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Transcriptomic architecture of nuclei in the
marmoset CNS

Jing-Ping Lin 1, Hannah M. Kelly1, Yeajin Song1, Riki Kawaguchi2,
Daniel H. Geschwind 2,3, Steven Jacobson4 & Daniel S. Reich 1

To understand the cellular composition and region-specific specialization of
white matter— a disease-relevant, glia-rich tissue highly expanded in primates
relative to rodents — we profiled transcriptomes of ~500,000 nuclei from 19
tissue types of the central nervous system of healthy common marmoset and
mapped 87 subclusters spatially onto a 3D MRI atlas. We performed cross-
species comparison, explored regulatory pathways, modeled regional inter-
cellular communication, and surveyed cellular determinants of neurological
disorders. Here, we analyze this resource and find strong spatial segregation of
microglia, oligodendrocyte progenitor cells, and astrocytes. White matter glia
are diverse, enriched with genes involved in stimulus-response and biomole-
cule modification, and predicted to interact with other resident cells more
extensively than their gray matter counterparts. Conversely, gray matter glia
preserve the expression of neural tube patterning genes into adulthood and
share six transcription factors that restrict transcriptome complexity. A com-
panion Callithrix jacchus Primate Cell Atlas (CjPCA) is available through
https://cjpca.ninds.nih.gov.

An understanding of microenvironmental heterogeneity and its broad
impact on biological processes is necessary to interpret experimental
perturbations, especially in the central nervous system (CNS). Recent
advances in genetic profiling tools have uncovered regional cellular
diversity in the brain’s gray matter (GM) far beyond what had tradi-
tionally been appreciated1. However, the characterization of cellular
profiles in white matter (WM) is limited due to its modest repre-
sentation in mouse. The common marmoset (Callithrix jacchus) is an
emerging animal model that bridges mouse and higher primates
genetically, immunologically, and behaviorally. Importantly, there is a
massively greater (>5-fold) subcortical WM to cortical GM volumetric
ratio in marmoset compared to mouse2, raising the possibility that
primates evolved novel but as-yet-undescribed glial heterogeneity to
support this expansion.

Moreover, beyond obvious differences in the density of neurons
and oligodendrocytes between GM and WM, the extent of structural

and functional heterogeneity of other resident cells remains unclear.
Motivating a deep investigation of such heterogeneity are prior
observations that WM-astrocytes are primed to be more advanced in
their response to pathological challenges3,4. For example, compared to
astrocytes in GM, astrocytes in WM have a higher capacity for gluta-
mate clearance to handle excitotoxic insults and disproportionally
higher senescence-induced expression of GFAP (a reactive gliosis
indicator)5. Similarly, more microglia are found in WM than in GM of
normal human brain6, and microglia in WM are primed to be more
active and respond to injury faster than their GM counterparts4,7,8.
Additionally, it has been shown that the timing and efficiency of
remyelination mediated by oligodendrocyte progenitor cell (OPC)
differentiation varies significantly between GM and WM9.

To determine whether location-specific regulatory programs
broadly influence resident cells, and whether these microenviron-
mental cues lead to transcriptomic segregation that further defines
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cell identities, we here describe a detailed map of the cellular com-
position across 19 CNS regions, including many WM areas, created by
profiling all cell types without preselection. We extensively investigate
the regional diversity of cells, especially with respect to GM-WM seg-
regation, by comparing transcriptome similarity across species and
datasets. We demonstrate ways of using this resource to classify
unknown cell types, query intercellular communication, and discover
associations with disease. Our carefully annotatedmarmoset brain cell
atlas resource, “CjPCA,” is designed to inform future studies in evolu-
tionary, developmental, and pathological neurobiology.

Results
Callithrix jacchus primate cell atlas (CjPCA) analysis pipeline
To build an atlas with sampling reproducibility, a low bias in cell-type
recovery, and good compatibility with clinical studies, we performed
single-nucleus RNA sequencing (snRNA-seq) of nuclei extracted from
uniformly sized tissue punches without preselection or sorting.
snRNA-seq is widely applied in human tissue10, able to identify cell
types similarly to single-cell (sc) RNA-seq11, and the only proven
method to analyze tissue that cannot be readily dissociated into single-
cell suspensions without introducing additional artifacts10,12. We per-
formed in vivo magnetic resonance imaging (MRI) of the 2 marmoset
brains, cross-referenced the imaging data to 3D MRI atlases to guide
tissue sampling, surveyed cells without preselection, and grouped
them into three different categories to facilitate downstream com-
parison (Fig. 1a–d and Supplementary Fig. 1). As indexed in Fig. 1d, we
use “WM,” “GM,” and “other” (in quote marks) to indicate sampling
sites as specifically defined in our paper; WM/GM (without quote
marks) is used for general descriptive purposes, including when
mentioning published works.

To ensure that common artifacts were properly addressed in
droplet-based transcriptome analysis, we applied SoupX13 to subtract
ambient RNA background and DoubletFinder14 to remove doublets for
individual samples before data integration with Harmony15 (Methods,
Table 1, Supplementary Figs. 2–4, and Supplementary Data 1). We
confirmed that the segregation betweenmajor cell classes is stable and
that paired samples from different animals are comparable, without
much variation even before data alignment with Harmony (Supple-
mentary Fig. 3a). After data integration, a total of 534,575 nuclei were
recovered in Level 1 analysis, and six cell classeswere determinedby the
expression of canonical markers (NEU, CNTN5+ neurons; OLI, MOG+

oligodendrocytes; AST, ALDH1L1+ astrocytes; OPC, PDGFRA+ oligoden-
drocyte progenitor cells; MIC, PTPRC+ microglia/immune cells; VAS,
LEPR+ vascular cells/CEMIP+ meningeal cells / TMEM232+ ventricular
cells; Fig. 1e). We found that only a modest number of neurons (~11%
median abundance of total cells; Fig. 1f) were present in “WM,” show-
casing the precision of image-guided tissue sampling.We compared the
profile of ambient RNA, frequently detected genes, and high-ranked
variable genes in different cell types across brain regions and found no
evidence of systematic tissue type-specific contamination from back-
groundRNAordoublets after quality control (Supplementary Figs. 5, 6).

The abundance of oligodendrocytes and neurons was correlated
across tissue types (Supplementary Fig. 4e), such that more oligo-
dendrocytes were found in “WM” and more neurons in “GM,” as
expected. By contrast, “other” had cellular composition intermediate
between “WM” and “GM” (Fig. 1f). The relative composition of mar-
moset major cell types (47% neurons, 35% oligodendrocyte-lineage
cells, 12% astrocytes, and 4% immune cells) across 19 selected regions
correspondswell tomorphological counting of cell types in the human
neocortex (42% neurons, 43% oligodendrocyte-lineage cells, 11%
astrocytes, and 3% immune cells) across age (18–93 years) and sex16,17.
Interestingly, there was a positive correlation between the abundance
of microglia and oligodendrocyte progenitor cells (OPC) across tissue
types (Supplementary Fig. 4e), with about three-fold higher microglia
and two-fold higher OPC density in “WM” than “GM” (Fig. 1f).

Additional rounds of quality control and manifold learning con-
stituted Level 2 analysis (Methods), in which sixmajor cell classes were
further grouped into 87 subclusters (comprising 50NEU, 6 OLI, 5 OPC,
7 MIC, 8 AST, and 11 VAS subclusters). The 87 subclusters were then
colored by sampling site to highlight regionally enriched subtypes
(Fig. 1g). We mapped the general landscape of the dataset (Supple-
mentary Figs. 6–8) and summarized the analysis workflow in a diagram
to elucidate which type of cross-subcluster/cross-species comparison
was performed in which cell class (Fig. 2). Unless indicated otherwise,
all available nuclei collected from “WM,” “GM,” and “other” were
included in each analysis.

With respect to neurons, it was not our primary focus to define
new subtypes or quantify region and layer specificity, but we per-
formed some basic analyses to anchor the resolution of our atlas with
published datasets collected primarily from cortical regions18. In the
current atlas, we profiled five different cortical areas and employed
MRI-guided tissue collection to ensure consistency across animals. We
note that a 2-mm-diameter tissuepunch is sufficient to cover nearly the
full thickness of marmoset cortex. Furthermore, the purity of cortical
sampling canbe estimatedby thenumber of oligodendrocytes present
in “GM” (~8% median abundance; Fig. 1f).

For neurons, a total of 248,091 nuclei yielded 50NEU subclusters.
We intentionally subclustered neurons at relatively low resolution to
facilitate tracking of spatial origin. We highlight well-studied markers,
cluster annotations, and sampling sites to facilitate cross-database
comparison (Supplementary Figs. 9, 10). Nuclei in the UMAPwere first
coloredby the expressionof vesicular glutamate transporters (VGLUT;
SLC17A7, SLC17A6, SLC17A8) (Supplementary Fig. 9b) and dot plot
colored by neurotransmitter module scores (Supplementary Fig. 9b),
dropping subclusters with less than 10% detection rate of VGLUT
transcripts. We also colored nuclei by sampling site, which demon-
strated, as expected based on our sampling, that cortical “GM”was the
major contributor of neurons, with relatively high consistency in
neuronal composition across “GM” (Supplementary Fig. 10c–g). In
addition, we observed that cortical excitatory neurons (primarily
VGLUT1+) were arranged onto a continuous path in the UMAP plot
(lamination layer L2–L6, NEU32–45), which indicates similarity in the
transcriptomes of neurons that reside in adjacent laminae. As pre-
viously reported in mouse and human19, the expression of STAB2
(L2–6), LAMP5 (L2/3), RORB (L4), and THEMIS (L5/6) anchor the tran-
sition of the graded pattern along this path. Given that the establish-
ment of lamination is completed prenatally20, we cross-referenced our
findings in the adult with an available in situ hybridization (ISH)
database (Marmoset Gene Atlas) fromP0marmoset21,22. We found that
the expression of lamina-enriched genes agreed with what has been
examined spatially in the database (Supplementary Fig. 11).

Overall, the major features related to neurons (Supplementary
Figs. 9–13) closely agree with several previous reports1,19. Therefore,
we focused on the strong GM-WM spatial segregation of microglia,
OPC, and astrocytes (Fig. 1g) to assess glial heterogeneity across 19
brain regions in detail. We further used GM-glia andWM-glia (i.e., WM-
microglia, WM-OPC, WM-astrocytes, written here without quote
marks) to indicate regionally enriched glial subtypes, as opposed to
glia sampled from “GM” or “WM,”which include all glia collected from
the indicated area regardless of subtype. The design of our study does
not enable us to address directly if GM- and WM-glia diverge autono-
mously (such as from different progenitors). However, we first
explored the possibility that, regardless of developmental origin, glia
might be specialized within each microenvironment in response to
different functional demands. As gene expression often falls along a
spectrum, we considered the transcriptomic landscape in its entirety
instead of using one or a few genes to define each subpopulation. In
the following analysis, we approach glial heterogeneity by comparing
the biological programs we identified in marmoset with 11 published
single-cell or single-nucleus studies in other species.
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Microglia vary in density,morphology, and identity among gray
and white matter
A total of 18,279 nuclei were included in the Level 2 analysis of micro-
glia/immune cell (MIC class; Fig. 3a). We found seven distinct sub-
clusters, of which fourwere circulating peripheral immune populations
(PBMC1–4) and three were brain-resident immune cells (MIC1–3). In

addition to canonical markers (P2RY13 and ITGAX), the expression of
FLT1 (vascular endothelial growth factor receptor 1) differentiates cir-
culating from resident immune cells, such that microglia were FLT1+

and PBMC were FLT1− (Fig. 3b and Supplementary Figs. 14, 15).
We identified regionally enriched subtypes across 19 tissue types.

We denoted two subtypes (MIC1 and MIC2) as GM-microglia, for they

Fig. 1 | Glial transcriptome reflects differential residence in gray and white
matter. a Experimentalworkflow to scan andmap images tomarmosetMRI atlases.
b Location of samples collected as cylinders of 2mmdiameter and 3mm thickness
on the standard slab (SS) index. A anterior, P posterior. c Nuclei were isolated to
prepare cDNA libraries and sequenced. d Total sampled areas are labeled by three
types of tissue categories (Cat.): fine, coarse, and developmental (Dev). f frontal, t
temporal, p parietal, WMwhitematter, a anterior, p posterior, CC corpus callosum,
OpT optic tract, CTX cortex, o occipital, CgG cingulate gyrus, Cd caudate, Thal
thalamus, LGN lateral geniculate nucleus, Hipp hippocampus, MB midbrain, CE
cerebellum, cSC cervical spinal cord, Tel telencephalon, Die diencephalon, Mes
mesencephalon, Met metencephalon, SC spinal cord. e The Level 1 analysis

identified six cell classes, rendered as a uniform manifold approximation and
projection (UMAP) scatter plot annotated by expressionof canonicalmarker genes:
neurons (NEU), oligodendrocytes (OLI), oligodendrocyte progenitor cells (OPC),
microglia/immune cells (MIC), astrocytes (AST), and vascular/meningeal/ven-
tricular cells (VAS). f Box plot showing the abundance of Level 1 clusters as a
function of tissue type;n = 42 independent samples; themedian is annotated (black
diamond shape) and listed. The lower and upper hinges of the box plot correspond
to the 25th and 75th percentiles; whiskers extend from the hinges to maxima or
minima at most 1.5 times inter-quartile range. g Top, each level 1 cell class was
further subclustered in level 2 analysis. Bottom, the UMAP plots from level 2 ana-
lysis are colored by coarse tissue category.
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were found to be most abundant in “GM.” We then named the other
major cluster (MIC3) WM-microglia for its absence in “GM” and
enrichment in “WM.” All three subtypes of microglia present with
various proportions in “other,” which had cellular composition inter-
mediate between relative pure WM and GM (Fig. 3c and Supplemen-
tary Fig. 14a, b). This GM-WM segregation of microglia was so strong
that the abundance of WM-microglia (MIC3) was positively and nega-
tively correlated with the number of oligodendrocytes and neurons,
respectively. In contrast, GM-microglia (MIC1 and MIC2) had similar
densities across brain regions (Supplementary Fig. 14c). We found that
the expression of SLC15A1, an oligopeptide transporter, is selectively
enriched in WM-microglia (Fig. 3c) and validated that anti-SLC15A1
preferentially labels IBA1+ cells in WM (Fig. 3d). Next, we performed
particle and morphological analysis on IBA1 labeling to compare the
density and the shape of microglia in GM and adjacent WM. We found
two to three times more IBA1+ cells present in WM compared to GM,
which agrees with the relative abundance of microglia profiled from
“GM” and “WM” with snRNA-seq (Fig. 3c). Moreover, the shape of
microglia in WM was more elongated, indicated by a larger value of
reciprocal circularity, compared to GM (Fig. 3e–h).

To understand the functional implication of this segregation, we
identified pathways that are differentially weighted in each microglia
subtype using gene module23 and gene ontology (GO) analysis and
explored the similarity of theseprogramscompared topublishedwork

(Supplementary Figs. 14–17 and Supplementary Data 2). It has been
shown that normal aging impacts GM and WM asynchronously24–26.
Therefore,we sought to compare these regionally enrichedmodules in
microglia against a dataset with temporal resolution. We linked mar-
moset genenames to theirmouseorthologs, then cross-referenced the
expression pattern of the definedmodules inmicroglia extracted from
the whole mouse brain (ages E14.5 to P540)27. After splitting mouse
microglia into 3 age groups (embryo, neonate, and adult; Fig. 3i and
Supplementary Fig. 16), we found that gene modules enriched in
marmoset GM-microglia were highly expressed in microglia of young
mice, whereas gene modules enriched in marmoset WM-microglia
were also highly expressed in microglia of adult mice (Fig. 3j). These
findings suggest that the transcriptomic profile of WM-microglia
appears further aged than that of GM-microglia. GM-WM segregation
of the microglial transcriptome is observed as early as P7 (during
myelinogensis) in mouse8 and persists with normal aging in both
human andmouse7,28,29. Understandingwhether environmental cues in
myelin-rich regions drive microglia specialization requires
further study.

Next, we performed a GO analysis to summarize the regulatory
programs enriched in each gene module. As a positive control, we
found the expected sharing across microglia subtypes of gene mod-
ules involved in synapse pruning, complement system, and major
histocompatibility complex (MHC) (Supplementary Fig. 17a). Next, we
focused on comparing GO terms that are specifically enriched in each
subtype. Terms related to synaptic plasticity, neurotransmitter secre-
tion, and neuron survival are enriched in GM-microglia (Knn.m3;
Supplementary Fig. 17b), whereas terms related to biomolecule
metabolism, cell movement, and response to stimulus are enriched in
WM-microglia (PG.m1/4; Supplementary Fig. 17d, e). Therefore, GM-
microglia appear younger and more involved in modulating neuronal
activity, while WM-microglia appear older and are primed to a more
reactive state even in homeostasis.

WM-OPC forma unique populationwith regional density closely
associated with oligodendrocytes
Our analysis demonstrates that although it is challenging to find OPC-
specific gene markers, OPC nonetheless comprises a distinct and var-
ied population and express more genes that are enriched in neurons
(e.g., CADPS, RIMS2, DLGAP1, NRXN3, and STBP5L) than do other glia
and vasculature-associated cells (Supplementary Figs. 5, 6). As with
microglia, GM-WM segregation is prominent in OPC, which we
grouped into 5 subclusters (OPC1–5) from a total of 20,306 nuclei
(Fig. 4a and Supplementary Figs. 18–20). The number of WM-OPC
(OPC3) was positively correlated with the abundance of oligoden-
drocytes and negatively with the abundance of neurons, whereas GM-
OPC (OPC1) were similar in density regardless of sampling site (Sup-
plementary Fig. 18c).

Interestingly, several top-enriched genes related to general ner-
vous system functioning were shared between GM-OPC (OPC1) and
GM-microglia (MIC1), and both populations had fewer detected genes
compared to theirWM counterparts (Supplementary Figs. 14b, 18b). In
genemodule analysis (Supplementary Figs. 18e–19 and Supplementary
Data 2), we found that WM-OPC were enriched with GO processes
related to component organization, moleculemodification, and stress
granules (Knn.m6; Supplementary Fig. 19d), whereas GM-OPC enri-
ched pathways are involved in neuronal support (PG.m2; Supplemen-
tary Fig. 19c) similar to those enriched in GM-microglia. Markers
enriched inWM-OPCare known to regulateOPCdispersal (SLIT2)30 and
inhibit CNS angiogenesis (SEMA3E)31 (Supplementary Figs. 18d, 20).
This analysis suggests that WM-OPC, in homeostasis, are a population
tuned to a more reactive state, whereas GM-OPC are more involved in
supporting neuronal functions.

In line with our finding that marmoset WM-microglia appear
transcriptionally more advanced in normal aging than their GM

Table 1 | Key resources

Deposited Data Identifier

Hammond et. al. 2019 GEO: GSE121654

Marisca et. al. 2020 GEO: GSE132166

Marques et. al. 2016 GEO: GSE75330

Zeisel et. al. 2018 http://mousebrain.org/

Zhang et. al. 2014 GEO: GSE52564

Polioudakis et. al. 2019 dbGaP: phs001836

Lake et. al. 2018 GEO: GSE97930

Habib et. al. 2017 GEO: GSE104525

Zhang et. al. 2016 GEO: GSE73721

Jäkel et. al. 2019 GEO: GSE118257

Absinta et. al. 2021 GEO: GSE180759

Marmoset Gene Atlas https://gene-atlas.brainminds.riken.jp/

Marmoset Brain Mapping https://marmosetbrainmapping.org/

Software and Algorithms Identifier

R (v3.6.1 2019-07-05) https://cran.r-project.org/bin/macosx/

Cellranger (v3.0.2) https://www.10xgenomics.com/

seurat (v3.1.5) https://github.com/satijalab/seurat

DoubletFinder (v2.0.2) https://github.com/chris-mcginnis-ucsf/
DoubletFinder

clustree (v0.4.3) https://github.com/lazappi/clustree

SoupX (v1.4.5) https://github.com/constantAmateur/SoupX

harmony (v1.0) https://github.com/immunogenomics/
harmony

monocle3 (v0.2.0) https://github.com/cole-trapnell-lab/
monocle3

gprofiler2 (v0.1.9) https://cran.r-project.org/web/packages/
gprofiler2/index.html

nichenetr (v0.1.0) https://github.com/saeyslab/nichenetr

EWCE (v0.99.2) https://github.com/NathanSkene/EWCE

Ingenuity Pathway Analysis
(v01-16)

https://digitalinsights.qiagen.com/
product-login/

Fiji (v2.1.0/1.53c) https://imagej.net/Fiji/Downloads

Other Identifier

CjPCA website https://cjpca.ninds.nih.gov
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Fig. 2 | Schematic summary of analysis workflow with figure index. a Data
preprocessing steps with quality check and Level 1 analysis. b Level 2 analysis done
on all cell classes, including subclustering, gene module analysis, and gene ontol-
ogy pathway analysis. c Level 2 analysis done on individual partitions, focusing on
cross-dataset and cross-cluster comparisons. Mm Mus musculus, Hs Homo

sapiens, Cj Callithrix jacchus, Tx transcription factors, A anterior, P poster-
ior. d Finding regional regulatory programs that are shared across glia enriched in
WMandGM. e Exploring functional implications for the transcriptomes enriched in
WM- and GM-glia by assessing intercellular communication and disease suscept-
ibility. Hs Homo sapiens, Cj Callithrix jacchus.
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counterparts (Fig. 3i, j), it has been reported that rat OPC in WM are
more mature than those in GM32, and that they differentiate into
mature oligodendrocytes more efficiently than OPC in GM33. Electro-
physiological properties of OPC vary between WM and GM and with
age, and they correlate with differentiation potentiality34,35. We exam-
ined the OPC expression of ion channel genes as a surrogate of

electrophysiological function and examined the tissue origin of dif-
ferentiatingOPC (OPC5).We found different profiles of ion channels in
GM-OPC and WM-OPC (Supplementary Fig. 21) but a similar abun-
dance (<1.5%) in OPC5 across brain regions (Fig. 4a).

Taken together, these findings lead us to hypothesize that diver-
gent CNS environments might influence the molecular profile of their

Fig. 3 | WM-microglia appear more advanced in age than GM-microglia, are
elongated, and selectively express SLC15A1. a UMAP plot of microglia/immune
cells colored by Level 2 subclustering. PBMC peripheral blood mononuclear cells.
b Violin plot showing the expression of genes in each subcluster (local) and in each
cell class (global). c Relative abundance of microglia by coarse tissue category;
n = 42 independent samples; the median is annotated (black diamond shape) and
listed.d Expression of SLC15A1 in adultmarmoset brain sections. Solid arrowheads,
IBA1+/SLC15A1− microglia; open arrowheads, IBA1+/SLC15A+ microglia. IBA1 is a pan
microglia marker, and intense PLP1 labeling demarcates the WM area. Scale bar,
1mm (1x and 4x), 100μm (20x). e Box-and-whisker plot showing the number of
IBA1+ cells from three ROI per tissue type per biological repeat (BR) that were
quantified manually or by automatic image processing; n = 9 ROI from three bio-
logically independent animals; themedian is annotated (black diamond shape) and
listed. ***p <0.001, t-test, two-sided, p = 2.5E-04 (groupmanual), p = 5.8E-08 (group
auto). f The morphology of IBA+ cells in GM and WM was extracted by processing
IBA1/PLP1 labeled images. Experiment was repeated independently three times
with similar results as quantified in g, h. g The distribution of shape factor by

measuring perimeter (P) and area (A) of IBA1+ cells to calculate the reciprocal of
circularity (P2/4πA)with a step size of 1 grouped by tissue type. Circularity−1 ranges
from 1 (perfect circle) to infinity.hViolin plot summarizing the shape factor of IBA1+

cells. The reciprocal of circularity measured from WM cells is significantly higher
than that measured from GM cells, ***p <0.001, t-test, two-sided, p = 6.8E-07;
n = 1432 cells examined over three WM areas from biologically independent ani-
mals; n = 438 cells examined over three GM areas from biologically independent
animals. i UMAP plots of marmoset microglia colored by tissue type and mouse
microglia fromHammond et al. 2019 colored by animal age. jHeatmap showing the
expression of gene modules in seven MIC subclusters from marmoset and mouse
microglia grouped by age. Gene modules enriched in GM-microglia (MIC1) of
marmoset are enriched in microglia of younger mice (PG.m2/8, Knn.m6/3/5), and
gene modules enriched in WM-microglia (MIC3) of marmoset are enriched in
microglia of oldermice (PG.m1/4/3, Knn.m1/7/2). The lower andupper hingesof the
box plot in a, d, e correspond to the 25th and 75th percentiles, whiskers extend from
the hinges to maxima or minima at most 1.5 times inter-quartile range.
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resident cells in primates, and specifically that WM-OPC acquired
additional features in response to their intercellular microenviron-
ment. Testing this hypothesis and determining whether our observa-
tions translate to actual differences in stimulus responses in health and
disease requires further experimental study.

To understand howmarmoset OPC subclusters compare to those
from other species, we reanalyzed data from prior studies36–43 and
performed a Pearson’s correlation analysis (Fig. 2c and Supplementary
Figs. 22–24). Consistent with what has been reported for OPC derived
from the adult humanbrain, wedid not observe a separate cyclingOPC
cluster (TOP2A+) in adult marmoset brain, as has been reported for
OPC derived from zebrafish, adult mouse, and developing human
cortex (Supplementary Figs. 22, 23). Instead, cells expressing S andG2/
M phase genes were dispersed across the OPC1–3 subclusters. OPC4,
however, was enriched with G0G1 genes (Supplementary Fig. 18d), i.e.,
they are quiescent cells44.

Prior to this comparison, we humanized gene names of each
species with one-to-one orthologs and only included genes that are
detected in all datasets, which might limit the depth of the com-
parison. However, we found agreement in oligodendrocyte-lineage
differentiation features across species (Fig. 4b): marmoset differ-
entiating OPC (OPC5) and oligodendrocytes (OLI) correlate with
ENPP6+/MAG+ oligodendrocyte-lineage cells in mouse (mm1_2,
mm2_1, mm3_NFO, mm3_OLI) and human (hs1_4, hs2_2, hs3_3,
hs4_OLI), but less so in zebrafish (dr_3). Also, we observed con-
sistently larger differences betweenmarmosetWM-OPC (OPC3) and
OPC from all other species analyzed. We quantified this observation
by comparing the fold-change of similarity between OPC sub-
clusters, measured as the ratio of r2 values across clusters (Fig. 4c).

Although the underrepresentation of a marmoset WM-OPC-like
population in other datasets may partially be due to technical dif-
ferences, such as sampling site, it is also possible that OPC were
broadly undersampled in other datasets. As clustering resolution is
sensitive to cell counts in single-cell studies, low recovery number
of OPC (particularly those derived from humans) and/or lack of
inclusion of enough equivalent WM regions (especially in mice,
where there is little WM) might contribute to this observation.

The graded expression of ENPP6/MUSK and the succession of
transcription factors delineate the transcriptome trajectory of
oligodendrocytes
A total of 128,710 nuclei were included in themarmoset OLI class, from
which six subclusters (OLI1–6) were identified (Fig. 5 and Supple-
mentary Figs. 25–27). Different from other cell classes, marmoset oli-
godendrocyteswere arranged into a continuous path in 2Ddimension-
reduced space (Fig. 5a), inwhich nuclei with similar transcriptomes are
arranged as neighbors45. We found this to be similar to the patterns in
human46,47 and mouse38,40. In the following sections, we describe how
this trajectory cannot be parsimoniously explained by a unidirectional
path in oligodendrocyte-lineage development.

Based on mouse studies, differentiation-committed oligoden-
drocyte precursors are Pdgfra−/Tns3+ 38, and the expression of Enpp6 is
a marker of newly forming oligodendrocytes36,48. Therefore, we
denoted as OLI1 the subcluster that is PDGFRA−/TNS3+/ENPP6high and
named the other OLI clusters (OLI2–6) consecutively (Supplementary
Fig. 25e). Instead of a clear GM-WM segregation, we found propor-
tional differences along the intermingled OLI subtypes across brain
regions. OLI1 was lowest in “GM” (median abundance ~0.5%),

Fig. 4 | Marmoset WM-OPC form a transcriptionally disparate population that
diverges from previously reported OPC in other species. a Left, UMAP plot of
OPC colored by Level 2 subclustering. Right, relative abundanceofOPC subclusters
in coarse tissue category; n = 42 independent samples; the median is annotated
(black diamond shape) and listed. The lower and upper hinges of the box plot
correspond to the 25th and 75th percentiles, whiskers extend from the hinges to
maxima or minima at most 1.5 times inter-quartile range. b Heatmap showing the
Pearson’s correlation coefficient r) between 6 oligodendrocyte-lineage cell clusters

(OPC1–5 and all oligodendrocytes, see Fig. 5) from marmoset and multiple sub-
clusters of oligodendrocyte-lineage cells in zebrafish (dr),mouse (mm), and human
(hs). d.p.f. days post fertilization, P postnatal day, GW gestational weeks. c Scatter
plot showing the ratio of r2 between OPC2 and OPC1 (left) and OPC3 and OPC1
(right). OPC1 and OPC2 are similar to one another and to OPC found in other
species. WM-OPC (OPC3) is a distinct subcluster, in general showing lower simi-
larity with previously defined clusters compared to GM-OPC (OPC1), though it is
relatively more similar to human than mouse or zebrafish OPC.
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compared to ~10% relative abundance in “WM” and “other” (Supple-
mentary Fig. 25c).

Based on this expression pattern, onemight surmise that OLI1 are
the youngest and OLI6 the oldest oligodendrocytes; however, we
found them to be close in the space of the 2D UMAP projection, which
could indicate transcriptomic similarity; alternatively, a 2D projection
may not be sufficient to capture important aspects of the data.
Therefore, we pursued a 3D UMAP analysis of oligodendrocytes,
finding that the two ends are separated along a spiral pattern that was
also observed upon reanalysis of previously reported human46,47

(Supplementary Figs. 28, 29) and mouse40 (Supplementary Fig. 30)
oligodendrocyte transcriptomes. This spiral pattern was also captured
at the level of differentially expressed genes across oligodendrocyte

subclusters, most of which (XYLT1, TNS1, TNS3, MAN1C1, BTBD16,
CCP110, CSF1, DOCK5, PAM, MUSK, GPM6A, and DPP10) were aligned
across species to label the overall developmental trajectory (Fig. 5b
and Supplementary Figs. 28–31).

Despite somediscrepancy in the assignmentof subcluster identity
among datasets, five major stages of oligodendrocyte-lineage cells are
widely accepted in the field to annotate the trajectory: OPC,
differentiation-committed oligodendrocyte precursors (COP), newly
formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes
(MFOL), and mature oligodendrocytes (MOL). Interestingly, however,
ENPP6high oligodendrocytes are located atboth endsof the trajectory in
mousedatasets (Supplementary Figs. 30, 31), but only at one endof the
trajectory in marmoset and human. This observation raises the

Fig. 5 | The transcriptome of oligodendrocytes lies on a spiral trajectory
flanked by ENPP6/MUSK gradient and marked by the succession of transcrip-
tion factors. a 2D UMAP plot of oligodendrocytes (OLI) colored by Level 2 sub-
clustering (top) and transcriptomic distance in pseudotime (bottom, starting at
OLI1, denotedby①).bTwoviewing angles of a 3DUMAPplot ofOLI subclusters and
corresponding expression of selected genes. c The expression ofMUSK is detected
in OLIG2+ cells in adultmarmoset brain by combined immunofluorescence staining
and fluorescent in situ hybridization (Hybridization chain reaction v3.0).
dHeatmapshowing the expressionof transcription factors (TF) across pseudotime.
Nuclei were grouped into 125 bins (columns, steps 1–125). The jitter plot above the
heatmap is colored by OLI subcluster for visual reference. Threemajor branches of
geneswere annotated (❶,❷, and❸). The expression of 63 TFcouldbegrouped into

three sets (Set 1: steps0–60, present inOLI1–2,with Branch 1high and Branch 3low; Set
2: steps 60–80, present in OLI3, with Branch 2high; Set 3: steps 80–125, present in
OLI4–6, with Branch 1low and Branch 3high). e Box plots showing the distribution of
OLI subclusters across pseudotime withmedian annotated; n = 11,977 (OLI1), 15,451
(OLI2), 18,623 (OLI3), 45,475 (OLI4), 30,691 (OLI5), 6,493 (OLI6) nuclei analyzed.
The lower and upper hinges of the box plot correspond to the 25th and 75th per-
centiles, whiskers extend from the hinges to maxima or minima at most 1.5 times
inter-quartile range. f The expression of TF with linearly decreasing (TRPS1) and
increasing (CREB5) expression. g The expression of TF with levels that peak at
various pseudotime points. The center of the error bands was defined by a locally
estimated scatter plot smoothing (LOESS) curve fit for each expression pattern; the
flanking gray bands indicate 95% confidence intervals.
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question of whether the second ENPP6high population was selectively
lost in primates, or, alternatively, whether labeling the marmoset
ENPP6high population as “youngest” is not valid.

To address this question, we compared the transcriptomes from a
bulk-RNA sequencing dataset from brain cells immunopanned with
surface markers36 and two single-cell sequencing datasets in
mouse38,40. We found that the transcriptome of NFOL, as defined by
their cell surfacemarker (GalC+), wasmost closely correlated with that
ofmature oligodendrocytes, as defined by single-cell analysis, and that
the pattern of correlation did not track with the ordering of those
oligodendrocyte subclusters in UMAP space (Supplementary Fig. 31).
These observations raise the possibility that the single-path
model of the differentiation trajectory of oligodendrocytes requires
modification.

Whereas ENPP6, a choline-supplying enzyme49, is enriched in
OLI1–3, OLI4–6 were selectively labeled by MUSK (muscle-associated
receptor tyrosine kinase) enrichment (Fig. 5b and Supplementary
Fig. 25e). The oligodendroglial expression of MUSK has not been
described; however, its functions in cholinergic signaling at the neu-
romuscular junction are known. With mechanism unknown, its
expression in the brain is thought to mediate cholinergic responses,
synaptic plasticity, and memory formation50, suggesting that OLI4–6
might be a neuron activity-dependent population, consistent with
findings from studies of adaptive myelination51. Moreover, it seems
likely that there is species disparity in the expression of MUSK in oli-
godendrocytes, for it was detected in both marmoset and human but
not in any mouse datasets. Although protein-level validation of MUSK
expression in tissue was unsuccessful, we found thatMUSKwas indeed
expressed by oligodendrocytes by fluorescent in situ hybridization:
MUSK+/OLIG2+ double-labeled cells were found in both GM andWMof
marmoset brain, and there was no noticeable difference inMUSK level
per individual OLIG2+ in GM compared to WM (Fig. 5c and Supple-
mentary Fig. 27d, e). Whether MUSK expression is unique to primates
or animals in specific phylogenetic branches, and the extent towhich it
is developmentally regulated, require further investigation.

Next, we asked whether graded transcriptomic changes along
the spiral oligodendrocyte trajectory can be modeled by waves of
influence from within and/or directional stimuli from the environ-
ment. To address this, we performed a pseudotime analysis of
marmoset oligodendrocytes and mapped the expression of tran-
scription factors along pseudotime trajectories. We set ENPP6high

oligodendrocytes as the starting point for this analysis and visua-
lized gene expression dynamics along the pseudotime axis (Fig. 5b
and Supplementary Fig. 25d). Although the pattern of expression
dynamics agrees with the visual impression of gene expression
along the spiral 3D UMAP path, we found that molecular distances
from OLI4 to OLI5 and from OLI4 to OLI6 were similar, indicating
that OLI5 and OLI6 might develop in parallel rather than depen-
dently (Fig. 5d, e). We next mapped the expression pattern of
transcription factors along the trajectory and found that different
sets of regulator profiles were used by different subsets of oligo-
dendrocytes (Fig. 5d–g). Of all transcription factors examined, only
ELF2 and ETV5 peaked in the middle stages of oligodendrocytes
(OLI2 and OLI3, respectively), whereas the other transcription fac-
tors were clustered either at the “early” (OLI1) or “late” (OLI4–6)
stages. A positive correlation between ELF2 and myelin was sup-
ported in a human snRNA-seq study, in which ELF2 was high in
control WM, normal-appearing WM, and remyelinated multiple
sclerosis lesions but lower inWM lesions (active, chronic active, and
chronic inactive)46. On the other hand, Etv5 can act as a suppressor
of oligodendrocyte differentiation, such that enforced expression
of Etv5 in rat OPC decreased the production of MBP+

oligodendrocytes52. That ETV5 expression peaks in OLI3 (Step
60–80, Fig. 5d) suggests that OLI3 might be a population that is
poised to further specialization upon appropriate signaling.

Cell types at the barriers of the CNS
In Level 1 analysis, we observed an intermingled distribution of nuclei
with shared transcriptomic features from the astrocyte (AST) and
vascular (VAS) classes. Therefore, we pooled these two classes for the
second round of quality control, which facilitated artifact imputation
before further cell class splitting. A total of 74,204 nuclei comprising
astrocytes and primary cell types (endothelial cells, meningeal cells,
and ependymal cells) present at the CNS barriers (blood–brain,
blood–CSF, and brain–CSF) remained after quality control (Supple-
mentary Fig. 32). As the neurovascular unit is mostly established
prenatally53, we referred to a currently available ISH atlas of P0
marmoset21,22 to confirm the localization of markers expressed by
these cell types.Wematched the gross histologicalmorphology of the
P0 brain to the adult marmoset MRI atlas (Supplementary Fig. 33)54,55.

A total of 13,057 nuclei associated with CNS barriers comprised 11
VAS subclusters (Supplementary Figs. 34–36). Pericytes (Pericyte1–2),
vascular endothelial cells (VE1–3), and vascular smooth muscle cells
(VSMC) agreed with a human vascular atlas56 and were broadly con-
sistent across brain regions (Supplementary Figs. 34b, d). A relatively
higher percentage of ependymal cells, which form a permissive inter-
face betweenCSF and brain along the ventricular lining, was identified,
as expected, in tissue samples that line ventricles (tWM, pCC, Cd, and
cSC). The distribution of vascular and leptomeningeal cells (VLMC1–4,
brain fibroblast-like cells) was variable andmost highly detected in the
hindbrain (pons and cerebellum; Supplementary Fig. 34b).

The landscapeof astrocytes canbemappedbyGM-WMdisparity
and by compartments of the neural tube
For astrocytes, a total of 61,147 nuclei were partitioned into 8 sub-
clusters (AST1–8; Fig. 6 and Supplementary Fig. 37). Similar to what
was identified for microglia and OPC classes, AST1 was found most
abundant in “GM,” and AST3 was enriched in “WM” (Fig. 6a and Sup-
plementary Fig. 37c).We noted thatALDH1L1 andGLI3most effectively
label the whole lineage of astrocytes across regions, including Berg-
mann glia (AST8) in the cerebellum (Supplementary Fig. 38). By con-
trast, GM-astrocytes (AST1) were enriched with SLC1A2, and WM-
astrocytes (AST3) were enriched with GFAP and AQP457 (Supplemen-
tary Fig. 38). As expected, gene module and GO analysis showed that
astrocytes are generally involved in sterol biosynthesis (Supplemen-
tary Fig. 39a and Supplementary Data 2), as they are the major cho-
lesterol producers in the brain. For GM-astrocytes (AST1), terms
related to neurotransmitter secretion and nervous system develop-
ment were enriched. WM-astrocytes (AST3) were enriched with terms
related to cell migration, intracellular signaling transduction, and
morphogenesis (Supplementary Fig. 39b, c).

In “WM” samples, different profiles of astrocyte subtypes were
observed; for example, AST4 and AST5 were enriched in the pCC and
OpTbut not in otherWMareas, similar towhat was found in Thal, LGN,
MB, Pons, and cSC (Fig. 6a). Moreover, GFAP+ astrocytes greatly varied
in density, size, and shape across the brain (Fig. 6b–d). This agreeswith
what has been described in the human brain58, specifically that pro-
toplasmic astrocytes are primarily found in the cortex, whereas WM-
astrocytes are fibrous in morphology (Fig. 6b). The number and
dimension of GFAP+ cells are diverse across cortical layers, tissue type,
and even WM areas. These results lead to a prediction that the brain’s
astroglial response to stimuli may be heterogeneous even across WM
areas (Fig. 6b–d).

Similar towhat hasbeendescribed in amouse brain cell atlas40, we
found that grouping tissue by developmental category together with
WM-GM disparity most effectively describes astrocyte segregation
(Fig. 6e and Supplementary Fig. 37a). This observation led us to
investigate further the effect of local neural tube patterning signals in
defining astrocyte subclusters and whether these signals also affect
other cell types in the same region. Therefore, we examined the
expression ofpatterning genes along the anterior-posterior axis across
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cell classes and tissue types (Fig. 6e, f).We found that the expression of
patterning genes acrossbrain regionswasgrosslypreserved across cell
types, with some interesting exceptions. In the telencephalon, all cell
classes in cortical GM expressed high levels of patterning genes that
weremost prominently detected in the forebrain (FEZF2, EMX1, FOXG1,
DLX1, SHH, andDLX5). Caudate (enrichedwith SIX3) and hippocampus,

though belonging to telencephalon gray (Supplementary Fig. 37a),
havemostly lost the expression of forebrain patterning genes (Fig. 6f).
Similarly, most WM cells appeared to have lost this specification,
except for some FEZF2 and FOXG1 expression in astrocytes and neu-
rons. Cells in the posterior corpus callosum had patterning gene
expression similar to that observed in the thalamus, LGN, andmidbrain

Fig. 6 | Neural tube boundary-restricted astrocytes persist into adulthood.
a UMAP plot visualization of astrocytes (AST) colored by Level 2 subclustering and
split by tissue type. b The expression of GFAP in a mid-coronal section of the
marmoset brain. Intense PLP1 labeling demarcates the whitematter. Enlarged areas
are boxed and numbered on the 1x image (top left panel). The morphology of
GFAP+ cells across tissue types was extracted by image processing (Method). The
experiment was repeated independently three times with similar results. c The
distribution and morphology of GFAP+ cells along layers of cortex and adjacent
whitematter. The experiment was repeated independently three times with similar
results. d The expression of GFAP in the occipital lobe and cerebellum; nuclei are
stainedwith hematoxylin. Enlarged areas are boxed andnumberedon the 1x image.

The experiment was repeated independently three times with similar results.
e UMAP plot visualization of astrocytes colored by tissue type and developmental
category (left). Schematic illustration of the expression of patterning genes along
the anterior-posterior axis of the neural tube during development (right).
f Heatmap showing the expression of selected patterning genes in Level 1 classes,
split by sampling site. The sampling sites are ordered approximately along the
anterior-posterior axis of the neural tube during development, from left to right;
the genes enriched along the same axis are ordered from top to bottom. AST
subclusters are grouped based on the expression similarity of these patterning
genes, corresponding to the developmental origins of the sampling sites.
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(WNT3, OTX2, GBX2, LHX9, and EN1). EN2 was enriched in the cere-
bellum, but hindbrain patterning genes (HOXgenes)werehigh in pons,
cervical spinal cord, and sporadically in the optic tract.

In conclusion, we observed that the transcriptomes of WM
cells seem to deviate from the profile of forebrain patterning.
This forebrain, midbrain, and hindbrain specification was pre-
served prominently in astrocytes and indeed determined their
identity as distinct AST subclusters (Fig. 6f). This suggests that
heterogeneity in developmental origin might play a role in sub-
type specialization in addition to GM-WMdisparity in diversifying
astrocytes.

GM-glia share regulatory pathways, and WM-glia interact with
other resident cells more than GM-glia
The presence of gray-white matter segregation within some glial cell
types, together with the observation of transcriptional similarity across
glia within tissue types, led us to hypothesize that there might be reg-
ulatory programs that are shared by resident cells within the same
microenvironment to execute intercellular functions properly. We rea-
soned that the similarity of enriched genemodules among resident glia
might be due to the activation of common transcription factors. To
explore this possibility, we extracted and compared differentially
expressed transcription factors between matching GM-/WM-glia pairs
(MIC1/MIC3, OPC1/OPC3, and AST1/AST3). We found greater overlap in
differentially enriched transcription factors in GM-glia (15 overlapping
transcription factors) than in WM-glia (three overlapping transcription
factors). Interestingly, six transcription factors were shared across
all GM-glia, whereas no transcription factors were shared across allWM-
glia. GM-glia transcription factors (EGR1,HLF, PEG3,MYT1L,HIVEP2, and

BHLHE40) are known to restrict RNA biosynthesis, potentially explain-
ing the observation that GM-glia are low in RNA features compared to
their WM counterparts (Fig. 7a and Supplementary Fig. 40a).

Our observation of top-ranked GO terms that were similar among
GM-glia but not among WM-glia led us to seek a better method to
quantify this pattern systematically. We compared the similarity of
terms by calculating the Jaccard index between module pairs across
cell classes and visualizing their similarity as networks. Conformingly,
GO terms weremore similar among genemodules enriched in GM-glia
than other gene modules, and regulatory programs in GM-microglia
showed the highest similarity with those in GM-OPC (Fig. 7b and
Supplementary Fig. 40b).

We reasoned that this cross-cell-type enrichment of similar reg-
ulatory programsmight be achieved by close communication between
neighboring cells; therefore, we modeled ligand-receptor interactions
to test this hypothesis. To achieve this, we employed NicheNet
analysis59, which curates known ligand-receptor and receptor-target
relationships and ranks them based on the level of support in pub-
lished literature. We performed this analysis taking the subtypes of
microglia, OPC, and astrocytes that were primarily enriched in “GM”

(MIC1, OPC1, and AST1) and “WM” (MIC3, OPC3, and AST3) as “recei-
vers” and other cells in the same tissue type as “senders” (Fig. 8a). We
consistently foundmore, andmore unique, ligand-target pairs in “WM”

than in “GM,” and these were generated by a wider variety of sender
types (Fig. 8b, c, Supplementary Fig. 41, and Supplementary Data 3). In
“WM,” endothelial cells and astrocytes were the most frequently
observed additional sender types (Supplementary Fig. 41f, i, l). Astro-
cytes (4830 pairs) formed more ligand-target pairs than microglia
(2828 pairs) or OPC (1813 pairs). Among ligand-target pairs found

Fig. 7 | GM-glia share regulatory pathways and express fewer genes than WM-
glia. a Venn diagram showing shared, differentially expressed transcription
factors across GM-glia (left) and WM-glia (right). GO processes of the six shared
transcription factors in GM-glia. Heatmap showing expression of the six shared
transcription factors. Violin plot showing the number of differentially expressed
genes detected in each cluster, with median annotated. DE differentially

expressed. b Network plot showing the similarity of GO terms identified in each
gene module. Node size represents the number of significant GO terms found in
each gene module. Thicker edges reflect the higher similarity between two lists
of GO processes. Edges were filtered (Jaccard index >0.25), resulting in three
separate networks. The listed top GO terms are shared among GM-glia.
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shared in “GM” and “WM” (1753 for microglia, 1236 for OPC, 3015 for
astrocytes), certain senders were represented disproportionately to
their relative abundance (Figs. 1f, 3c, 4a and Supplementary Fig. 37c),
with microglia and OPC constituting the most common top-ranked
senders (Supplementary Fig. 42). This is consistent with prior reports
thatmicroglia andOPC can actively survey theirmicroenvironments in
both physiological and pathological conditions60,61.

GM- and WM-glia differentially contribute to neurological
disorders
Finally, we explored the possible functional significance of our
homeostatically defined subclusters as they might relate to patholo-
gical conditions. We reasoned that by examining the expression of
known disease-associated genes in our healthy marmoset tran-
scriptomic atlas, we might identify previously overlooked cellular
contributors to human neurological disease. Based on manually
curated information in the Ingenuity Pathway Analysis (IPA) database
(Supplementary Data 4), we sorted genes into lists, ordered them
based on the phenotypic similarity between disorders, and displayed
the number of candidate genes in each list that were unique or shared
across disorders; lists with <10 candidate genes were dropped for
simplicity (Fig. 9a). We examined the cellular enrichment of genes
associated with a spectrum of disorders using expression-weighted
cell-type enrichment (EWCE) analysis62. We calculated fold-change,
enrichment probability, and significance by comparison to gene
expression in 100,000 randomly selected lists of genes with matching
lengths from the background (Method).

Genes associatedwith an autism spectrumdisorder or intellectual
disability were enriched in both excitatory and inhibitory neurons63,64,
and there was a remarkably similar profile for seizures and schizo-
phrenia (Supplementary Fig. 43). Genes related to migraine were also
overrepresented in neuronal subclusters and notably absent from
vascular subclusters. Astrocyte contribution was highlighted, in addi-
tion to the involvement of pyramidal neurons, in Huntington’s disease,
independently supporting reports of glial involvement in its
pathogenesis65. In agreement with the view that neurovascular cou-
pling plays a role in neurological disorders, a gene list that is uniquely
shared by organic mental disorder, CNS tumor, and Huntington’s
disease (List.40) highlights the contribution of Pericyte2 (Supple-
mentary Fig. 43). Although it affects the peripheral nervous system
rather than the CNS, Charcot-Marie-Tooth disease mapped to oligo-
dendrocytes, possibly due to shared gene expression between central

and peripheral myelinating cells. Interestingly, we observed the
potential contribution of a subset of oligodendrocytes (OLI4–6) to
parkinsonism, consistent with recent reports from postmortem brain
transcriptomic data66.

Consistent with the microenvironment specialization of glia
reported here, we found examples in which genes associated with an
organicmental disorder were differentially expressed in GM-microglia
(MIC1) and GM-astrocytes (AST1) but not in their WM counterparts.
Genes associated with CNS tumor were enriched in WM-microglia
(MIC3) and WM-OPC (OPC3), but surprisingly not in astrocytes. By
contrast, all microglia subtypes (MIC1–MIC3), but not other cell types,
appear to contribute to multiple sclerosis pathogenesis (Fig. 9b),
consistent with results from genome-wide association studies67.
Interestingly, genes unique to CNS tumor and encephalitis (List.21) are
differentially enriched in MIC2, a less dominant GM-microglia that is
present in various proportions in microglia sampled from “WM”

(Fig. 3c and Supplementary Fig. 14a). Together, these results support
our contention that there is transcriptome diversity among GM- and
WM-glia, and that these variations are significant enough for specific
subtypes to be predicted to contribute differentially to various neu-
rological disorders.

Discussion
We have provided a resource and initial analysis for each major cell
class across 19 CNS tissue types. We observed the greatest GM-WM
spatial segregation in subclusters of microglia, OPC, and astrocytes.
GM-glia are generally naïve, protoplasmic, and enriched in GO terms
related to neuronal functioning, whereas WM-glia are more active,
fibrous, and enriched in GO terms related to morphogenesis and sig-
naling dynamics. We accumulated some evidence that WM-glia have
accrued additional features, are further advanced in the program of
specialization, and are more interactive than their GM counterparts.
This atlas, therefore, serves as a bridge between rodent and human
data that may prove useful for the understanding of the cellular and
molecular basis of human neurological disorders.

Although our study was carefully designed and executed, and
rigorous quality control steps were implemented at every stage of
the experimental and analysis pipeline, technical variation and arti-
facts remain intermingledwith biological effects. For example, spinal
cord samples were outside the region covered by the MRI atlas, and
results were derived from two libraries prepared with 10x v2 and 1
library with 10x v3 chemistry (fewer genes were recovered using v2

Fig. 8 |WMandGM resident cells diverge in intercellular activity. a Intercellular
communication in WM and GM microenvironments were modeled with NicheNet.
b Bar plot showing the number of established ligand-target paints that were unique

to or shared across GMandWM. cPie charts showing the sender cell types in Level 1
classes for ligand-target pairs that are unique to each environment.
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than from v3 on average). Additionally, while snRNA-seq has several
advantages, including higher tolerance for tissue processing, it cap-
tures only nascent RNAs and cannot interrogate locally enriched
species along neural cell processes. Another limitation is that anno-
tations for genes and transcripts, and associated functional terms,
are less complete for marmoset than for mouse or human, and some

annotations are inferred and might change in the future. We were
therefore relatively conservative in clustering and defining cell types,
and it is likely that further subclustering would have yielded more
distinct cell types.

We defined cell types and linked their molecular properties to
functions with more than one method, including pathway analysis,
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disease association mapping, and morphological analysis; however,
electrophysiological features remain unlinked. With respect to sam-
pling, although we profiled as many nuclei as possible in each round,
often <1% of nuclei were studied from each region (Supplementary
Fig. 1e), meaning that rare subclusters were probably missed. Addi-
tionally, given finite resources, we elected to sample the brain richly
rather than to include samples from additional marmosets, limiting,
for example, our ability to answer age-, sex-, or left-right asymmetry-
related questions. Instead, we performed associational analysis and
first highlighted shared features across coarse tissue types. Further
analysis in combinationwithdirect experimental tissue-level validation
is necessary to assess region-specific phenotypes in each fine
structure.

These limitations aside, the protocol described here is easily
adapted to other settings and allows nuclei to be mapped onto rela-
tively small regions to increase reproducibility and aid future valida-
tion studies. Our analysis, therefore, provides a framework for
understanding the diversity of cell types in the marmoset brain,
allowing us to form actionable hypotheses and laying the groundwork
for future studies.

Methods
Animals
Our CNS marmoset cell atlas was generated from two healthy, 5.5-year-
old common marmosets (Callithrix jacchus), one female (CJH01) and
one male (CJR02). Staining was done using 4 healthy 4–6-year-old
marmosets, two females (CJaT01 and CJaV02) and two males (CJaB03
and CJaD04). All marmosets were housed and handled with the
approval of the NINDS/NIDCD/NCCIH Animal Care and Use Committee
(ACUC). On the day of imaging, marmosets were anesthetized by
intramuscular injectionof 10mg/kg ketamine, intubated, and ventilated
with a mixture of isoflurane and oxygen during in vivo MRI scans. MRI
was performed on a 7T Bruker scanner to generate a series of proton
density-weighted images with a resolution of 0.15 ×0.15 × 1mm3 per
voxel and amatrix of 213 × 160× 36 per session68. The imageswere used
for volume reconstruction and anatomy identification. The volumewas
then used to create a custom-made brain holder by 3D printing (Ulti-
maker 2+) for each marmoset to guide ex vivo tissue sampling69. After
each in vivo scan section, marmosets were weaned from 2% isoflurane,
recoveredwith a lactated ringer injection subcutaneously, and returned
to their original housing.

Single-nucleus RNA sequencing (snRNA-seq)
Tissue dissection for nuclei isolation. On the day of tissue harvest,
marmosets were deeply anesthetized with 5% isoflurane until any
visible signs of breathing were no longer detected. Animals were
transcardially perfused with ice-cold artificial cerebrospinal fluid
(aCSF) for 5min with a pump. Brains were removed from the skull and
submerged into ice-cold aCSF, and after the removal of meninges
within the aCSF solution, were positioned in a custom-designed brain
holder within 10min post-perfusion. The brain was sectioned at 3mm
into 12–13 slabs in one step with a homemade blade-separator set in
the aCSF solution. Each brain slab was transferred into a 6-well plate,
submerged into RNAlater (RNAlater™ Stabilization Solution, AM7021,
Invitrogen) with a homemade brain trap, and stored at 4 °C overnight.
The followingday, brain slabswerepositioned in 25 × 20 × 5mmmolds

(Tissue-Tek® Cryomold®, 4557, Sakura Finetek) on ice to facilitate
target sampling. Slabswerematched toMRI for each animal, and tissue
annotation for gray54 andwhitematter55 was informedbymarmoset 3D
MRI atlases V1 and V2. A cylinder of tissue 2mm in diameter and 3mm
in height for each region (Fig. 1b and Supplementary Fig. 1) was col-
lected with a tissue punch (EMS-core sampling tool, 69039-20, EMS).
Therewerefivewhitematter samples from temporal andparietal lobes
that did not exactly match the two animals, however, they were paired
in lobes of the brain and showed no significant differences in sub-
sequent analysis (Fig. 1b, SS05, SS06, and SS08). The cylinders were
ejected into PCR tubes filled with 100 µL of RNAlater and stored at
−80 °C. The quality of RNAlater-preserved tissue was assessed by
measuring RNA Integrity Number (RIN) on the Agilent 2100 Bioanaly-
zer (G2939BA, Agilent). Bulk RNA was isolated with TRIzol™ Reagent
(15596026, Invitrogen) and measured with Agilent RNA 6000 Pico Kit
(5067-1513, Agilent); samples with RIN >8.5 were used in the study.

Single-nucleus dissociation. Nuclei preparation was carried out as
described70, with minor modifications. Briefly, on the day of dissocia-
tion, tissue samples were thawed on ice, removed from the solution,
dabbed with Kimwipes to remove residual RNAlater, and placed in a
1mL douncer tube (Dounce Tissue Grinder, 357538, Wheaton). Each
tissue was homogenized in 500μL of lysis buffer containing 400 units
of RNase inhibitor (RNaseOUT Recombinant Ribonuclease Inhibitor,
10777-019, Invitrogen) and 0.1% Triton-X100 in low sucrose buffer
(0.32M sucrose, 10mM HEPES, 5mM CaCl2, 3mM MgAc, 0.1mM
EDTA, and 1mM DTT in ddH2O, pH8) with loose pestle 25 times and
tight pestle ten times. The homogenate was filtered through a 40-μm
mesh (Falcon® 40 µmCell Strainer, 352340, Corning) to a 50-mLFalcon
tube on ice. An additional 5mL of low sucrose buffer was used to rinse
the douncer tube and cell strainer. The filtered homogenate was fur-
thermixedwith a handheld homogenizer (VWR®200Homogenizer) at
a speed of ~1000 rpm to brake nuclei clumps for 5 s. After homo-
genization, a serological pipet filled with 12mL of high sucrose buffer
(1M sucrose, 10mM HEPES, 3mM MgAc, and 1mM DTT in ddH2O,
pH8) was placed underneath the lysate and disconnected from the
pipettor, and the buffer was released from the serological pipette by
gravity and set on ice. When most of the high sucrose buffer was
released to form a density layer underneath the homogenate, the
serological pipetwas retrieved along thewall of the Falcon tubegently,
without disturbing the low-high sucrose interface. The Falcon tubewas
capped and placed in a swing bucket to be centrifuged at 3200× g for
30min at 4 °C. At the end of a spin, the supernatant was decanted
quickly without tabbing, and 1mL of resuspension buffer (0.02% BSA
in 1X PBS, pH7.4) containing 200 units of RNase inhibitor was added
to the Falcon tube to rinse the nuclei. Slow pipetting was employed to
resuspend nuclei along the Falcon tube wall below the 5-mL mark to
preserve nuclei integrity. Specifically, nuclei were rinsed off the wall in
courses of 2 s per trituration for 20 times total per tube. The Falcon
tubewas then capped and spun at3200×g for 10min at4 °C. At the end
of spin, the supernatant was removed by gently tabbing the tube until
no visible liquid drop was left behind, and 200μL of resuspension
buffer was added to each sample to collect the nuclei. The nuclei
suspensionwas filtered through a 35-μmmesh (Cell Strainer SnapCap,
352235, Corning) twice and counted on a hemocytometer by trypan
blue staining. During counting, the size and quantity of myelin and

Fig. 9 | GM- and WM-glia diverge in disease contribution. a Bar and UpSet plots
showing the overlap of genes associated with various neurological disorders as
defined in the Ingenuity Pathway Analysis (IPA) database. The number of genes is
listed next to the name of the disorder (bottom panel, y axis label). The number of
intersecting genes between indicated disorders (solid black dot and line), but not
shared by any other disorders (empty gray dot), is labeled and shown on the bar
graph (top panel). b Bar graph showing standard deviation (top) and fold-change
(bottom) of the enrichment probability for neurological disorder-associated genes

calculated by expression-weighted cell-type enrichment (EWCE) analysis, after
bootstrapping. Bar color represents the Level 1 cell class of origin. Genes annotated
in the IPA database associated with an organic mental disorder, CNS tumor, mul-
tiple sclerosis, and List.21 (27 genes, shared by encephalitis and CNS tumor but not
by other neurological disorders) were analyzed and plotted. The significance of
cell-type enrichment is denoted after Benjamini-Hochberg correction, *q <0.05
and °q <0.1.
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other debris were visually inspected under the scope, and the sus-
pension was filtered 1–3 more times through the 35-μm mesh if
necessary. Only round anddark-blue stainednuclei were consideredof
good quality and included in the final count.

cDNA library and sequencing. Most single-nucleus libraries (38) were
prepared using 10x Genomics Chromium Single Cell 3′ Library & Gel
Bead Kit v3, though four libraries were done in v2 chemistry following
themanufacturer’s protocol. Briefly, nuclei suspensionswereprepared
as described above anddilutedwith resuspension buffer to achieve the
desired concentration, and then loaded into Chromium Controller to
generate Gel-beads in Emulsion (GEM). For both cDNA amplification
and library sample index PCR, 12 cycles were used. Most libraries were
sequenced on Illumina Novaseq S2, but some used Illumina Miseq,
Hiseq 2500, or Hiseq 4000, according to themanufacturer’s protocol;
see Supplementary Fig. 2 and Supplementary Data 1 for details.

Alignment. The raw sequencing reads were aligned to a marmoset
genome assembly, ASM275486v1 (GCA_002754865.1). To build a
reference package suitable for analyzing both unspliced pre-mRNA
and mature mRNA in the nuclei, as well as to include sequences of
mitochondrial genome, marmoset DNA sequence (FASTA) and anno-
tation (GTF) files were acquired from the Ensembl release-95 and
modified as follows. The complete mitochondrial sequence
(NC_025586.1, GenBank) and its annotation71 were manually added to
the FASTA andGTF files. Next, a pre-mRNAGTFwasmade by replacing
“transcript” with “exon” as the feature-type entry in the original GTF
before making a reference package with CellRanger software (v3.0.2,
10x Genomics). This custom-built reference package was then used in
CellRanger (version 3.1.0, 10x Genomics) to align sequencing reads for
all samples. The option to estimate cell number automaticallywasused
for most of the samples, unless otherwise specified (see Supplemen-
tary Data 1 for details). A filtered cell barcode-to-gene feature matrix
was generated from the software and used for downstream analysis
(Supplementary Fig. 2a).

Preprocessing and quality control. The matrix was loaded to create
an object in Seurat v372. Cells with <200 genes, >5000 genes, or >5% of
counts mapped to the mitochondrial genome were excluded. Genes
observed in <5 cells were excluded. The filtered raw count matrix was
then log normalized (ln(counts × 100,000+ 1)) within each cell and
scaled to account for differences in sequencing depth with Seurat.
Next, DoubletFinder14 was used to estimate and remove putative
doublets to mitigate technical confounding artifacts in droplet-based
sequencing data analysis. The top 3000 variable genes calculated by
Seuratwere used in linear dimension reduction (principal components
analysis, PCA), and the top30principal components (PC)wereused for
clustering at low resolution (parameter = 0.4) to define coarse cell
types. These unsupervised clusters were used to provide a quick
cluster annotation for homotypic doublet probability modeling in
DoubletFinder. The doublet rate was estimated by fitting a linear
equation over a multiplet rate table provided by 10x Genomics. The
rate = (0.0008 × cell.number + 0.0527)/100) was used to calculate a
Poisson distribution with and without homotypic doublet proportion
to generate low confidence (DF.found.1) and high confidence
(DF.found.2) doublet annotation. Unless otherwise specified, pN =
0.25, pK =0.005, and automatic doublet removal based onDF.found.2
annotation were used, as the first line of screening.

In parallel, SoupX13 was used for ambient RNA background cor-
rection. Taken from the output of the 10x Genomics pipeline (raw_-
feature_bc_matrix), the ambient RNA from empty droplets that
contained <10 unique molecular identifiers (UMI) were profiled, and
the “soup” contamination fraction was calculated for each cluster.
Given that the nuclear transcriptomewas profiled, genes that mapped
to the mitochondrial genome could be considered as a marker of

ambient input. Specifically, the top mitochondrial genes (species with
>1000 accumulated counts across profiled empty droplets) were used
to estimate the global contamination fraction and adjust the raw count
matrix. Next, the cell barcode that passed the DoubletFinder was used
as an index to subset the SoupX-corrected matrix to generate a new
matrix as our downstream input (Supplementary Fig. 2a). For indivi-
dual samples, a Seurat object was created, and the index labels
(IL01_uniqueID, IL02_species, IL03_source, IL04_sex, IL05_ageDays,
IL06_tissue.1 (coarse category), IL06_tissue.2 (developmental cate-
gory), IL06_tissue.3 (fine category), IL07_location, IL08_condition,
IL09_illumina, IL10_chemistry, IL11_batch, IL12_LMinDays, IL13_LMax-
Days, IL14_dataset, IL15_annotation) were added to themetadata as cell
attributes. For each sample, 90% of nuclei were randomly selected,
then all 42 samples were merged for downstream comparison. The
remaining 10% of nuclei were set aside for classification assessment
and validation (Supplementary Fig. 8).

Clustering and visualization. Clustering was performed using Seurat,
iteratively with different parameter sets, to understand the data
structure. A merged Seurat object was created from the 42 samples,
and the aggregated raw count matrix was log-normalized and scaled
again as stated above.

Preliminary exploratory data analysis. The top 3000 variable genes
calculated by Seurat were used in PCA. In the first round of clustering
and visualization, 100 PC were computed and used for Harmony (v1)15

to integrate different samples, specifically variability over the IL01_u-
niqueID attribute, with default setting (theta = 2, lambda = 1, sigma=
0.1). The UMAP space and nearest-neighbor analyses were calculated
on the top 50Harmony embeddingswith resolutions from0.4–1.2. Cell
barcodes of a cluster of nuclei annotated as “low quality,” which resi-
ded at the center of the 2D UMAP (H50), were recorded; these nuclei
had a high percentage of readsmapped to themitochondrial genome,
low RNA counts and features, and/or expressed genes that mapped to
multiple canonical markers of different cell types. No single set of
parameters can adequately separate ~500K nuclei to identify sub-
clusters from all major cell types simultaneously, as either over-
splitting for low complexity cells (e.g., glia) or under-splitting for high
complexity cells (e.g., neurons) would result. Therefore, a stepwise
clustering approachwas used,wherebymajor cell classes (neurons and
oligodendrocytes, etc.) were first identified and then divided into
subclusters for each class (Fig. 2).

Level 1 quality control and analysis. To divide nuclei into classes and
facilitate artifact identification, nuclei were first classified using a set of
parameters that do not highlight granular detail. In this round of
clustering, only 50 PC for Harmony were computed to perform linear
correction over IL01_uniqueID, as the elbow plot from the preliminary
analysis showing the standard deviation stopped visually decreasing
after the top 50 PC. The top five Harmony-corrected embeddings (H5)
were used for Seurat to learn the UMAP and find cell classes at a low
resolution (0.2). Canonical cell-type markers (PTPRC for immune cells,
PDGFRA for OPC, MAG for oligodendrocytes, GFAP and SLC1A2 for
astrocytes, LEPR and CEMIP for vasculature and meningeal cells, and
CNTN5 and NRG1 for neurons) annotated 6 of the classes unambigu-
ously. One cluster in themiddle of theH5 UMAP hadmixed expression
of canonical markers, which suggested an artifact. The “low quality”
cell barcodes that were found from the H50 condition (defined above)
were overlaid on the H5 UMAP, which exclusively highlighted the
putative artifact cluster. These nuclei were removed from further
analysis, although the original UMAP embeddings weremaintained for
plotting purposes (Fig. 1e and Supplementary Fig. 4).

Level 2 quality control and analysis. Nuclei that passed Level 1 QC
were divided into five classes (MIC, OPC, OLI, VAS/AST, NEU) based on

Article https://doi.org/10.1038/s41467-022-33140-z

Nature Communications |         (2022) 13:5531 15



the H5 UMAP result. Astrocytes and vasculature/meningeal cells were
pooled into a single class prior to subclustering to facilitate artifact
identification (Fig. 2b). Shared features in this class of cells are
potentially explainable by their close association at CNS barriers
(blood–CSF, blood–brain, and CSF–brain interfaces). For each class,
log-normalization and scaling were repeated from the divided raw
count matrix, and the top 3000 variable genes were used for 50 PC
computation, Harmony correction over IL01_uniqueID, UMAP learn-
ing, and clustering, as described above. The clustering resolution was
iteratively increased from low to high (0–1.2), and clustering stability
was tracked with clustree (v0.4.3). NEU Level 2 clustering stability was
also tracked by calculating the Jaccard index at resolution 2 (res.2,
Supplementary Fig. 13a, b)42. Aided by the branch visualization pro-
vided by clustree, a tentative resolution that was relatively stable was
selected, then differentially expressed gene (DEG) analysis on the
clusters found with this parameter set was performed. The expression
patterns of the top-expressed genes for each cluster within and across
classes were checked, and artifact clusters were manually imputed.
Doublets tended to form small distinct clusters in the UMAP plots that
branched early in the clustering tree analysis with a low splitting
resolution, had mixed canonical marker-gene expression, and had
similar expression patterns to cells in other partitions; thus, these
doublets could be easily spotted and removed. For putative doublets
within each class, additional rounds of DEG analysis were performed as
necessary. Each time nuclei were removed, basic normalization, scal-
ing, Harmony, and UMAP learning were repeated. To control for over-
splitting, for clusters that appeared to be a single pile in the 2D UMAP
space but were annotated into >1 cluster, additional rounds of DEG
analysis were performed to see if binary labeling markers could be
found. In addition, clustering was projected onto a 3D UMAP space to
ensure effects were not masked due to overcrowding in 2D. This
strategy helped to further elucidate cluster associations, aid decision-
making with respect to groups of clusters that should be tested fur-
ther, and spot potential gradient changes among clusters. If unique
and/or binary patterns could not be found in the current splitting
resolution after these steps were performed, a step lower in resolution
on the clustering tree was examined, and the analysis was repeated.
The following compound naming convention to label the 87 sub-
clusters was used: general category in numeric order, major tissue or
location contributor for each cell type, andbinarymarker combination
where applicable.

Preparation of objects for cross-cluster analysis. Once the sub-
clustering and UMAP embedding were finalized for each cell class,
several annotated objects were created to facilitate downstream ana-
lysis and comparison. To enable cluster overview, compare global and
local gene expression, and classify the 10% set-aside data, an object
containing all 87 subclusters and 50nuclei per cluster was prepared by
random sampling (C50 object). For white and graymatter comparison,
4000nuclei were randomly sampled fromeach tissue type and pooled
into two objects (Fig. 2e), WM (containing 24,000 nuclei, including
fWM, tWM, pWM, aCC, pCC, and OpT) and GM (containing 20,000
nuclei, including fCTX, tCTX, pCTX, oCTX, and CgG).

Data visualization. Unless otherwise specified, gene expression values
in the dot plots and heatmaps were averaged, mean-centered, and z-
score-scaled (from −1.5 to +1.5, to which values below or above these
levels were assigned). Dot size indicates the percentage of nuclei in the
subcluster in which the gene was detected. Among the nuclei in which
a given gene was detected, the expression level was mean-centered
and scaled. For aggregated gene lists or gene module expression, a
relative color schemewasused to indicate the level of expression, from
low to high. For dendrogram creation, the top 50 enriched genes cal-
culated in Level 1 analysis were used to calculate Euclidean distances,
using “hclust(dist())” functions in R. To aid cluster tracking, branches

of the dendrogram were reordered and colored to show the origin of
cell classes while retaining the tree structure.

Pseudotime analysis
Monocle3 (v0.2.0) was used to construct nuclei trajectories based on
transcriptomic distance23. The OLI Seurat object with finalized UMAP
from Level 2 analysis was converted to a Monocle object. All index
labels and cell attributes, cluster assignment, and UMAP embeddings
were transferred. A partition was then assigned for each nucleus by
the cluster_cells() function, and a principal graph was fit within each
partition by the learn_graph() function. From the principal graph,
Monocle3 defined a unitless transcriptome progression along the
learned trajectory as “pseudotime.” The distance between two given
points along the trajectory path indicates the amount of expression
change required to connect the ends. The starting point of pseudo-
time is self-defined by the order_cells() function. Based on prior
knowledge48, the node at the side of the ENPP6high oligodendrocyte
cluster was selected as the starting point. To visualize gene expres-
sion dynamics along pseudotime, the plot_genes_in_pseudotime()
function was used to fit a spline using the following trend formula: “~
sm.ns(Pseudotime, df=3)”. The calculated pseudotime value was
extracted for further analysis as indicated in the figure legend
(cds@principal_graph_aux@listData[[“UMAP”]][[“pseudotime”]]).

Gene module analysis
Monocle3 was used to find and group genes by similarity along the
learned principal graph23. Genes that passed Moran’s I statistic spatial
test (<5% FDR) over the k-nearest-neighbor graph (Knn, k = 25), or
trajectory learned principal graph (PG) by Monocle3 graph_test()
function, were used for module assignment. Genes were grouped into
modules identified in each type of graph test by the find_gene_mo-
dules() function with a resolution of 10−3. The list of genes of each
module was then aggregated and added back to the Seurat object
through the AddModuleScore() function and visualized in Seurat v3.
Genes that mapped to the mitochondrial genome were dropped
before performing gene ontology and pathway analysis. See Supple-
mentary Data 2 for the full list.

Gene ontology (GO) and pathway analysis
The list of genes from the selectedmodules and/or DEG, discovered as
stated above, were used for various pathway analysis. The GO analysis
for marmoset was performed by gprofiler2 (v0.1.9)73 with the gost()
function. The database for “cjacchus” was used, electronic GO anno-
tations (IEA) were included, and g:SCS threshold was used formultiple
testing correction as suggested by gprofiler2. Three major sub-
ontologies—Molecular Function (MF), Biological Process (BP), and
Cellular Component (CC)—were included in the analysis. Additional
annotations from the KEGG and HP databases were included when
available. Terms that passed a significance cutoff of p =0.05 after
correction were filtered at the following criteria in case of over-
crowding. The parent terms were removed if child terms from the
same branch were present in the same list, and if the term had at least
one parent term in the database prioritized, as terms lower in each
branch are usually more specific and informative. For terms that pas-
sed filtering, the corrected p value and fold enrichment were plotted.
The fold enrichment was calculated as follows: (intersection_size/
query_size)/(term_size/effective_domain_size).

NicheNet ligand-receptor-target analysis
Potential intercellular communication in WM and GM was modeled
using nichenetr (v0.1.0)59 The cross-partition objects for WM and GM
generated as described above were used for this analysis (Fig. 2e).
Bioinformatic resources and protocols were modified from https://
github.com/saeyslab/nichenetr. Briefly, NicheNet studies intercellular
communication computationally by leveraging known ligand-to-
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receptor and receptor-to-target relationships in its database. It allows
the prediction of interactions between ligands expressed by “sender”
cells and receptors expressed by “receiver” cells, and models how
these interactions might drive gene expression changes in cells of
interests (target DEG in the receivers).

We hypothesized that differences between WM and GM might
partially explain tissue-type-specific subpopulations ofmicroglia,OPC,
and astrocytes. Therefore, NicheNet was used to test if transcriptome
changes between subclusters could be explained by environmental
signals from nearby cells. WM and GM differentially enriched micro-
glia, OPC, and astrocyte subpopulations were defined as receivers in
each test, and DEG betweenMIC1 andMIC3, OPC1 andOPC3, and AST1
and AST3 were derived. DEG were filtered at adjusted p value (<0.05)
and absolute log (ln) fold-change (>0.25). Potential senders were
defined from clusters with >50 nuclei in the same tissue type as each
receiver, and genes detected in >10% of the nuclei in a cluster were
kept for further analysis. Preconstructed databases were downloaded
for ligand_target_martix [https://zenodo.org/record/3260758/files/
ligand_target_matrix.rds], ligand_receptor_database [https://zenodo.
org/record/3260758/files/lr_network.rds], and weighted networks
[https://zenodo.org/record/3260758/files/weighted_networks.rds].
Gene names for these databases were built with human data, therefore
human genes with one-to-one orthologs were translated to marmoset
gene names with BioMart. The weighted ligand-receptor-target (LRT)
matrix was thereby constructed, with weighting factors implemented
so that informative data sourcesmaximized prediction accuracy in the
final model. The list of sources used to build this database and the
method to calculate the weighted scores have been specified59. After
“expressed ligands” were defined for senders and “expressed recep-
tors” for receivers (>10% detection rate), the existence of ligand-target
pairswasestablished. The ligand-target pairswere rankedbasedon the
presence of the target genes (defined by the receptor-target database)
in the calculated DEG using the predict_ligand_activities() function.
The filtered DEG present in the top 200 predicted target genes per
ligand were kept for further ligand-target analysis.

For visualization of this complicated intercellular interaction,
Circos plots were generated. First, the lists of ligand-target pairs inWM
and GM were compared and divided into three categories (GM, WM,
and shared), and a Venn diagram was generated for each type of
receiver (microglia, OPC, and astrocytes; Fig. 8c). The unique ligand-
target pairs for each environment were plotted in enlarged Circos
plots, and the shared ligand-target pairs in smaller Circos plots, for
categorical visual reference (Supplementary Fig. 41e, h, k, bottom
panels). The shared Circos plots were also enlarged to aid the visibility
of individual genes (Supplementary Fig. 42). Since any given ligand
might be expressed by >1 cell type, each ligandwas assigned to the cell
cluster that ranks highest in the product of detection rate (%) and
expression level (z-score scaled). Since the probability is low for any
ligand to be assigned to a particular cell type with this strategy, it is
sufficient to map intercellular interaction qualitatively and categori-
cally (see Supplementary Data 4 for full report). The senders by Level 1
classes (MIC, OPC, OLI, AST, VAS, and NEU) were colored, and pie
charts tabulating the proportion of unique (Supplementary Fig. 41)
and shared (Supplementary Fig. 42) ligand-target pairs were gener-
ated. For each Circos plot, up to 100 weighted ligand-target interac-
tions were presented to limit overcrowding. For shared ligand-target
pairs, an inter-categorical agreement was calculated and presented in
Sankey diagrams using the networkD3 (v0.4) package.

Gene set enrichment analysis
Themes were collected from the following sources, after which the
aggregated score was calculated by Seurat v3 AddModuleScore()
function. Gene groups included ion channels, scavenger receptors
(SCAR), and histocompatibility complex (HLA) from the HUGO Gene
Nomenclature Committee (HGNC). Cell-cycle genes were pulled from

the built-in gene list in Seurat (cc.genes.updated.2019) for S and G2M
phases. Genes enriched in the G0G1 phase44 and the list of human
transcription factors74 were informed by the literature. Neurological
disorder-associated genes were acquired from the database curated in
the Ingenuity Pathway Analysis (IPA) software. See Supplementary
Data 4 for the full gene lists.

Expression-weighted cell-type enrichment (EWCE) analysis
Cellular phenotypes of neurological disorders were calculated by
EWCE62. Briefly, the expression of a list of n genes associated with a
disease or disease category was compared with those in 100,000
randomly selected lists of n genes from the background. The propor-
tional expression of genes associated with each cell type was calcu-
lated to compute the probability of enrichment. Tested disease/
disease categories were: organic mental disorder, CNS tumor, cogni-
tive impairment, psychological disorder, autism spectrum disorder or
intellectual disability, Huntington's disease, Alzheimer's disease or
frontotemporal dementia, seizures, schizophrenia spectrum disorder,
encephalitis, cerebrovascular dysfunction, stroke, parkinsonism,
amyotrophic lateral sclerosis, multiple sclerosis, white matter
abnormality, migraine, Charcot-Marie-Tooth disease, abnormality of
meninges, and Zellweger syndrome. After Benjamini-Hochberg cor-
rection, the significance of cell-type enrichment was denotedwith * for
q <0.05, and ° for q < 0.1

Cross-cluster comparison and validation
Comparison between marmoset subclusters. The C50 object was
used to assess transcriptomic similarity across all 87 subcluster pairs.
The expression levels of all genes within each subcluster were nor-
malized and averaged before calculating the linear correlation. The
lm() function was used in R, and the adjusted r2 values were extracted
for heatmap plotting. Similarly, the transcriptomic distances between
all subcluster pairs were assessed by counting the number of DEG,
both increased and decreased, between them. DEG were filtered by
their log (ln) fold-change (>0.25) and detection frequency (detected in
≥10% of nuclei).

Comparison between clusters from different species. Deposited
data from zebrafish, mouse, and humans (Table 1) were reanalyzed.
The top 3000 variable genes were used to calculate 50 PC and har-
monized over sample ID if available in the deposited data. Gene names
for each species were translated to human gene names using the one-
to-one orthologs index with BioMart. The expression levels of all
humanized genes within each compared cluster were normalized and
averaged before calculating the Pearson’s correlation coefficients,
which were used for heatmap plotting.

Comparison between cleaned classifiers and semi-cleaned 10%
set-aside data. To assess the reproducibility of our derived sub-
clusters, the C50 object was used as an unbiased classifier to annotate
the 10% of nuclei that hadbeen set aside a priori, as described above. A
total of 61,852 nuclei were compared. The nuclei were intentionally
over-split using the top 5000 variable genes (maximum gene number
detected per nucleus) to calculate 100 PC, harmonized over IL01_u-
niqueID labels. All 100 Harmony embeddings were used to compute
UMAP and nearest-neighbor distances with extremely high resolution
(12; normal suggested resolution range is 0.4–1.2). A total of 140
clusters were found, and the expression levels of genes within each
cluster were normalized and averaged before calculating the Pearson’s
correlation coefficients across each pair of subclusters in the two
datasets, which were used for heatmap plotting.

Histology
H&E staining. Sections used for histologywere archival formalin-fixed,
paraffin-embedded (FFPE) contained in an in-house marmoset tissue
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library. Serial sections were cut at 5 µm from the brain and spinal cord
tissue blocks from each animal using a Leica RM2235 Manual Rotary
Microtome. Sections were mounted onto Superfrost+/Colorfrost+

microslides (Daigger, 75mm× 25mm, #EF15978Z) and stored at room
temperature. Before staining, sectioned slides were deparaffinized
with xylene three times for 5min each, rehydrated with EtOH (100, 70,
50% for 5min each), and rinsed in DI H2O for 5min at RT. Hematoxylin
& eosin staining was subsequently performed. Hematoxylin (baso-
philic) stains nucleic acids and nuclei purple, whereas eosin (acid-
ophilic) stains cytoplasmic components of the cell pink. For
hematoxylin staining: slides were dipped one-by-one in hematoxylin
(Leica, 100% Surgipath SelecTech Hematoxylin 560MX, 3801575) for
1min and immediately placed in running tapwater to stop the reaction
and rinse off excess stain. Slides were then dipped one-by-one for 30 s
in the Define solution (Leica, Surgipath SelecTech Define MX-aq,
3803598) to reduce the intensity of hematoxylin and immediately
placed in running tap water to stop the reaction. Sections were dipped
one by one in Blue Buffer solution (Leica, Surgipath SelecTech Blue
Buffer 8, 3802918) for 1min to change tissue color to blue. This reac-
tion was stopped by placing slides in 80% ethanol for 1min. For eosin
staining: slides were dipped together for 30 s in eosin (Leica, Surgipath
SelecTech Alcoholic Eosin Y 515, 3801615) and put in 100% ethanol for
1min, three times. Coverslips weremounted on slides right away using
VectaMount Permanent Mounting Medium (Vector Laboratories, #H-
000-60).

Immunostaining. For immunostaining, deparaffinized and rehydrated
slides were submerged in 1X antigen retrieval solution (AG unmasking
solution, H-3000, Vector) and placed in a tissue streamer for 2 h to
perform heat-induced epitope retrieval (HIER). At the end of HIER,
sections were left cooled for 10min inside the steamer. The sections
were transferred to 1X TBS (pre-cooled at 4 °C) for 5min, then blocked
for endogenous peroxidase by submersion in 3% H2O2 for 10min, and
then rinsed in 1X TBST (0.05% tween 20 in 1X TBS) for 1min at room
temperature (RT). A parafilm pan was used to demarcate the sur-
rounding of each section after removing excess liquid with Kimwipes,
and 200μL of blocking solution (Protein block, serum-free, X090930-
2, Dako) was applied per section for 30min at RT. Primary antibodies
were diluted in antibody diluent (S080983-2, Dako) and applied to
sections overnight at 4 °C. Sections were rinsed in 1X TBST once for
1min, then twice for 5min, and appropriate secondary antibodieswere
applied for 30min at RT. Sections were rinsed in 1X TBST once for
1min, then twice for 5min, and 200μL of immunoperoxidase devel-
opment solution (DAB Substrate Kit, ab64238, Abcam) was applied
per section for 45 s at RT. Chromogenic reactions were stopped by
switching toDIwater, and sectionswere rinsedwith tapwater for 5min
at RT. For double staining, 200μL of alkaline phosphatase substrate
solution (Vector® Blue Substrate Kit, SK-5300, Vector) was applied to
each section for 5min at RT. Chromogenic reactions were stopped by
switching toDIwater, and sectionswere rinsedwith tapwater for 5min
at RT. The following antibodies were used: mouse anti-PLP (Bio-Rad,
MCA839G, 1:200), rabbit anti-IBA1 (Wako, 019-19741, 1:200), mouse
anti-IBA1 (Sigma, SAB2702364, 1:100), rabbit anti-SLC15A1 (Sigma,
HPA002827, 1:100), rabbit anti-OLIG2 (Chemicon®, AB9610, 1:200),
rabbit anti-GFAP (Dako, Z033429-2, 1:200), PV Poly-HRP Anti-Rabbit
IgG (Leica, PV6119, 1:1), PV Poly-HRP Anti-Mouse IgG (Leica, PV6114,
1:1), ImmPRESS®-AP Horse Anti-Rabbit IgG Polymer (Vector, MP-5401-
50, 1:1), ImmPRESS®-AP Horse Anti-Mouse IgG Polymer (Vector, MP-
5402-50, 1:1), Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary
Antibody, Alexa Fluor 594 (Invitrogen, A-11012, 1:400).

Fluorescence in situ hybridization (FISH). For FISH, HIER-treated
slides as described above were submerged in 1X PBS for 5min, then
treated with 10μg/mL proteinase K (Proteinase K, recombinant, PCR
Grade, Roche, 03115879001) for 10min at 37 °C. At the end of

incubation, slides were rinsed in 1X PBS for 1min, submerged in fresh
1X PBS for 5min, and rinsed in 1X TBST for 1min at RT. A parafilm pan
was used to demarcate the surrounding of each section after removing
excessive liquid with Kimwipes. In the case of combining immuno-
fluorescence staining and FISH, 200μL of blocking solution was
applied per section for 30min at RT, and primary antibodies were
diluted in antibody diluent and applied on sections overnight at 4 °C.
Sections were rinsed in 1X TBST once for 1min, then twice for 5min,
then post-fixed with 4% PFA (made from 32% paraformaldehyde aqu-
eous solution, 15714-S, Electron Microscopy Sciences, in 1X PBS) for
10min at RT. Slides were rinsed in 1X PBS for 1min, then submerged in
fresh 1X PBS twice for 5min, prior to FISH. Slides were incubated at
37 °C for 10min with a 30% probe hybridization buffer constituted of
30% formamide (F9037, Sigma-Aldrich), 5XSSC (46-020-CM,Corning),
9mMcitric acid (C0706, Sigma-Aldrich), 0.1% Tween 20 (1610781, Bio-
Rad), 50μg/mL heparin (H3393, Sigma-Aldrich), 1X Denhardt’s solu-
tion (D2532, Sigma-Aldrich), and 10% dextran sulfate (D8906, Sigma-
Aldrich) in ddH2O. At the end of pre-hybridization, excess hybridiza-
tion buffer was removed by blotting the edges on Kimwipes.

HCR probe set (Hybridization chain reaction v3.0)75 (targeting
marmosetOLIG2 (PRL850, Molecular Instruments) andMUSK (PRI863,
Molecular Instruments) were prepared in a 30% probe hybridization
buffer. In a leveled and humidified chamber, 1.2 pmol probe solution
(250μL per brain section) was applied onto a slide, covered with a
parafilm, and then incubated overnight at 37 °C. At the end of incu-
bation, the parafilm was floated off by submerging the slide in 30%
probe wash buffer (30% formamide, 5X SSC, 9mM citric acid, 0.1%
Tween 20, 50μg/mL heparin in ddH2O) at 37 °C. After parafilm
removal, slides were incubated with 75%, 50%, and 25% serial diluted
30% probe wash buffer in 5X SSC-Tw containing 0.1% Tween 20 for
15min each at 37 °C. Slides were then brought to RT and submerged
with 100% 5X SSC-Tw for 5min and dried by blotting the edges with
Kimwipes. In a humidified chamber, 200μL of amplification buffer (5X
SSC, 0.1% Tween 20, and 10% dextran sulfate in ddH2O) was applied to
the slide and incubated for 30min at RT. Snap-cooled (heat to 95 °C for
90 s and cool to RT for 30min) hairpin H1 andH2were kept in the dark
chamber and reconstituted in 150μL of amplification buffer. Excessive
amplification buffer was removed from the slide by blotting the edges
with Kimwipes, and 150μL hairpin solution was applied onto each
section and coveredwith parafilm overnight at RT in a humidified dark
chamber. At the end of incubation, the parafilm was floated off by
submerging the slide in 5X SSC-Tw at RT, and the excessive hairpin
solution was removed by incubating the slide in 5 C SSC-Tw 3 times for
15min each at RT. In the case of combining immunofluorescence and
FISH, slides were incubated with matching Alexa-conjugated second-
ary antibody were prepared in antibody diluent for 1.5 h at RT. At the
end of incubation, sections were rinsed in 1X TBST once for 1min, then
twice for 5min. Sections were then incubated with 1X PBS for 5min
before applying TrueBlack Lipofuscin Autofluorescence Quencher
(23007, Biotium) for 5min at RT to reduce background. Sections were
rinsed in 1X PBS twice for 1min, then once for 5min. The excessive
liquidwas removed by suction, 50μL ofmounting solution with nuclei
stain (DAPI Fluoromount-G®, 0100-20, SouthernBiotech) was applied,
and the slide was covered with glass (Premium Cover Glasses,
EF15972L, Daigger Scientific).

Microscopy and cell quantification
On hematoxylin & eosin-stained slides from each animal, boxes were
drawn around each 2-mm area of interest in the brain and spinal cord.
Each region was imaged at 10X magnification with a Nikon Eclipse Ci
microscope. The number of cells in each area of interest was counted
using Fiji ImageJ. A color image threshold of 0–165 was chosen to
highlight an optimal number of cells and limit the number of falsely
identified cells. Using the “Analyze Particles” function, the number of
cells at the chosen thresholdwas counted automatically, with the pixel
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size range set to 20–200, and the circularity range to 0.25–1.00, to
exclude as much background noise and as many linear particles as
possible. After the automatic counting, falsely identified cells were
manually deleted, and a new count was saved. Additional cells not
detected by the automatic counter were manually added using the
CellCounterplugin. Afinal imagewith automatic andmanual cell count
markers was saved, and the total number of cells (including manual
deletions and additions to the automatic count) was recorded. Cell
counts were normalized to the imaged area to get the density of nuclei
per tissue type in each animal. The averaged nuclei density per mm2 in
each tissue type was then quantified. To estimate the initial number of
nuclei for single-nucleus sequencing per cylinder of 2mm diameter
and 3mm height (V= 3π µL), the averaged 2D density measured from
hematoxylin & eosin-stained sections was used after multiplication by
section thickness (5 µm). The percentage of nuclei recovered after
Level 1 quality control for each sample was then plotted, each circle
representing the percentage of one sample (Supplementary Fig. 1e).

For particle and morphology analysis, slides with PLP1/IBA1 dou-
ble staining were imaged at 20X with Nikon Eclipse Ci microscope and
analyzed with Fiji ImageJ. The color image was split into RGB channels,
thresholding was done on the blue channel to highlight the IBA1+ area,
and the “Fill Holes” function, located under the Process-Binary tab,was
applied to the image. Areas with artifacts, such as tissue folding, were
manually corrected on the binary image. The “Find Connected
Regions” function, located under the Plugins-Process tab, was then
applied with the following parameters: allow a diagonal connection,
display one image for all regions, display results table, and minimum
number of points in a region >450. In parallel, the “Analyze Particles”
function, under Analyze tab, was applied to the artifact-corrected
binary image, through which count, area, perimeter, and circularity
were recorded to quantify the morphology of IBA1+ cells (Fig. 3f–h).

For fluorescent imaging, slides stained with anti-OLIG2 (Alexa-594
nm), HCR-OLIG2 (Alexa-488 nm), HCR-MUSK (Alexa-647 nm), andDAPI
were imaged at 40X (ECPlain-Neofluar40x/1.30Oil DICobjective)with
LSM 880 (AxioObserver, Zeiss) laser scanning confocal microscope
equipped with 405 nm diode, 488 nm argon, 594 nm HeNe, and
633 nmHeNe lasers. A single imagewas takenwith 0.21-µmpixel size, 2
averaging, and 0.85 airy unit. Pseudocolors were assigned to each
channelwith detectionwavelength 415–467 nm in blue, 490–553 nm in
green, 597–642 nm in white, and 642–695 nm in red.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed datasets are submitted to Gene Expression
Omnibus (GEO) under session GSE165578. Data can also be visualized
at https://cjpca.ninds.nih.gov. Source data are provided with this
paper. Databases and datasets used in the study are listed in “Table 1”
also with the following accession codes and links: GSE121654,
GSE132166, GSE75330, SRP135960, GSE52564, phs001836, GSE97930,
GSE104525, GSE73721, GSE118257, GSE180759, Marmoset Gene Atlas
[https://gene-atlas.brainminds.riken.jp/], and Marmoset Brain Map-
ping [https://marmosetbrainmapping.org/].
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