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Abstract: Due to the possible emergence of resistance and safety concerns on certain treatments, development of new
drugs against parasites is essential for the effective control and subsequent eradication of parasitic infections. Several
drug targets have been identified which are either genes or proteins essential for the parasite survival and distinct from
the hosts. These include the phosphagen kinases (PKs) which are enzymes that play a key role in maintenance of home-
ostasis in cells exhibiting high or variable rates of energy turnover by catalizing the reversible transfer of a phosphate bet-
ween ATP and naturally occurring guanidine compounds. PKs have been identified in a number of important human and
animal parasites and were also shown to be significant in survival and adaptation to stress conditions. The potential of
parasite PKs as novel chemotherapeutic targets remains to be explored.
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INTRODUCTION

Phosphagen kinases are phosphotransferases that play a key
role in cellular energy metabolism. These highly conserved en-
zymes catalyze the reversible transfer of a phosphate between
ATP and guanidine compounds in cells that display high and
variable rates of energy turnover [1,2]. Eight PKs have been
identified at present including the well-studied creatine kinase
(CK) which is the sole PK in vertebrates. In addition to CK, the
following PKs are found across a wide variety of invertebrate
species: arginine kinase (AK), glycocyamine kinase (GK), hypo-
taurocyamine kinase (HTK), lombricine kinase (LK), opheline
kinase (OK), taurocyamine kinase (TK), and thalessemine kinase
(ThK) [3,4,5].

Phosphagen systems mainly function as temporal energy
buffers during periods when demand for energy exceeds ATP
production since phosphagens can accumulate in much higher
intracellular concentrations and diffuse faster compared with
ATP [6]. PKs also function in intracellular energy transport or
as spatial energy buffers that shuttle energy between ATP-pro-
ducing and -consuming sites as exhibited by the interplay be-
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tween mitochondrial and cytosolic CK isoforms of the phos-
phocreatine shuttle [7]. Cellular phosphagens also trap consid-
erable amounts of inorganic phosphate (Pi) which is liberated
upon net phosphagen hydrolysis. This results in enhancement
of intracellular proton buffering capacity, preventing acidifica-
tion of the cytosol by protons liberated by cellular ATPase activi-
ty. Moreover, the release of Pi exerts an indirect regulatory effect
on glycogenolysis and glycolysis since Pi is required for the acti-
vation of these metabolic pathways [2,4]. Phosphagen kinases
identified in parasites are hypothesized to act as temporal ener-
gy buffers during parasite muscle contraction or they may have
regulatory effects in the glycolytic pathways when parasites are
in an oxygen poor environment [8].

PROTOZOAN PHOSPHAGEN KINASES

Pereira et al. [9] have cloned and characterized a 40-kDa AK
from the protozoa Trypanosoma cruzi, the causative agent of Cha-
gas disease. Likewise, from Trypanosoma brucei which causes
human sleeping sickness and Nagana in livestock, AK activity
was detected in fractions from procyclic forms. These AKs have
comparable specific activities and share 82% amino acid iden-
tity with each other [10]. Protozoan AKs appear to be closely
related to the AKs from arthropods [11] indicating the possibil-
ity that Trypanosoma AKs were acquired by horizontal gene trans-
fer [9].

T. cruzi AK has a putative actin-like actin binding domain
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suggesting a relationship with cytoskeletal structures related to
cell movement [9]. This AK could function as a modulator of
energetic reserves under stress starvation condition since it was
observed that AK activity increased continuously during the
exponential phase of growth of the parasite [12]. AK has also
been proposed to participate in the oxidative stress response
systems in T. cruzi [13] and overexpression of this enzyme in-
creases the survival capability of T. cruzi under pH [14] and nutri-
tional stress conditions [10]. Correspondingly, in Saccharomyces
cerevisiae and Escherichia coli which were engineered to express
functional arginine kinase systems, the AK facilitated improve-
ment in the recovery from stress and in stabilizing intracellular
ATP levels during the starvation phase [15,16].

NEMATODE PHOSPHAGEN KINASES

The first measurement of AK activity in a nematode was done
by Livingstone et al. [17] for the mammalian endoparasite Asca-
ris lumbricoides. Thompson et al. [18] also observed, by NMR
spectroscopy, the in vivo exchange of phosphoarginine and ade-
nosine triphosphate in the rhabditoid nematode Steinernma
carpocapsae. Platzer et al. [19] further studied S. carpocapsae AK
and their results indicated that this enzyme is a significant com-
ponent of the energy metabolism both in 3rd stage juvenile (J3)
and adult worms, probably playing a key role in aerobic/anaer-
obic metabolic transitions. AK was also cloned from the zoonot-
ic nematodes Ascaris suum and Toxocara canis which can both
cause visceral larva migrans (VLM) in humans. Both of these
AKs have signal peptide on the N-terminal domain presum-
ably targeting this protein to the cytosol or endosplasmic retic-
ulum [20,21]. A similar signal peptide was identified in 1 of
the 4 AKs from the free-living nematode Caenorhabditis elegans
and it was proposed that this particular AK (AK4) is targeted to
the mitochondria [11]. Besides in C. elegans, the presence of
multiple AKs was also reported for the soybean cyst nematode
(SCN) Heterodera glycines. Matthews et al. [22] have recently
cloned 2 AKs from SCN which share 71% amino acid identity
and are both expressed constitutively throughout the nema-
tode’s life cycle.

TREMATODE PHOSPHAGEN KINASES

In trematode species, contiguous 2-domain phosphagen kin-
ases with a molecular mass of 80 kDa have been identified [23-
26]. The PK from Schistosoma mansoni, having activity for tauro-

cyamine as well as for other guanidine substrates [25], was
shown to be developmentally regulated and highly expressed
in the cercariae stage [23]. The 2-domain PKs from Paragonimus
westermani [26], Schistosoma japonicum, and Eurythrema pancre-
aticum (Tokuhiro et al., personal communication) showed spe-
cific activity only for the substrate taurocyamine. This implies
that TK is not anymore exclusive to annelid as claimed by pre-
vious studies [27]. Tt appears that the presence of 2 catalytic
domains on a single polypeptide chain of trematode PKs do
not affect the conformational movements during substrate bind-
ing since significant activity was observed for the full-length
construct of the enzyme. This is in contrast with the contiguous
dimeric AKs from the mollusks in which only the second do-
main showed activity [28,29]. In addition, trematode PKs also
showed an uncharacterized 6-amino acid deletion on the guani-
dine specificity (GS) region. This region has been proposed by
Suzuki et al. [30,31] as a potential candidate for the guanidine
substrate recognition site. These trematode PKs, though having
activity for taurocyamine, interestingly share higher amino acid
sequence identity to molluscan AKs rather than annelid TKs and
the phylogenetic tree topology showed that it could be possible
that trematode PKs have evolved from an AK gene [26)].

PARASITE PHOSPHAGEN KINASES AS
POTENTIAL CHEMOTHERAPEUTIC TARGETS

At present, drugs are usually available for the treatment of
several parasitic infections. However, there is still a need to devel-
op new chemotherapeutic agents due to the possibility of drug
resistance especially for infections treatable only by 1 or 2 drugs
as in the case of a number of food-borne trematodiasis and
water-borne parasitic infections. For instance, praziquantel is
the only drug use to treat schistosomiasis and is also the drug
of choice for clonorchiasis, opisthorchiasis, and paragonimiasis
[32]. Furthermore, there are currently available treatments that
can be toxic to humans in high doses, such as those available
for Chagas disease and cutaneous leishmaniasis [32].

The advances in molecular biology have accelerated the rate
by which drug targets can be identified. Ideal targets are gene
and proteins of parasites that are absent or quite different in
the mammalian host [33]. These drug targets must also play a
crucial role for the parasite so that interference with their func-
tions will have a damaging effect on the parasite [34]. With the
recent success of certain kinase inhibitors, identification of kin-
ase targets in parasites and screening these against inhibitors
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have become a promising area of research [35]. Because PKs
are significant in maintenance of energy homeostasis, PKs that
are absent in mammalian tissues could be potential drug target
for new chemotherapeutic agents against parasites or they can
be utilized in the development of new diagnostic tools for detec-
tion of infection.

Since AK has been identified to be important in stress adap-
tation of T. cruzi, and with the recent elucidation of its crystal
structure [36] this enzyme can be a potential target for the devel-
opment of new chemotherapeutic agents against trypanosomi-
ases [37]. Paveto et al. [38] demonstrated that the polyphenols
catechin gallate or gallocatechin gallate found in the green tea
Camellia sinensis can inhibit the activity of recombinant T. cruzi
AK. Arginine analogs, agmatine, canavanine, nitroarginine, and
homoarginine can also inhibit trypanosome AK [14]. In addi-
tion, it has been shown that the flavonoid rutin is a non-com-
petitive inhibitor of AK from the muscle of the insect pest locust
[39]. The AK from T. canis was also suggested as possible novel
drug target for VLM in humans [20] and that the recombinant
T. canis AK could be used as antigen for immunodiagnosis of
toxocariasis. Results of IgG-ELISA using recombinant T. canis AK
showed high sensitivity for detection of toxocariasis in mouse
model though the specificity of this antigen still needs further
evaluation [40].

To this point, research on PKs from parasite is still on its pre-
liminary stage. Further studies are needed to elucidate the spe-
cific physiologic roles of these enzymes in the parasites’ sur-
vival. It is also a prerequisite to fully understand the substrate
binding mechanisms and enzyme kinetics which are vital in
designing of drugs targeting these enzymes. The potential of
parasite PKs as novel and effective drug targets for the control
and possible eradication of important parasites is yet to be fully
explored.
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