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Combining “Bottom-up” and “Top-down” Approaches
to Assess the Impact of Food and Gastric pH
on Pictilisib (GDC-0941) Pharmacokinetics

Tong Lu1, Grazyna Fraczkiewicz2, Laurent Salphati3, Nageshwar Budha1, Gena Dalziel4, Gillian S. Smelick1, Kari M. Morrissey1,
John D. Davis1, Jin Y. Jin1 and Joseph A. Ware1*

Pictilisib, a weakly basic compound, is an orally administered, potent, and selective pan-inhibitor of phosphatidylinositol 3-kinases
for oncology indications. To investigate the significance of high-fat food and gastric pH on pictilisib pharmacokinetics (PK) and
enable label recommendations, a dedicated clinical study was conducted in healthy volunteers, whereby both top-down
(population PK, PopPK) and bottom-up (physiologically based PK, PBPK) approaches were applied to enhance confidence of
recommendation and facilitate the clinical development through scenario simulations. The PopPK model identified food (for
absorption rate constant (Ka)) and proton pump inhibitors (PPI, for relative bioavailability (Frel) and Ka) as significant covariates.
Food and PPI also impacted the variability of Frel. The PBPK model accounted for the supersaturation tendency of pictilisib, and
gastric emptying physiology successfully predicted the food and PPI effect on pictilisib absorption. Our research highlights the
importance of applying both quantitative approaches to address critical drug development questions.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 747–755; doi:10.1002/psp4.12228; published online 27 July 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Many anticancer drugs or candidates are susceptible

to absorption-related DDI risk when coadministered

with ARAs due to pH-dependent solubility, including pic-

tilisib, a weak base. The applications of PBPK model to

investigate the impact of food and gastric pH on drug

absorptions have been reviewed and reported.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study used both top-down (PopPK) and bottom-

up (PBPK) approaches to quantitatively and mechanis-

tically understand the food and PPI effect on pictilisib

PK. It addresses the question as to how exactly food

and PPI exert their effects and how strong the effects
are.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This is the first research report to use combined
modeling approaches to systemically investigate the food
and PPI effect on drug absorptions, incorporating a deep
understanding of the role of gastric emptying physiology.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� This study highlighted an area with considerable
potential to identify and mechanistically understand DDI
liability and sources of PK variability that can be inte-
grated in clinical trial designs.

A key objective of the clinical pharmacology plan is to build

an integrated understanding of pharmacokinetics (PK), effi-

cacy, and safety, as well as assessing the need of dose

adjustment based on intrinsic (e.g., genetics) and extrinsic

factors (e.g., drug–drug interactions (DDI)). The assess-

ment of DDI risk is especially important for oncology drugs,

where the therapeutic windows are often narrow,1 and can-

cer patients may be taking multiple concomitant prescribed

drugs for comorbidities.2,3 In addition to the metabolic-

related DDI,4 there may be other PK-related DDIs depend-

ing on the rate-determining step of the absorption, distribu-

tion, metabolism, and excretion (ADME) property of the

drugs.5–7 In particular, for orally administered drugs, tablet

disintegration, dissolution, and membrane permeability are

critical for drug exposure. For weakly basic drugs, drug dis-

solution process can be drastically impacted by

coadministration with acid-reducing agents (ARAs), such as

proton pump inhibitors (PPI), which are recognized as

some of the most commonly prescribed and utilized drugs

globally.8 We recently reported that many molecular-

targeted anticancer drugs and drug candidates are suscep-

tible to absorption-related DDI risk when coadministered

with ARAs due to the pH-dependent solubility.9,10

Recently, there is growing recognition of the value of
physiologically based PK (PBPK) modeling and simulation
in predicting human PK, especially regarding DDI risk.11–13

The PBPK approach integrates drug-specific (i.e., ADME
and physicochemical properties) and system-specific infor-
mation (e.g., human physiology, demographics, and hetero-
geneity), and is thus generally recognized as a “bottom-up”
approach. This “bottom-up” approach has been recently
used in the clinical development to evaluate how food,
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formulation, and ARAs impact drug absorption.14,15 The
population PK (PopPK) modeling based on clinical PK
observation is generally recognized as a “top-down”
approach to characterize the impact of intrinsic and extrin-
sic factors (covariates) on PK.16,17 These modeling
approaches are complementary in nature and may provide
unique or confirmatory insights from different angles. The
value of combining both approaches was demonstrated in
the assessment of how ethnic difference impacts bitopertin
clearance.18

Pictilisib (GDC-0941) is an orally administered potent,

selective pan-inhibitor of phosphatidylinositol 3-kinases

(PI3Ks) with good preclinical antitumor activity in xenograft

models and favorable PK and tolerability in phase I antican-

cer trials.19 However, as recently reported in two random-

ized phase II studies, pictilisib did not meet its primary

endpoint when combined with paclitaxel or fulvestrant for

patients with hormone receptor-positive, HER2-negative

locally recurrent or metastatic breast cancer.20,21

Based on in vitro, nonclinical and clinical healthy volun-

teer investigations, we have previously reported that pictili-

sib displays marked pH-dependent solubility and its

systemic concentrations can be significantly decreased by

PPIs such as rabeprazole.22 Using pictilisib as an example,

this study provides a real-life case in clinical drug develop-

ment, where both “top-down” and “bottom-up” approaches

are applied using all the available data (in vitro, nonclinical,

and healthy volunteer) to elucidate how food and PPI coad-

ministration will impact the PK of a weakly basic com-

pound.23 Although same label recommendations could be

made by the statistical evaluation of the healthy volunteer

data for pictilisib, the integrated approaches can enhance

confidence of recommendation and facilitate the clinical

development through scenario simulations.

MATERIALS AND METHODS
Clinical pharmacology study
Due to the steep pH-dependent solubility profile (Figure

1a), and the pH-dependent absorption in hypochlorhydric

dog,24 a phase I randomized study was conducted in

healthy volunteers to investigate the effect of food and PPI

on pictilisib PK. This was a single-center, four-period, two-

sequence, open-label, randomized, crossover study

conducted using a 40-mg dose of pictilisib (NCT00999128).
Standard high-fat food (referred to as “food” hereafter) was
administered within 30 min of pictilisib dosing. Patients

were pretreated with 20 mg rabeprazole daily for 4 days
before coadministrating with a single dose of pictilisib.
Thirty-two subjects were randomized equally to two
sequences as follows, with four periods for each sequence.
Thirty-one subjects received study treatment.

Sequence 1: fasted ! fed ! fasted/PPI ! fed/PPI
Sequence 2: fed ! fasted ! fed/PPI ! fasted/PPI

PopPK model development
PopPK analysis and covariate selection was conducted
based on 1,202 plasma samples from 31 subjects in all

periods using NONMEM v. 7.3. Natural log-transformed
data were used for modeling. Interindividual variability was
modeled as log-normal distribution. An additive error model
on the log-transformed data was applied. The same sub-
jects in different periods were assumed to have the same
elimination and distribution properties, but different absorp-

tion properties. The effect of food (fasted/fed) and PPI (yes/
no) on the fixed effect parameters (relative bioavailability,
Frel, absorption rate constant, Ka, and absorption lag time,
Tlag), as well as random effect parameters (interindividual
variability for Frel) were tested. EVID 5 4 was set between
periods of the same subject to represent complete PK

washout. Covariate effects were judged for their signifi-
cance on the basis of a likelihood ratio test at a P-value of
0.01 for forward inclusion and 0.001 for backward deletion.
The PopPK model was evaluated with goodness-of-fit diag-
nostics and Visual Predictive Checks (VPC).

PBPK model development
The PBPK models were developed for pictilisib using Gas-
troPlus v. 8.5 (Simulations Plus, Lancaster, CA)25 for the
average and representative subjects from fasted, fed, and

fasted state with PPI. The model development process
included prospective prediction using the default settings in
GastroPlus and the model refinement. The refinement was
driven by the mechanistic understanding of the stomach
emptying process and the physicochemical properties for

pictilisib. The final parameters in the refined model were
fine-tuned by the clinical data.

Figure 1 The impact of pH on the solubility and absorption of pictilisib: illustrated from the in vitro solubility assessment of pictilisib and
the mechanistic understanding of stomach emptying process. (a) In vitro solubility vs. pH profile for pictilisib. (b) Stomach emptying
physiology. (c) The impact of stomach emptying physiology on the absorption of pictilisib in fed state ((a,b), gastric filling and gastric
mixing; (c), gastric emptying).
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Physicochemical and biopharmaceutical properties. Key

physicochemical and biopharmaceutical properties of picti-
lisib are provided in Supplemental Table S1. Pictilisib is

a weakly basic compound with pKa values of 4.2 and

1.5.22 Given the high permeability and poor solubility at

physiologically relevant pH values (Figure 1a), pictilisib is

classified as a BCS class II drug.26 Pictilisib also demon-

strates a supersaturation tendency, a common characteris-

tic for weak bases given the substantially higher solubility

in fasted gastric fluid than in intestinal fluid.27–30 The

default precipitation time in GastroPlus (900 sec) was

used for prospective prediction, and it was prolonged in

the model refinement to account for the supersaturation
tendency.

Intestinal absorption and pharmacokinetics of pictilisib.

Intestinal absorption was described by the Advanced Com-

partmental Absorption and Transit (ACAT) model, which is

an enhanced version of the absorption and transit model

originally developed by Yu et al.31 The ACAT model consid-

ers the local solubility, dissolution, precipitation, and

absorption in each region of the intestinal tract. The John-

son model32 was used to describe the drug dissolution pro-

cess in individual intestinal compartments.
The default human fasted and fed physiology in Gastro-

Plus were used for the prospective model predictions.25,33

The stomach transit time (STT) and stomach pH were

adjusted in the model refinement to account for the stom-

ach emptying physiology34,35 (Figure 1b). The effect of PPI

was also refined based on the literature.36

A PBPK model with all perfusion-limited tissues

described the systemic distribution of pictilisib. Human

organ weights, volumes, and tissue perfusion rates were

generated by GastroPlus’ internal Population Estimates for

Age-Related (PEAR) Physiology Module according to the

gender, age, and body weight. A volume of distribution

(Vss) of 191 L (2.7 L/kg) for the typical subject (32 years,
71 kg male) was obtained. Hepatic clearance of 5 mL/min/

kg parameterized from in vitro measurements in human

liver microsomes was used in simulations.

PBPK model verification
To warrant the reliability of the PBPK model for pictilisib, we

used the average subject data from fed state with PPI to

verify the model. The model for fed with PPI was based on

the refined model for fed state, with modifications consider-
ing the effect of PPI. The predictions for fed with PPI were

compared directly to the clinical data. No further parameter
fine-tune was conducted.

RESULTS
Results of the clinical pharmacology study
The average PK profiles following a single dose of 40 mg
pictilisib with or without food and PPI are presented in Fig-

ure 2. The PBPK model predictions were overlaid.
The median AUCinf for pictilisib were 1,760, 2,070, 906,

and 1,180 ng/mL*h for fasted, fed, fasted with PPI, and fed

with PPI, respectively.22 The presence of PPI, regardless of
food, decreased the AUC significantly with similar Tmax.

Regardless of PPI, the presence of food slightly increased
AUC, with Tmax increased significantly. The median Tmax

were 2, 4, 2, and 6 h for fasted, fed, fasted with PPI, and
fed with PPI, respectively. The interindividual variabilities for

AUCinf were 40, 23, 83, and 46%, respectively. For all peri-
ods, the elimination half-life was unchanged.

Results of the PopPK analysis
Pictilisib PK was best described by a two-compartment

model with first-order absorption with lag time, and first-
order elimination from the central compartment. The

goodness-of-fit plots showed good agreement between
model prediction and observations (Supplemental Figure

S1). VPC plots indicated reasonable description of the cen-
tral tendency and variability in different periods (Figure 3).

The parameter estimates are shown in Table 1 and the

covariate screening process is shown in Table S3. Briefly,
PPI and food were the most influential covariates impacting

Ka, where Ka decreased by �80% with food, regardless of
PPI, and decreased by �50% with PPI, regardless of food.

PPI and food were also identified as the key covariates
impacting Frel. Although the impact of food on Frel was not

statistically significant (P 5 0.0017) during the backward
elimination, it was kept in the model given the clinical rele-

vance. The Frel decreased by 50–60% with PPI, regardless
of food, and increased by 20–40% with food, regardless of

PPI. The between-subject variability around Frel was also
impacted significantly by PPI and food, with 27, 8.9, 64,

Figure 2 Influence of high-fat meal and rabeprazole on the PK of pictilisib (observation and PBPK model prediction). (a) Average
plasma PK profile of pictilisib (72 h). (b) Average plasma PK profile of pictilisib (24 h).
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and 32% for fasted, fed, fasted with PPI and fed with PPI,
respectively (Figure 3).

Results of the PBPK analysis
Fasted state. The observed and PBPK model predicted
average PK profiles for pictilisib under fasted state are
shown in Figure 4a. The prospective model significantly
underpredicted the Cmax, Tmax, and AUC with the default
fasted physiology (0.25 h STT and pH 1.3),25,33 and
default precipitation time (Tprecip) of 900 sec.25,30 The
default Tprecip led to the overprediction of the precipitation
potential for pictilisib, which was illustrated by the sharp

dip shown in the profile of accumulative amount of dis-

solved compound shortly after dosing. This was the main

reason for underprediction in fasted state. Given the

supersaturation tendency for pictilisib, the Tprecip was

refined to 90,000 sec (fine-tuned based on average PK

profile) to prevent any precipitation during absorption. The

default STT of 0.25 h for fasted state was adjusted to

1 h, given the slower dissolution from tablet. In the

refined model, pictilisib is predicted to be completely dis-

solved and absorbed from the small intestine at 40 mg

(Table S2).

Figure 3 Visual predictive check (VPC) for the plasma PK profiles of pictilisib and the boxplots for the relative bioavailability (Frel) and
Ka for each period.
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The relatively large between-subject variability in fasted

state could be due to the differences in stomach pH, STT,

and Tprecip among individuals.37

Fasted state with PPI. The observed data indicated that

PPI decreases pictilisib exposure significantly. For fasted

state with PPI, a stomach pH of 4.5 was used for the pro-

spective prediction, resulting in a much stronger PPI effect

(Figure 4b). A closer look at different PPIs and the degree

of stomach pH elevation revealed that pH 4.5 is the high

boundary of the stomach pH for the fasted state in the pres-

ence of a PPI.38,39 Quite often, PPIs increase the fasted

stomach pH to values between 2 and 3.40 The default STT

(0.25 h) and Tprecip (900 sec) for the fasted state also con-

tributed to the underprediction. The average PK profile could

be reproduced at a stomach pH 2.9, 0.7 h STT, and 90,000

sec Tprecip. In the refined model, the predicted fraction

absorbed for the average subject is 64.5% (Table S2).
The effect of PPIs may vary significantly across individu-

als,41 leading to the increased PK variability for pictilisib

(largest among the four states).

Fed state. Food has been shown to slightly increase pictili-

sib exposure. However, the prospective model with default

fed physiology (mainly, 1 h STT, stomach pH 4.9) and

default Tprecip (900 sec) only predicted half of the observed

data (Figure 4c).
Of note, the stomach emptying process slowly transits

between fed and fasted physiologies after taking a meal.

By considering the time- and pH-dependent stomach emp-

tying physiology (Figure 1b),34,35 the prediction can be sig-

nificantly improved. The low pH window during the stomach

emptying process provided the absorption opportunity for

pictilisib. In the refined model, STT and stomach pH were

programmed as the segmental changes over time to repre-

sent the stomach emptying physiology (Appendix S1,

Table 1 PopPK estimation and covariate identification for pictilisib in healthy

volunteers

Parameter Unit Typical value BSV

Absorption rate

constant (Ka)

PPI50, Fasted 1/h 2.63 51.9%

PPI50, Fed 0.297

PPI51, Fasted 1.361

PPI51, Fed 0.154

Absorption lag time (Tlag) H 0.47 3.00%

Clearance (CL/F)* L/h 26.0 23.0%

Distribution clearance (Q/F) L/h 13.9 —

Central volume (Vc/F) L 304.9 37.7%

Peripheral volume (Vp/F) L 175.9 —

Relative bioavailability (F) PPI50, Fasted % 100 27%

PPI51, Fasted 42.9 64%

PPI50, Fed 118.4 8.9%

PPI51, Fed 61.3 32%

Residual error (proportional) % 56.1%

*The apparent clearance for fasted state without PPI.

Figure 4 PBPK model predicted plasma PK profiles of pictilisib for each period. (a) Fasted state; (b) fasted state with PPI; (c) fed
state; (d) fed state with PPI (a–c for model development; d for model verification).
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Table 2). Supersaturation tendency was also considered

(90,000 sec Tprecip). The enlarged PK profile is shown in

Figure 1c with the impact of stomach emptying physiology

highlighted.
Nearly complete dissolution and absorption (99.4%) can

be achieved in the refined model for the average subject

(Table S2), which otherwise cannot be achieved with the

default model. The individual subject profiles under the fed

state can be well predicted by adjusting the segmental

changes for STT and stomach pH.

Fed state with PPI. The PPI effect on pictilisib exposure

appeared to be slightly attenuated by food. The average

subject data for fed state with PPI were used for model ver-

ification. The parameter settings were adapted from the

refined model for fed state, with the following rationales:

PPI will elevate stomach pH to 2.9 for fasted physiology,40

and to 5 for fed physiology. The segmental changes for

STT and stomach pH are provided in Table 2 and Appen-

dix S1.
The model prediction is in very good agreement with the

average subject data for fed state with PPI (Figure 4d).

The predicted fraction absorbed was 74.2% (Table S2).

Predicting the impact of PPI at a clinically relevant

dose in breast cancer patients
The PBPK model developed at the 40 mg dose was used

to predict pictilisib PK at the clinically relevant dose

(340 mg) in breast cancer patients. As a sensitivity analy-

sis, the predictions were conducted with varying STT and

stomach pH values. Briefly, the STTs were tested at the

same settings for healthy volunteers and the settings dou-

ble the values in all four states; stomach pH was tested at

2, 2.9, and 5 in fasted state with PPI. Doubling the STT

had no impact on the fraction absorbed for fasted state

regardless of PPI; however, it slightly increased the value

for fed state from 61 to 74% without PPI, and 19 to 21%

with PPI. The fraction bioavailable for fed and fasted state

alone were predicted to be comparable (56% and 57%)

under the extended STT. For fasted state alone, the model

prediction at 340 mg revealed incomplete absorption (78%)

due to the solubility limitations. Increasing the stomach pH

from 2 to 5 decreased the fraction absorbed from 50 to

12%. The detailed results are shown in Table S4.

DISCUSSION

Given the identified PPI/DDI risk from in vitro and preclini-
cal evidence, a clinical pharmacology study was conducted
for pictilisib in healthy volunteers at an earlier point in
oncology drug development to inform the design of phase II
and pivotal studies. Food effect was also assessed.

Being the first modeling initiative, the PopPK covariate
analysis identified food and PPI as significant covariates for
Ka (food, PPI) and Frel (food). Food increased Frel by about
20% (P > 0.001). Slower Ka was estimated for food and
PPI. Ka was about 6% of the fasted state value when both
PPI and food were present. Food and PPI also altered the
variability of Frel significantly, with an increasing effect for
PPI and decreasing effect for food. The magnitude and
ranking order for the estimated variability of Frel in the four
states (low to high: fed, fasted, fed state with PPI, and
fasted state with PPI) are consistent with the observed data
and the mechanisms. Based on the statistical comparisons
of PK parameters in the four states, pictilisib may be taken
without regard to the timing of meals and the recommenda-
tion is to take it with a meal to reduce PK variability. By
analyzing the totality of the data, the popPK model provided
comprehensive support for this recommendation.

As the follow-up modeling initiative, the PBPK models
were implemented to elucidate the source of the PK inter-
actions and to perform scenario simulations. Conducting
separate PBPK and popPK analysis can be a viable alter-
native to the population PBPK approach,42 given that it is
less technical challenging and might provide similar inter-
pretations. The PBPK models were developed for average
and representative subjects (results not shown) from fasted,
fed, and fasted state with PPI. The prospective predictions
with the default fasted and fed state physiologies, default
precipitation time, and the assumed PPI effect significantly
underpredicted the average subject profiles. The models
were refined by accounting for the stomach emptying physi-
ology, supersaturation tendency, and the ideal PPI effect.
The prospective model predictions are purely “bottom-up.”
Although the clinical data were involved in the model refine-
ment, it is still considered “bottom-up,” because the refine-
ments were driven by the mechanistic understanding of the
system- and drug-specific properties.

Specifically, in fasted state the drastic precipitation in
small intestine under the default Tprecip (900 sec) was the
main reason for the underprediction of the prospective
model. The 900 sec precipitation time originated from Kos-
tewicz et al.’s in vitro experiment.30 Without properly consid-
ering the disappearance of the compound that occurred in
vivo due to gut absorption, the in vitro experiments typically
overpredicted the precipitation potential, especially for the
highly permeable compounds. The proposed Tprecip of
90,000 sec may not reflect the exact in vivo conditions, but
the sensitivity analysis indicated that the exposure differ-
ence under fasted state was only 1.1% for 15,000 sec and
90,000 sec Tprecip. The Tprecip of 90,000 sec was applied for
all the four states. For the fasted state with PPI, the profiles
for the average and representative subjects could be cap-
tured by adjusting the stomach pH to different levels (pH
2.9 for an average subject), given the variability around PPI

Table 2 The segmental changes for STT and stomach pH for pictilisib in fed

state and fed state with PPI in healthy volunteers

State

Time

(h)

STT

(h)

Stomach

pH Description

Fed 0 100 4.9 Absorption delay

0.5 3 2.8 Fed physiology (gastric emptying)

2.5 1.5 1.3 Fasted physiology

4 2 4.9 Fed physiology

6 1 1.3 Fasted physiology

Fed

with

PPI

0 100 5.0 Absorption delay

0.5 3 5.0 Fed physiology under PPI

2.5 1.5 2.9 Fasted physiology under PPI

4 2 5.0 Fed physiology under PPI

6 1 2.9 Fasted physiology under PPI
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effect across individuals.41 PPI has also been shown to

delay gastric emptying.43–45 Compared to the consistent

delaying effect for solid meals, the effect on liquids is incon-

sistent,45 which might indicate the possibility of having simi-

lar or slightly lower STT for pictilisib when PPI present.
The prediction for the fed state presented challenges

because the application of default fed physiology with con-

stant pH value (pH 4.9) and transit time could not describe

the average profile at all. The stomach emptying physiology

(Figure 1b) offers a physiological explanation for the higher

than expected pictilisib exposure in the fed state. After solid

food is ingested, stomach pH increases above 4 (Figure

1b(a)), the pyloric valve closes, and food digestion

begins.34 During this phase, liquids and small suspended

particles (<1 mm in diameter) can flow into the duodenum,

whereas the viscous and solid mass is retained in the

stomach and further mixed with gastric juice (Figure

1b(b)). The pyloric valve opens when the pH drops below

4, and the emptying process will be completed usually 4 to

6 h after a meal with transition to a fasted state. The disso-

lution of pictilisib accelerates when stomach pH drops

below 3. The delayed gastric emptying of pictilisib could be

due to the lack of a substantial dissolution at pH >4 right

after food is taken. The formation of a film of precipitated

food components around the tablets might be another

reason.46

The impact of food and ARAs on drug absorption is gen-

erally considered an area of PBPK application associated

with low confidence in prediction. To enhance the confi-

dence, the average subject data from fed state with PPI

was used for model verification. Similar to the fasted state,

PPI decreased pictilisib exposure by half in the fed state.

The average PK profile for fed with PPI can be well pre-

dicted by the fed state model, with elevated stomach pH to

2.9 for fasted physiology and to 5 for fed physiology. Both

pH 5 and 7 were tested for the fed physiology, and showed

no difference in prediction. The ability to predict a new sce-

nario by mechanistically adjusting the stomach pH and STT

indicated that the PBPK model with gastric empty physiol-

ogy was implemented successfully for pictilisib and can be

used for further simulations. It also provides a flexible plat-

form for evaluating the impact of food and PPI on the

absorption of week bases in general.
Given the strong PPI effect observed in the healthy vol-

unteer study at the 40 mg dose, the concomitant use of

ARAs for pictilisib should be restricted. The PBPK models

were used to further investigate whether the effect of PPI

at the clinically relevant dose (340 mg) in breast cancer

patients are consistent with healthy volunteers. Cancer

patients in general have delayed gastric empting given the

cancer itself and the complication of its treatment, such as

surgery,47 radiation,48 and chemotherapy,49 or other mecha-

nisms that lead to gastrointestinal dysmotility, such as para-

neoplastic syndromes (mostly associated with small cell

lung cancer and breast cancer50). Given all the causes,

extending the STT to twice of the healthy volunteer settings

is a reasonable assumption for breast cancer patients. Sen-

sitivity analysis indicated that doubling the STT increased

the fraction absorbed slightly for fed state but had no

impact on fasted state, regardless of PPI. Under the

extended STT, the breast cancer patients were predicted to

have a comparable fraction bioavailable under fed and

fasted state at the 340 mg dose. As compared to the com-

plete absorption at 40 mg in fasted state, incomplete

absorption (78%) was predicted for 340 mg due to solubility

limitations. An oncology phase I dose-escalation study indi-

cated dose-proportionality from 15 to 450 mg given in

fasted state.19 There appeared to be some discrepancy

between the 340 mg prediction and the dose-proportionality

assessment. Different formulations were used for the phase

I dose-escalation study and the healthy volunteer study.

The relative bioavailability study indicated a slightly better

absorption for the phase I formulation (data on file), which

provided a rational explanation for the discrepancy. In the

phase I expansion cohort, pictilisib PK following a 340 mg

single dose before and after rabeprazole was determined in

nine patients under fasted state. The results indicated a

strong (45–50% decrease) but highly variable PPI effect

(data on file), which is in line with the PBPK sensitivity sim-

ulations with varying stomach pH values. So, in general,

Figure 5 High-level strategy for the use of bottom-up PBPK model for drug candidates with pH-dependent solubility.
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the recommendations will stay the same for cancer patients

taking the clinically relevant dose.
Given the high prevalence of ARA in cancer popula-

tions,10 mitigation strategies were also assessed to tempo-

rarily reacidify the gastric environment at the time of

treatment to allow for maximum absorption of pictilisib and

ensure continuous PPI therapy (results not shown). This

was another PBPK scenario simulation to facilitate the clini-

cal development of pictilisib.
For the case of pictilisib, the dedicated healthy volunteer

study and integrated PBPK/popPK approach (Figure 5,

middle panel) presented an informative way to assess the

effect of PPI and food and enable dose recommendations.

Although the same recommendations might be derived

without modeling and simulation, the integrated analysis

can enhance confidence of recommendations and facilitate

the clinical development of pictilisib through quantitative

assessment (ascertain food effect by PopPK analysis) and

scenario simulations (PBPK simulation for food and PPI

effect at a clinically relevant dose, and for mitigation strate-

gies to avoid PPI/DDI).
Figure 5 represents the most comprehensive workflow to

reach label-enabling recommendations for drug candidates

with pH-dependent solubility. Besides the healthy volunteer

study, the clinical DDI might also be assessed in patients at

the recommended phase II dose (RP2D) given the potential

changes in formulation and dose for patients as compared

to healthy volunteers. For pictilisib, a clinical PPI/DDI study

was conducted in the phase I expansion cohort at the

340 mg dose. On a case-by-case basis, the DDI assess-

ment can be conducted in either healthy volunteers or

patients or both. The PBPK model based on a healthy vol-

unteer study can be further improved using data from a

clinical DDI study in patients, if available, to account for the

changes such as formulation and dose, which is referred to

as “defined PBPK model” in the right panel of Figure 5.
When the dedicated healthy volunteer study or a con-

trolled clinical study in patients is not available for DDI

assessment, the PBPK model built from the in vitro and

nonclinical PK can be refined, to a less extent, by the clini-

cal trial data, given the limitations such as larger PK vari-

ability, sparse PK sampling, and the uncontrolled use of

comedications or food. Similar limitations will apply for the

popPK analysis to assess the potential covariates for DDI

using clinical trial data.16
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