC value of
the combined model was 0.764 as shown in Figure 2C.

Radiomics Feature Extraction/Selection at
Different Periods and Radiomics Signature
Building
In the first period (PTV dose: 18–22 Gy), a total of 851 radiomics
featureswere extracted from thepatients. First, correlations greater
than 0.9 features were deleted, resulting in a total of 220 features
remaining. Second, linear features were removed, and 96 features
remained. Then, 21 features remained after using the rank-sum
test. Finally, the remaining two features after LASSOselectionwere
used to build the radiomics model as shown in Figures 3A, B. The
two features are originalfirst-order skewness andoriginalGLSZM-
small area emphasis. The model was built as follows: Rad-score =
-0.924 e+00×Skewness - 7.047 e+00×Small Area Emphasis +
Frontiers in Oncology | www.frontiersin.org 5
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TABLE 1 | Univariate analysis of baseline clinical features of patients and RP.

Factor N RP c2 value P value

<2 grade ≥2 grade

Sex 96 57 39 2.767 0.096
Male 81 51 30
Female 15 6 9

Age (years) 96 1.619 0.203
<60 21 15 6
≥60 75 42 33

Stage 2.650 0.008
II 19 15 4
III 48 30 18
IV 29 12 17

Smoking history 96 0.198 0.656
No 54 31 23
Yes 42 26 16

COPD 96 1.436 0.231
No 81 46 35
Yes 15 11 4

Diabetes 96 0.318 0.573
No 88 53 35
Yes 8 4 4

Hypertension 96 0.606 0.436
No 83 48 35
Yes 13 9 4

Concurrent
Chemotherapy

96

No 71 41 30 0.300 0.584
Yes 25 16 9

Delivered
Dose (Gy)

96 1.867 0.172

<60 45 30 15
≥60 51 27 24
December 2020 | Volum
e 10 | Article
COPD, chronic obstructive lung disease.
TABLE 2 | Single factor analysis of DVH and RP.

Lung DVH RP P value c2 value

<2 grade ≥2 grade

V5 48.95 ± 10.56 59.39 ± 10.00 0.00 -4.91
V10 33.64 ± 7.70 40.92 ± 7.95 0.00 -4.46
V15 25.34 ± 6.52 30.77 ± 6.96 0.00 -3.85
V20 18.81 ± 5.47 22.47 ± 4.82 0.00 -3.47
V30 9.61 ± 4.40 12.16 ± 5.00 0.01 -2.58
V40 3.80 ± 2.49 4.58 ± 3.24 0.21 -1.25
MLD (cGy) 1016.47 ± 218.82 1260.87 ± 267.38 0.00 -4.72
MLD, mean lung dose; V5, V10, V15, V20, V30, V40 = relative volume of total lung treated
with ≥5, 10, 15, 20, 30, and 40 Gy.
ABLE 3 | Comparison of sex, age, tumor stage, V5, and MLD between the
rimary and the verification cohort.

actor Primary cohort Verification cohort c2 value P value

ge (years) 65.33 ± 9.37 68.62 ± 8.89 -1.64 0.11
ex (N) 67 29 0.11 0.75
Male 56 25
Female 11 4
tage 3.54 0.17
II 13 6
III 30 18
IV 24 5
5 52.35 ± 11.27 55.14 ± 12.01 -1.07 0.29
LD (Gy) 11.06 ± 2.61 11.38 ± 2.85 -0.52 0.61
596013
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4.5329. Rad-scores for each patient in the primary cohort and
validation cohort are shown in Figures 4A, B.

In the second period (PTV dose: 27–32 Gy), a total of 851
radiomics features were extracted from the patients. First,
correlations greater than 0.9 features were deleted, resulting
in a total of 222 features remaining. Second, linear features were
removed, and 96 features remained. Then, 10 features remained
after using the rank-sum test. Finally, the remaining five
features (voxel volume, smallest axis length, small
dependence low gray-level emphasis, large area low gray-level
emphasis, and busyness) after LASSO selection were used to
build the radiomics model. The model was built as follows:
Rad-score = -1.996 e-07×voxel volume - 4.036 e-03×smallest
axis length + 5.376 e+01×small dependence low gray-level
emphasis + 1.718 e-07×large area low gray-level emphasis -
2.473 e-04×busyness + 1.041 e+00.

In the third period (PTV dose: 36–44 Gy), a total of 851
radiomics features were extracted from the patients. First,
correlations greater than 0.9 features were deleted, resulting in
a total of 220 features remaining. Second, linear features were
removed, and 96 features remained. Then, 43 features remained
Frontiers in Oncology | www.frontiersin.org 6
after using the rank-sum test. Finally, the remaining six features
(gray-level nonuniformity, small dependence low gray-level
emphasis, cluster shape, uniformity, entropy, and size zone
nonuniformity) after LASSO selection were used to build the
radiomics model. The model was built as follows: Rad-score =
+4.680 e-07×gray-level nonuniformity + 1.087 e+01×small
dependence low gray-level emphasis - 7.913 e-04×cluster shape
+ 1.401 e+00×uniformity + 1.406 e+00×entropy - 2.207 e-05×size
zone nonuniformity - 4.776 e+00.

Validation of Radiomics Signature at
Different Periods
In the first period, the predictive efficacy of the model was as
follows: In the primary cohort, the AUC was 0.700 (95% CI
0.568–0.832), the sensitivity was 61.5%, and the specificity was
75.0%. In the validation cohort, the AUC was 0.765 (95% CI
0.588–0.941), the sensitivity was 84.6%, and the specificity was
64.7% as shown in Table 4 and Figures 5A, B.

In the second period, the predictive efficacy of the model was
as follows: In the primary cohort, the AUC was 0.663 (95% CI
0.530–0.797), the sensitivity was 90.6%, and the specificity was
A B C

FIGURE 2 | LASSO characteristic selection of clinical features and dosimetric parameters (A, B). ROC curve of V5, MLD, tumor stage, and combined model (C).
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FIGURE 3 | Feature screening of radiomics in the first period. By adjusting the different penalty parameter (l) to obtain a high-performance model, the radiomics
characteristics with the highest predictive performance were obtained. Radiomics feature convergence diagram (A). Each curve represents the trajectory of the
coefficient of each independent variable (B).
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A B

FIGURE 4 | Rad-score for each patient in the primary and validation cohorts. Green bars show scores for patients without RP, and orange bars show scores for
those with RP (A, B).
TABLE 4 | ROC curve parameters of the radiomics model and nomogram.

Classification Primary cohort Validation cohort

AUC 95% CI Sensitivity Specificity AUC 95% CI Sensitivity Specificity

First period 0.700 0.568-0.832 61.5% 75.0% 0.765 0.588-0.941 84.6% 64.7%
Second period 0.663 0.530-0.797 90.6% 42.9% 0.604 0.356-0.851 85.7% 50.0%
Third period 0.699 0.573-0.826 66.7% 70.3% 0.756 0.561-0.950 66.7% 80.0%
Nomogram 0.836 0.700-0.918 96.0% 54.8% 0.905 0.799-1.000 92.9% 73.3%
Frontiers in Oncology |
 www.frontiersin.org 7
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FIGURE 5 | ROC curve of radiomics features in the first period of RT (A, B).
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42.9%. In the validation cohort, the AUC was 0.604 (95% CI
0 .356–0 .851) , the sens i t i v i ty was 85 .7%, and the
specificity 50.0%.

In the third period, the predictive efficacy of the model was as
follows: In the primary cohort, the AUC was 0.699 (95%
CI 0.573–0.826), the sensitivity was 66.7%, and the specificity
was 70.3%. In the validation cohort, the AUC was 0.756 (95% CI
0.561–0.950), the sensitivity was 66.7%, and the specificity was
80.0% as shown in Table 4.

By comparing the prediction efficiency of the AUC in three
periods, it is obvious that the prediction efficiency in the first
period is better than those in the second and third periods in
both the primary and validation cohorts. To reflect the
importance of the early prediction of RP in clinical practice,
the first-period rad-score and three essential features (V5, MLD,
and tumor stage) were used to establish a comprehensive
nomogram model.

The Incremental Value of the Radiomics
Signature When Added to the
Comprehensive Nomogram
The AUC values of dosimetric parameters (V5, MLD) and
clinical features (tumor stage) were 0.698, 0.685, and 0.662,
respectively. The AUC values of the full clinical–dosimetric
feature combined model was 0.764. In addition, the AUC
values of the radiomics signature at three different periods
were 0.700, 0.663, and 0.699, respectively (primary cohort). It
can be seen that the single clinical features, dosimetric
parameters, or full clinical–dosimetric combined model are not
ideal in predicting the risk of RP. To this end, we created a
comprehensive nomogram that integrates dosimetric parameters
and clinical features with the radiomics signature from the first
period. The results show that, in the primary cohort, the AUC of
our nomogram was 0.836 (95% CI: 0.700–0.918), and in the
validation cohort, the AUC was 0.905 (95% CI: 0.799–1.000) as
shown in Table 4 and Figures 6B, C. There is no doubt that the
comprehensive nomogram, incorporating radiomics features,
significantly improves the ability of conventional dosimetric
parameters and clinical features to predict the risk of RP. The
graphical form of the nomogram is shown in Figure 6A. More
importantly, the calibration curve is produced as shown in
Figure 6D. The diagonal dotted line represents an ideal
evaluation, and the other two lines next to it represent the
performance of the nomogram. A closer fit to the diagonal
dotted line indicates a better evaluation. In summary, this
calibration curve shows favorable consistency between the
predicted RP and the actual observation.

How to Make Clinical Decisions
The clinical decision curve analysis of the nomogram is shown in
Figure 6E, which shows the patient’s benefits when the physician
makes the judgment. It shows that, if the probability of the
domain value is 10%, the benefit of using the nomogram to
predict the efficacy of RP is higher than that of radiomics features
or other parameters alone. In short, this decision curve exhibits
satisfactory positive net benefits of the nomogram at the
threshold probabilities.
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DISCUSSION

A single index based on lung dosimetric parameters is not the
“gold standard” to judge the occurrence of PR risk; however,
radiomics can extract image data to characterize the standard
tissue structure, including typical lung structures. They may
produce clinically relevant improvements in predicting
treatment-related toxicities (13). This makes up for the
deficiency of dose-volume parameter prediction to a great
extent. Some previous studies, (12, 13) respectively, report the
relationship between the changes in some second- or higher-
order eigenvalues of lung cancer after and before RT and the
occurrence of RP. Unfortunately, due to the limitations of
detection techniques or other factors, it is not possible to
establish predictive models for clinical practice. In this study,
we used an automated computer extraction algorithm and digital
quantitative analysis technology to obtain high-quality
information to comprehensively evaluate various characteristics
of tumor and normal tissue responses (14, 27). More
importantly, we constructed a comprehensive nomogram
model based on CBCT radiomics features in combination with
clinical features and dosimetric parameters to accurately predict
RP in EC patients treated with RT. To the best of our knowledge,
this is the first study of the early prediction of RP by using IGRT
to obtain CBCT imaging information in different periods of RT.
Importantly, this comprehensive nomogrammodel is superior to
single clinical features and lung dosimetric parameters in
RP prediction.

We selected CBCT images from three different periods and
extracted the radiomics features. The primary purpose was to
find the first radiomics features that can independently predict
RP; however, after selecting the radiomics features in different
periods, it is found that each period has its own independent set
of feature parameters related to RP. We believe that, in addition
to the influence of radiation dose factors, whether these
characteristics vary with changes in the RT process is still
uncertain. It is gratifying that we found the best prediction of
RP to be in the first period of radiomics characteristics. Two
important features can be found in the early stage of low-dose RT
of lung tissue: Although this may differ from our initial
expectation of the experimental results, the results are
fascinating. This result is similar to the findings of Cunliffe
et al. (12) and Jenkins et al (28). They found that AUC values
in low- and medium-dose areas of the lung were different
between RP and non-RP patients even though these AUC
values appeared in areas with lower visible changes. These first
radiomics features may be able to be used to explain or screen out
those susceptible to RP due to intrinsic genetic mutations.

In regard to the susceptible population of RP, we must devote
attention to the sensitivity of lung tissue to RT. At present, the
radiosensitivity of lung tissue has been reported (29, 30), and it is
considered to be a potential influencing factor for RP occurrence.
This difference in the sensitivity of lung tissue to radiation
constitutes our different understanding of the probability of
RP. In two groups of patients with different radiosensitivity of
lung tissue, we cannot judge the probability of RP by standard
clinical features and lung dosimetric parameters. However,
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Decision curve
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D E
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FIGURE 6 | (A) The comprehensive nomogram incorporates V5, MLD, tumor stage, and rad-score (the first period) to predict the risk of RP in EC patients. V5:
relative volume of total lung treated with ≥5 Gy; MLD: mean lung dose. (B, C) ROC curves of the comprehensive nomogram in the primary and validation cohorts.
(D) Calibration curves of the comprehensive nomogram with the addition of V5, MLD, tumor stage, and radiomics features. The diagonal dotted line represents an
ideal evaluation, and the other two lines next to it represent the performance of the nomogram. A closer fit to the diagonal dotted line indicates a better evaluation.
(E) Decision curves of the radiomics features model and the combination model (comprehensive nomogram) predicting RP. The y-axis represents the net benefit.
The red curve represents the comprehensive nomogram, and the green line represents the radiomics features model. The horizontal black line indicates that the
assumption is valid. The oblique gray line indicates that the assumption is invalid.
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radiomics can analyze the data by extracting features from CT
images of the lung, thus providing a powerful method for the
noninvasive description of lung tissue radiosensitivity. This may
be why the radiomics features are superior to the clinical features
and dosimetric parameters in current studies. In this study, this
advantage in AUC value, sensitivity, and specificity performance
is not particularly good, but through our research analysis,
radiomics features of RP risk prediction cannot be ignored.

The successful establishment of the prediction model is based
on the standardization of data collection and the rationalization
of data processing. First, we should consider that the feature
extraction data are affected by CT parameters (31) because the
CT features may be different under different image-acquisition
conditions. In this study, based on the CBCT of the Varian
accelerators in our center, these devices have the same tube
voltage, tube current, exposure time, exposure amount, and pixel
matrix size, which can help control for the differences between
the scanners and acquisition parameters. Second, to develop the
radiomics signature, a total of 851 candidate features were
reduced to a set of only a few potential descriptors by using
the LASSO logistic regression model to realize feature selection
by constantly adjusting the regularization parameter l to make
the weight coefficient of the feature approach zero. The LASSO
(20) logistic regression model is suitable for analyzing large sets
of radiomics features with a relatively small sample size, and it is
designed to avoid overfitting high-dimensional data (21, 32). At
the same time, the LASSO logistic regression model allows the
radiomics signature to be constructed by combining the selected
features, so it allows the model to more easily identify the most
closely related features in patients with RP. Finally, the nested
cross-validation method (25) was used for internal validation to
improve the accuracy of the model.

It should be noted that the difference in the irradiation mode
(3-D conformal radiation therapy and IMRT) affects the
potential dose distribution of the lung, which may affect the
selection of clinical features and dosimetric parameters as risk
characteristics of RP. This can be quickly confirmed by
comparing Tucker et al. (33) and Shane et al. (13) where, in
the former, 75% received 3-D conformal radiation therapy, and
the latter 83% received IMRT. Therefore, it seems complicated to
establish a general model with good discriminant performance
under different technical conditions.

The clinical factors (age, tumor stage, KPS score, chronic
lung disease, diabetes, chemotherapy lack thereof) and lung
dosimetric parameters (V5, V10, V20, MLD) related to RP are
reported in previous studies. To provide better help for the
oncologist, we designed a clinical nomogram to combine the
above available RP risk factors with radiomics features.
Therefore, we aim to establish a combined model, maximizing
clinical utility and accuracy of prediction ability, and so the
initial experimental design was not expected to rely solely on the
radiomics model as the final prediction model. Of course,
judging from the AUC value, sensitivity, and specificity of the
radiomics model in each period of RT, these characteristics
alone are not perfect in predicting RP. Dose-volume histogram
(DVH) metrics have been extensively observed and reported to
be correlated with RP despite the current data and research
Frontiers in Oncology | www.frontiersin.org 10
reports not being sufficient to provide specific and safe standard
doses (34). Chargari et al. (35) find that V5 is a risk factor for
acute or chronic lung toxicity. Cho et al. (6) find that MLD is the
most related factor that predicts RP rather than V5, V10, or V20.
Some clinical features have emerged as important risk factors
contributing to RP progression. Some studies show that
smoking is related to the severity of RP (36, 37). Takeda et al.
(38) and Kimura et al. (39) report that COPD is a significant risk
factor for RP in patients with EC after RT. In this study, we find
that smoking status, COPD, and concurrent chemoradiotherapy
are not correlated with the incidence of RP, and so these factors
are not included in our combined model, but this does not mean
that they are not important. After LASSO logistic regression
analysis, several significant variables, including V5, MLD, and
tumor stage, were integrated into the nomogram to predict PR.
The results were as follows: clinical-dose characteristic model
(AUC values: V5 = 0.698, MLD = 0.685, tumor stage = 0.662),
radiomics model (primary cohort AUC 0.700, validation cohort
AUC 0.765), and nomogram (primary cohort AUC 0.836,
validation cohort AUC 0.905). The nomogram demonstrates a
better ability to predict RP than the other models.

How to use this information in the treatment plan or
alternative program to help clinicians is our greatest concern.
Fortunately, the goal of radiomics is to develop a decision-
making tool that meets the needs of clinicians. This is because
such a tool could combine radiomics features with other patient
characteristics to improve the capability of the decision support
model (15, 40). We show that radiomics features complement
clinical features and lung dosimetric parameters, helping to
provide better predictive ability for RP. The clinical decision
curve of this nomogram shows that the effectiveness of the
nomogram in predicting RP is higher than that of using
radiomic characteristics or other parameters alone. In short,
under the threshold probability, the decision curve exhibits a
satisfactory positive net benefit of the nomogram.

Our results demonstrate the potential value of radiomics
techniques in the risk prediction of RP patients. If more
clinical variables are included in the nomogram, there will be
more room for future development of this model, and the
resulting prediction effect will be better. A recent study (41) by
another of our teams found that subjective global assessment
score (SGA), pulmonary fibrosis score (PFS), planning target
volume/total lung volume (PTV/LV), MLD, and ratio of change
regarding systemic immune inflammation index at 4 weeks (4w
SII) were potential valuable markers in predicting severe acute
radiation pneumonitis (SARP). Subsequently, the team
developed a nomogram and corresponding risk classification
system with superior prediction ability for SARP. In the next
step, we will consider combining the research results of this team
with radiomics to establish a new RP prediction model for better
clinical application.

Although our study has many strengths, several limitations
should be addressed here. First, the sample size is small, which
can lead to the inability to apply nonlinear classifiers, such as
neural networks (42, 43). Because a nonlinear classifier uses a
more extensive data set, it is beneficial to improve the accuracy of
the RP model. Second, our analysis does not account for two-way
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or higher-order interactions between features. If interactions
between features had been identified, the interaction terms that
were most strongly associated with the outcome interactions
would have been selected when we constructed the radiomics
signature, and this could have improved performance. However,
uncovering the interactions of multiple attributes is a challenging
problem. Third, we used a validation cohort that was drawn from
the same institution as the primary cohort, which prevented us
from investigating the generalizability of the results to other
institutions and settings. In addition, there is a lack of sufficient
external data validation. Fourth, selection bias occurred when
strict criteria were used, and this may affect the model training.
For instance, all patients are middle thoracic EC patients, which
limits the application of this method to patients with cervical,
upper, and lower thoracic segment EC radiotherapy. Also, all
patients experienced uniform CBCT imaging scanners and
parameters, which does not guarantee the reproducibility and
stability of radiomics features under other conditions. In the
future, we should conduct a prospective, multicenter, large-
cohort study to further develop and validate nomograms in
terms of predicting RP.

As a future study, we will add different types of patients,
including those with different EC locations (cervical, upper
thoracic, lower thoracic segments) and different RT techniques
(3DCRT, TOMO, VMAT). We will also include more laboratory
indicators that may reflect RP, such as inflammatory indexes and
immune inflammatory indexes. In terms of basic research, we
should also improve the model of radiomics, especially the
combination of radiomics and genomics. The former focuses
on medical imaging of the normal tissues or tumors and
performs diagnosis and prognosis based on quantitative
imaging features, and the latter discovers and notes the gene
sequences to study the function and structure of genomes of the
diseases. Besides this, if we can combine available radiation
metabolomics (44) with functional CT (45, 46) radiomics
features, it may help us understand the differences in radiation
sensitivity and tissue cell metabolism in order to establish a more
robust prediction model. Therefore, it can be predicted that the
combination of multiple omics will be the best plan for the future
Frontiers in Oncology | www.frontiersin.org 11
diagnosis and treatment of diseases and the prediction
of complications.
CONCLUSIONS

CT radiomics has powerful data-processing and analysis abilities.
In this context, we explored a method to predict RP based on the
lung CBCT radiomics features for EC patients. More
importantly, we used this method to successfully build and
validate a novel nomogram with good predictive value, which
can help clinicians identify high-risk RP patients early and guide
personalized treatment and clinical decisions.
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