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Abstract. Fine particulate matter (PM2.5) has become an impor‑
tant risk factor threatening human health. Epidemiological 
and toxicological investigations have revealed that PM2.5 not 

only leads to cardiovascular dysfunction, but it also gives rise 
to various adverse health effects on the human body, such as 
cardiovascular and cerebrovascular diseases, cancers, neuro‑
developmental disorders, depression and autism. PM2.5 is able 
to penetrate both respiratory and placental barriers, thereby 
resulting in negative effects on fetal development. A large 
body of epidemiological evidences has suggested that gesta‑
tional exposure to PM2.5 increases the incidence of congenital 
diseases in offspring, including congenital heart defects. In 
addition, animal model studies have revealed that gestational 
exposure to PM2.5 can disrupt normal heart development in 
offspring, although the potential molecular mechanisms have 
yet to be fully elucidated. The aim of the present review was to 
provide a brief overview of what is currently known regarding 
the molecular mechanisms underlying cardiac developmental 
toxicity in offspring induced by gestational exposure to PM2.5.
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1. Introduction

Environmental fine particulate matter of diameter ≤2.5 µm 
(PM2.5) possesses small volume, large surface area, and is 
able to absorb harmful substances. It is a mixture consisting 
of various particles including organic, inorganic, metal 
and trace elements, and has become an important risk 
factor threatening human health (1,2). There is evidence 
to suggest that the toxicity of PM2.5 varies depending on 
its components (3‑5). The organic compounds in PM2.5, 
including polycyclic aromatic hydrocarbons (PAHs), have 
attracted widespread attention due to their association with 
developmental toxicity (6). Moreover, PM2.5 can easily 
enter the circulatory system and cross the placental barrier, 
thereby exerting negative impacts on fetal development (7). 
Congenital heart defect (CHD), the most common congenital 
defect in humans, accounts for ~1% of all live births (8). 
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As the first organ to form, the heart is extremely sensitive 
to environmental stress during embryonic development (9). 
The exact mechanisms underlying CHD have yet to be fully 
elucidated, although they are currently considered to arise 
as a consequence of the combination between genetic and 
environmental factors (10). Gestational exposure to PM2.5 has 
been reported to be closely correlated with the occurrence of 
CHD in offspring (11‑14). PM2.5 is one of the major air pollut‑
ants in the world, posing a huge threat to human health. It is 
estimated that air pollution caused 9 million premature deaths 
in 2015, accounting for 16% of the global death toll, with 1.2 
million deaths induced by PM2.5. In fact, environmental pollu‑
tion has become the leading cause of reversible death and 
disability resulting from cardiovascular diseases or cancers. 
Animal studies have also demonstrated that exposure to PM2.5 
can significantly increase the incidence of cardiac abnormali‑
ties in mice, chickens and zebrafish (15‑17). Only 10‑25% of 
the total cases of CHD have been demonstrated to be caused 
solely by genetic factors, with the majority of the cases being 
associated with external factors (18). Recent investigations 
by Yan et al (19) have summarized five primary mecha‑
nisms through which PM2.5 affects adverse birth outcomes: 
Transcriptional and translational regulation, oxidative stress 
(OS) and inflammatory responses, and epigenetic regulation. 
While the present study review provides valuable insights 
into the broader developmental toxicity of PM2.5, it offers a 
limited focus on the specific cardiac effects. Feng et al (20) 
systematically reviewed the molecular and pathophysiological 
mechanisms by which PM2.5 impacts the cardiovascular 
system, encompassing metabolic activation, OS, genetic 
toxicity, inflammation, Ca2+ dysregulation, autophagy inter‑
ference and apoptosis induction. Additionally, Liang et al (21) 
proposed an adverse outcome pathway framework to eluci‑
date the relationship between PM2.5‑induced molecular events 
and adverse cardiac outcomes, suggesting that excessive 
reactive oxygen species (ROS) generation and activation of 
aromatic hydrocarbon receptors (AhR) are critical initiating 
events (21). These events lead to OS, endoplasmic reticulum 
stress (ERS), DNA damage, inflammation and activation of 
the Wnt/β‑catenin pathway, ultimately resulting in apoptosis 
and impaired cardiomyocyte differentiation.

Despite significant advances in understanding PM2.5's 
cardiac developmental toxicity, there remains a notable defi‑
ciency in research focusing on the specific components of 
PM2.5 that drive these detrimental effects. The mechanisms 
through which gestational exposure to PM2.5 induces cardiac 
developmental toxicity require further elucidation, and our 
current understanding remains limited. Therefore, it is essen‑
tial to explore strategies for preventing and controlling PM2.5 
exposure and to investigate the underlying mechanisms of 
its cardiac developmental toxicity. The present review aimed 
to highlight the need for further research on the specific 
components of PM2.5 that drive cardiac developmental 
toxicity. These mechanisms were detailed and the sources 
and components of PM2.5 were linked with their corre‑
sponding pathways of action, enhancing the understanding 
of PM2.5‑induced cardiac developmental toxicity. Finally, 
mitigation strategies to reduce health risks associated with 
PM2.5 exposure were discussed and future perspectives on 
these strategies were outlined.

2. Cardiac developmental toxicity of PM2.5

Previous epidemiological studies on the association between 
PM2.5 exposure and CHD have yielded inconsistent conclu‑
sions (12,22‑26), probably due to the heterogeneities of the 
studies concerned. Existing evidence suggests that the associa‑
tion between PM2.5 and CHD is mainly focused on pregnant 
women exposed to PM2.5 between the second and seventh week 
of pregnancy, a critical period for cardiac development (27). 
Furthermore, pro‑gestational exposure to PM2.5 is also detri‑
mental for pregnant women and infants (28). It is worth noting 
that maternal exposure to PM2.5 increases the risk of CHD 
in offspring, with the most susceptible time windows being 
7‑12 weeks before pregnancy and 3‑9 weeks after pregnancy, 
demonstrating the especially adverse effects of PM2.5 exposure 
on the risk of developing CHD with respect to cardiac devel‑
opment during these two critical periods (29). Several studies 
that have explored the association between gestational PM2.5 
exposure and CHD subtypes are presented in Table I.

3. Potential mechanisms underlying the cardiac developmental 
toxicity of PM2.5

Interference with genes associated with cardiac development. 
As transcription factors, GATA4 and NKX2.5 perform crucial 
roles in fetal cardiac development. Gestational PM2.5 exposure 
may increase the risk of GATA4 and NKX2.5 mutations, 
directly causing fetal cardiac abnormalities. Wu et al (30) 
found that gestational PM2.5 exposure leads to cardiac hyper‑
trophy with elevated mRNA levels of GATA4 in offspring 
mice. Moreover, the important regulatory role of GATA4 
in signaling pathways involved in cardiac development has 
been confirmed (31,32). It has been revealed to regulate the 
expression of key downstream genes involved in cardiac cell 
proliferation, development and hypertrophy, including ANP, 
CARP, a‑MHC and β‑MHC (32).

As a key factor in myocardial formation, the downregulation 
of GATA4 leads to an increase in the risk of cardiac structural 
abnormalities and cardiovascular malformations in the fetus. 
Inhibition of GATA4 in the early stage of cardiac development 
has been revealed to be associated with myocardial hypoplasia 
and CHD, whereas its inactivation in the late stage of cardiac 
development leads to decreased cardiac function (32). GATA4 
is involved in normal cardiac development, functional gene 
expression, and the pathological processes of cardiac hyper‑
trophy. It has been recognized as a key effector mediating 
cardiac gene transcription in response to hypertrophic stimuli. 
In addition, during myocardial hypertrophy, GATA4 serves 
as a molecular ‘bridge’ connecting multiple nuclear factors, 
including myocyte enhancer factor 2C (Mef2c), Nkx2.5 and 
AP1 (33,34).

Dysfunction of genes associated with heart function. In 
addition to the importance of the concentration of PM2.5, 
specific chemical components therein may exert more critical 
and important roles in the negative effects on health (35). 
Although heavy metals and PAHs only account for a small 
proportion of the PM2.5 mass, their potential toxicity should 
not be underestimated. PM2.5 exposure elicits stronger effects 
on the expression of cardiac genes than it does on genes in the 
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lung, especially those genes associated with collagen, laminin 
and calcium (Ca2+) signaling (36). PM2.5 exposure leads to 
elevated levels of several genes associated with collagen depo‑
sition, including collagen type I, α1, Col3α1 and transforming 
growth factor β1 (TGFβ1) (37). Cardiac fibrosis is associated 
with an imbalance between the generation and degradation 
of extracellular matrix, resulting in the accumulation of scar 
tissue; consequently, PM2.5‑induced cardiac fibrosis reduce the 
compliance of the extracellular matrix, impairing the cardiac 
capability to contract and relax normally. Qi et al (38) reported 
that PM2.5 and its water‑soluble components associated with 
transportation induce cardiomyocytes dysfunction through 
ERS and autophagy. In this regard, heavy metals and PAHs in 
PM2.5 may be the primary influencing factors (38). In addition, 
the impact of PM2.5 exposure on cardiac function has been 
revealed to be seasonal, as levels of locally sourced elements 
in PM2.5 demonstrate significant seasonal changes (39). In 
summer, the emissions of iron (Fe), lead (Pb) and zinc (Zn) 
from steel plants, as well as Fe, titanium (Ti), chromium (Cr), 
manganese (Mn) and arsenic (As) from automobiles, have 
been revealed to be significantly associated with a reduction of 
the standard deviation of the mean to mean intervals (36). By 
contrast, in winter, elements such as barium (Ba), Zn, As and 
rubidium (Rb) were revealed to be correlated with an increased 
heart rate (39). Moreover, an association between an increased 
heart rate, albeit with decreased heart rate variability, was 
observed with nickel (Ni) and element carbon (40,41).

Ca2+ ions act as an important mediator in maintaining the 
normal contraction and relaxation of the heart, and numerous 
studies have identified calmodulin as an important target 
for cardiac dysfunction. After uterine exposure to PM2.5, 

significant changes in the levels of Ca2+‑regulatory proteins, 
including sarcoplasmic/endoplasmic reticulum Ca2+‑ATPase 
2A (SERCA2A), sodium (Na+)/Ca2+ exchanger (NCX) and the 
voltage‑gated Ca2+ channel (Cav1.2), were observed in fetal 
mice hearts on day 14 following pregnancy (42). Newborn 
mice exposed to PM2.5 during pregnancy experience cardiac 
dysfunction due to changes in Ca2+‑processing proteins that 
are associated with downregulated levels of NCX and CaV1.2 
in the heart. Furthermore, in a study on heart failure in rabbits, 
inhibition of NCX led to a reduction in the burden of premature 
ventricular beats, although there was no resultant inhibition 
of secondary Ca2+ elevation. As a compensatory mechanism, 
the levels of Serca2A and phosphorylated phospholamban 
were found to increase to cope with higher intracellular Ca2+ 
concentrations. The cardiac action potential performs a crucial 
role in cardiac synchronization, as it is regulated by cardiac 
ion channels such as voltage‑gated Na+ and potassium (K+) 
channels (43). Park et al (44) found that exposure to particulate 
matters induced the abnormal expression (downregulation) of 
fetal heart ion channel‑associated genes, including scn5lab, 
kcnq1 and kcnq1.

OS. OS, caused by free radicals, serves as a key factor 
leading to cellular and tissue oxidative damage, as well as 
being a major driver of aging and various diseases. ROS are 
the most important free radical that cause oxidative damage 
to the body. OS is the most common mechanism underlying 
PM2.5‑induced damage (45,46). Transition metals [Fe, Cu and 
Mn] and organic compounds from PM2.5 are able to induce 
the production of ROS and reactive nitrogen species (RNS), 
and the ability of PM2.5 to induce ROS has been significantly 

Table I. Associations between PM2.5 exposure and congenital heart defects subtypes.

First author, year CHD subtype Case number Exposure period Adjusted OR (95% CI) (Refs.)

Yang et al, 2021 VSD 2131 First trimester 0.98 (0.89‑1.09) (255)
Agay‑Shay et al, 2013  493 Continuous exposures 0.88 (0.77‑1.02) (22)
Schembari et al, 2014  106 Weeks 3‑8 of pregnancy 0.49 (0.28‑0.89) (25)
Girguis et al, 2016  864 Weeks 3‑7 of pregnancy 1.08 (0.86‑1.37) (23)
Huang et al, 2019  218 Weeks 3‑8 of pregnancy 1.15 (0.94‑1.40) (12)
Lavigne et al, 2019  326 Weeks 2‑8 of pregnancy 1.99 (1.04‑3.82) (24)
Yang et al, 2021 ASD 1475 First trimester 0.82 (0.73‑0.92)  (255)
Agay‑Shay et al, 2013  534 Continuous exposures 0.95 (0.89‑1.01) (22)
Girguis et al, 2016  864 weeks 3‑7 of pregnancy 1.09 (0.86‑1.37) (23)
Huang et al, 2019  147 Weeks 3‑8 of pregnancy 1.31 (1.01‑1.69) (12)
Lavigne et al, 2019  581 Weeks 2‑8 of pregnancy 1.49 (0.93‑2.39) (24)
Yang et al, 2021 TGA 284 First trimester 1.32 (1.02‑1.70) (255)
 ToF 209 First trimester 1.04 (0.77‑1.39) 
Girguis et al, 2016  153 Weeks 3‑7 of pregnancy 1.00 (1.59‑1.71) (23)
Huang et al, 2019  123 Weeks 3‑8 of pregnancy 1.11 (0.85‑1.45) (12)
Yang et al, 2021 vPS 171 First trimester 0.83 (0.60‑1.14) (255)
 AVSD 136  1.19 (0.82‑1.72) 
 DORV 121  2.14 (1.43‑3.22) 

VSD, ventricular septal defect; ASD, atrial septal defect; TGA, d‑transposition of the great arteries; ToF, tetralogy of Fallot; vPS, valvular 
pulmonary stenosis; AVSD, atrioventricular septal defect; DORV, double outlet right ventricle; CHD, congenital heart defect.

https://www.spandidos-publications.com/10.3892/etm.2024.12756


MENG et al:  PM2.5‑INDUCED CARDIAC DEVELOPMENTAL TOXICITY4

correlated with the concentrations of PAHs and specific transi‑
tion metals therein (47). PM2.5 may induce OS in target cells 
through a variety of pathways. First, PM2.5 contains persistent 
free radicals that are found in the environment, especially 
combustion‑derived particles (48). Secondly, numerous 
organic compounds from PM2.5 can be metabolized into reac‑
tive electrophilic metabolites, which thereby induce the further 
generation of ROS (49). Thirdly, transition metals can induce 
ROS through the Fenton reaction (50). Finally, OS may also be 
caused by the PM2.5‑mediated activation of inflammatory cells, 
which are able to produce both ROS and RNS (51). On the 
other hand, PM2.5 may also decrease the cellular antioxidant 
capacity through downregulating the expression of antioxi‑
dant enzymes, such as superoxide dismutase and glutathione 
metabolizing enzymes (52). ROS react with biomolecules such 
as proteins and DNA, resulting in various adverse effects on 
cells, including the disruption of their structure and func‑
tion, which ultimately leads to damage to target cells and 
tissues. Two pathways are mainly involved in the pathogenic 
mechanisms underlying: One is gene damage resulting from 
genetic mutations, and the other is damage that is caused to the 
cell membrane, which results in changes in its permeability 
through lipid peroxidation, leading to physiological changes 
such as inflammation.

The embryonic development of both humans and zebrafish 
is abnormally sensitive to OS induced by ROS, and excessive 
ROS production is considered one of the factors contributing 
to CHD (53,54). Ren et al (55) demonstrated that extractable 
organic matter (EOM) from PM2.5 is able to induce ROS 
production, thereby increasing the levels of nuclear factor 
erythroid 2‑related factor 2 (Nrf2) signaling pathway‑associ‑
ated genes [namely, SOD2, glutathione S‑transferase (GST)
P1/2, catalase (CAT) and heme oxygenase‑1 (HO‑1)], with the 
Nrf2 signaling pathway being the major pathway that is acti‑
vated by OS. 2,3,7,8‑Tetrachlorodibenzo‑p‑dioxin (TCDD), 
an AhR agonist, was revealed to cause an upregulation of the 
protein levels and activity of Nrf2 in mice (56). The presence 
of multiple AhR‑binding elements located in the promoter 
and first intron of Nrf2a and Nrf2b suggests that AhR exerts 
a regulatory role with respect to their transcription (57). 
According to other research results, OS, in turn, may inhibit 
the activity of AhR (58). Elbekai and El‑Kadi (59) reported 
that the ROS scavenger N‑acetylcysteine (NAC) could amelio‑
rate the inhibitory effects of chromium on AhR activity in 
human liver cell line (59). NAC treatment led to an increase 
in the activity of cytochrome P450, family 1, subfamily A, 
polypeptide 1 (Cyp1a1), whereas the inhibitory effects of 
AhR inhibitor, CH223191, were alleviated (60). However, 
Ren et al (55) found that NAC did not reduce EOM‑induced 
AhR activity, suggesting that the effects of OS on the AhR 
signaling pathway may be species‑ or cell type‑specific (55). 
Zebrafish possess two Nrf2 genes (Nrf2a and Nrf2b), whose 
downstream genes (SOD2, GSTP1/2, CAT and HO‑1) exert a 
range of antioxidant effects, and this may represent a negative 
feedback mechanism to circumvent EOM‑induced excessive 
ROS (57).

AhR are activated by PAHs from PM2.5, which conse‑
quently upregulates the levels of CYP metabolic enzymes 
and induces ROS via superoxide/hydrogen peroxide (61‑63). 
Vertebrate embryos are highly susceptible to OS due to their 

limited antioxidant capacity (54). Ren et al (55) demonstrated 
that CH223191 and NAC are able to markedly alleviate 
PM2.5‑induced zebrafish embryonic cardiac abnormalities. 
Furthermore, the two compounds were also revealed to reduce 
EOM‑induced ROS generation, DNA damage and cell 
apoptosis, ameliorating the resultant changes in the mRNA 
expression levels of genes associated with cardiac develop‑
ment (NKX2.5 and SOX9B), OS (NRF2A, NRF2B, GSTP1, 
GSTP 2, SOD2, HO‑1 and CAT) and apoptosis (p53 and Bax). 
These results confirmed that AhR mediates EOM‑induced OS, 
leading to DNA damage and cell apoptosis, thereby promoting 
the cardiac developmental toxicity of PM2.5 (55). The most 
significant OS response induced by PM2.5 exposure is exces‑
sive oxidative phosphorylation in myocardial cells, which 
ultimately leads to mitochondrial damage and myocardial cell 
death (64). It is noteworthy that such adverse effects may often 
be significantly alleviated by antioxidants (65), demonstrating 
the potential of antioxidants in either preventing or mitigating 
OS damage caused by PM2.5 exposure.

Inflammation. Inflammation is an adaptive response for 
the body that both enables the clearance of harmful stimuli 
and heals damaged tissues. However, persistent or chronic 
inflammation may be detrimental to the body (66). As an 
important mechanism that is associated with PM2.5 toxicity, 
the inflammatory response may impose the negative effects 
of PM2.5 on the cardiovascular, pulmonary and nervous 
systems (67). The PAHs, metals, water‑soluble ions as well 
as various bioactive substances (such as endotoxins) that are 
contained in PM2.5 may cause inflammation, a process that is 
associated with the polarization of pro‑inflammatory macro‑
phages (68). PM2.5 has been revealed to cause an increase in 
the levels of ROS in macrophages, and is recognized by the 
Toll‑like receptors TLR4 and TLR2, leading to the induction 
or exacerbation of acute inflammation and thereby promoting 
M1 polarization of macrophages (69). This process may also 
involve the activation of Notch signaling due to a decreased 
level of the microRNA, miR‑34a‑5p (70). In addition, exposure 
to PAHs has been revealed to upregulate the levels of induc‑
ible nitric oxide synthase (iNOS), NLR family pyrin domain 
containing 3 (NLRP3) and tissue protease B in macrophages, 
demonstrating that pyroptosis provides the basis for the 
pro‑inflammatory polarization of macrophages induced by 
exposure to PAHs (71). Myocardial macrophages are able 
to eliminate the defective mitochondria that are released by 
cardiomyocytes, thereby maintaining cardiac mitochondrial 
homeostasis. However, in the absence of membrane‑bound 
bone marrow epithelial reproductive receptor tyrosine kinase 
(MerTK), myocardial macrophages lose the ability to capture 
and eliminate defective mitochondria, leading to dysfunc‑
tional cardiac metabolism and left ventricular dysfunction, 
suggesting that MerTK fulfills a crucial role in supporting 
cardiac homeostasis (72). Pro‑inflammatory polarization of 
myocardial macrophages promotes the lysis of MerTK, which 
affects the ability of myocardial macrophages to participate 
in cardiac repair, consequently leading to cardiac homeostasis 
imbalance, myocardial injury and decreased cardiac function.

The important pro‑inf lammatory cytokines tumor 
necrosis factor (TNF)‑α and interleukin (IL)‑6 are involved 
in the pathogenesis of heart failure, cardiac hypertrophy and 
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fibrosis (73,74). It has been revealed that exposure to PM2.5 in 
the uterus induces the expression of pro‑inflammatory cyto‑
kines in the hearts of the offspring mice, leading to cardiac 
inflammation (30,42). Li et al (75) through studying the 
cardiac inflammatory response, demonstrated that the levels 
of TNF‑α and IL‑1β were significantly increased in offspring 
mice subjected to uterine PM2.5 exposure. Long‑term expo‑
sure to PM2.5 was revealed to cause a marked upregulation 
of the levels of intercellular adhesion molecule‑1 (ICAM‑1) 
and C‑reactive protein in rat myocardial tissues, leading to 
ultrastructural changes in myocardial cells and inflammatory 
cell influx (76). Among the signaling molecules that regulate 
the inflammatory response, nuclear factor‑κB (NF‑κB) is the 
major signaling molecule that is involved in the production 
of cytokines, chemokines and growth factors, regulating the 
expression of immune and inflammatory response‑associated 
genes (77). The NF‑κB signaling pathway, involved in tissue 
damage, has been reported to have a role in systemic inflam‑
mation induced by PM2.5 (78). Inflammation fulfills crucial 
roles in systemic myocardial hypertrophy and cardiotoxicity 
induced by particulate matter (79). Jiao et al (80) found that 
the PM2.5‑mediated induction of inflammation is dependent 
on the activation of the key transcription factor NF‑κB, which 
enhances the expression of the downstream factors, TNF‑α 
and IL‑1β. Exposure to PM2.5 in vivo has been revealed to 
activate the NF‑κB signaling pathway, leading to inflamma‑
tory responses in target tissues and organs (81). Interesting, 
the activation of NF‑κB, with the subsequent inflamma‑
tory response that is caused by exposure to PM2.5, may be 
suppressed by antioxidants, suggesting the involvement of 
ROS and/or RNS in PM2.5‑mediated NF‑κB activation (52). 
Considering that NF‑κB also triggers the generation of ROS 
and nitric oxide (NO), this may form a positive feedback 
loop that amplifies downstream responses upon PM2.5 expo‑
sure (82). An increased level of OS resulting from exposure to 
PM2.5, in turn, mediates the activation of downstream inflam‑
matory signaling pathways, including the mitogen‑activated 
protein kinase (MAPK), c‑Jun N‑terminal kinase (JNK)/p53, 
Nrf2/NLRP3, TLR/MyD88 and extracellular signal‑regulated 
kinase (ERK)/AKT pathways (83). PM2.5 has been revealed to 
increase the protein level of cleaved IL‑1β, a key downstream 
factor for NLRP3 inflammasome activation, further confirming 
that PM2.5 can activate the NLRP3 inflammasome in myocar‑
dial tissue; NLRP3 inflammasome activation, in itself, has a 
potential role in mediating the pathological damage resulting 
from PM2.5 exposure in the mouse heart (84). The augmented 
levels of ROS triggered by exposure to PM2.5 may activate 
the MAPK and NF‑κB pathways, thereby increasing the 
synthesis of inflammatory proteins and leading to changes in 
membrane permeability and mitochondrial dysfunction (85). 
It is worth noting that mitochondrial DNA (mtDNA) lacks the 
ability to repair DNA, making it more susceptible to oxidative 
damage compared with nuclear DNA. Mitochondrial dysfunc‑
tion and subsequent cell death can trigger inflammation in 
various types of tissues (86). Mitochondrial dysfunction 
makes a key contribution to the PM2.5‑mediated inflammatory 
response (87). mtDNA and n‑formyl peptides that are released 
from dysfunctional mitochondria both trigger inflammation. 
PM2.5 exposure has also been revealed to increase the expres‑
sion and release of adhesion molecules, including E‑selectin, 

P‑selectin and ICAM‑1, leading to monocyte/macrophage 
adhesion (88), whereas, on the other hand, diminishing 
the levels of circulating endothelial progenitor cells that 
are involved in postnatal endothelial repair and regenera‑
tion (89), thereby exacerbating the inflammatory response. 
Inflammatory factors such as cyclooxygenase‑2 (COX‑2) are 
able to inhibit the activity of Ca2+ pumps in the endoplasmic 
reticulum, thereby inducing ERS through upregulating iNOS 
expression (90), suggesting that inflammation induced by 
PM2.5 can trigger ERS. Furthermore, PM2.5 has been revealed 
to activate the unfolded protein response (UPR), which 
provides an additional mechanism for triggering ERS (91). 
UPR signaling both stimulates the expression of inflammatory 
cytokines and induces the activation of NF‑κB (92), suggesting 
that UPR signaling makes an important contribution towards 
PM2.5‑induced ERS in the inflammatory process, and that 
this serves as an inflammatory factor both as a cause and as a 
consequence of ERS (93). Ca2+ leakage from the endoplasmic 
reticulum directly drives the production of mitochondrial 
ROS (mtROS), affecting downstream signaling pathways and 
rendering cells more susceptible to autophagy (94). It is now 
well documented that inflammation, ERS and autophagy are 
closely interlinked, and that these processes can interact with 
each other. Taken together, these aforementioned findings 
suggest that the cardiac developmental toxicity that is caused 
by PM2.5 is associated with inflammation, ERS and autophagy.

Mitochondrial impairment. The biogenesis and functional 
improvement of mitochondria are crucial processes for 
enabling the differentiation and maturation of the heart (95). 
Previously, investigations of the molecular mechanisms 
associated with mitochondria underlying the toxic effects of 
environmental pollution have been mainly focused on the mito‑
chondrial permeability transition pore (mPTP), mitochondrial 
dynamics, mtDNA function and the mitochondrial respiratory 
chain system, along with mitochondrial damage‑associated 
signaling pathways. PM2.5 was found to induce mitochondrial 
impairment in exposed individuals (96), and mitochondrial 
dysfunction has been revealed to mediate the cardiovascular 
damage caused by PM2.5 to a certain extent (97). Enhancing 
the production of cardiac energy may be achieved through 
growing the mitochondria count (98), and swelling, disrupted 
crista and mitochondrial vacuolization represent the primary 
manifestations for cardiac mitochondrial pathological 
changes (99). Acute exposure to PM can lead to significant 
mitochondrial dysfunction, accompanied by decreased cardiac 
oxygen consumption, succinate dehydrogenase activity and 
mitochondrial membrane potential, as well as impaired oxida‑
tive phosphorylation (100). These findings suggested that 
mitochondrial damage caused by PM2.5 exposure may have a 
bearing on mitochondrial dysfunction.

Inflammatory response and OS, fulfilling important roles 
in PM2.5‑induced cardiac injury, can produce a large number 
of free radicals that are closely associated with mitochondrial 
damage (101). Proteins or complexes modulating cell apop‑
tosis are only able to function via cytochrome c after entering 
the mitochondrial membrane (102). Therefore, mitochondria 
exert a crucial role in the cardiac toxicity that is mediated by 
PM2.5. In order to exert their own function, mitochondria must 
undergo continuous fission and fusion, abnormalities of which 
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may induce diseases (103). OPA1 mitochondrial dynamin‑like 
GTPase (OPA1) along with Mfp‑1 and ‑2 jointly regulate 
mitochondrial fusion, with the large GTPase, dynamin‑related 
protein 1 (Drp1) and the mitochondrial outer membrane 
protein adaptor, fission 1 (Fis1) mediating mitochondrial 
fission (104). The normal expression of fusion/fission genes 
is a prerequisite for the normal function of mitochondria, 
otherwise mitochondrial dysfunction may occur (105). 
Wang et al (16) identified elevated levels of OPA1, Mfn1, Drp1 
and Fis1 in offspring rats with the dosage of gestational PM2.5 
exposure, and surmised that the dysregulated mitochondrial 
fusion/fission genes resulting from gestation PM2.5 exposure 
in these rats would exert detrimental effects on mitochondrial 
damage, subsequently leading to an induction of cardiac devel‑
opmental toxicity in the offspring.

OS, an imbalance of Ca2+ homeostasis, and inflammation 
are all closely associated with mitochondrial dysfunction 
in various heart diseases (106). First, mitochondria are the 
main source of ROS production (107). Excessive ROS has 
been revealed to induce lipid peroxidation, thereby leading to 
mitochondrial permeability, decreased membrane potential 
and mitochondrial swelling (108). In addition, mitochondrial 
superoxide reacts with RNS such as NO to form peroxynitrite, 
further damaging mitochondrial structure and function (109); 
therefore, mitochondria are sensitive targets for PM2.5 and 
OS (110). Rodriguez‑Enriquez et al (111) reported that ROS, 
Ca2+ overload, decreased mitochondrial membrane potential 
and excessive mitochondrial permeability are key triggers 
of mitochondrial swelling and outer membrane rupture. A 
strong correlation was found to exist between mitochondrial 
dysfunction and the severity of inflammation (112). It is well 
established that peroxisome proliferator‑activated receptor‑γ 
coactivator 1α (PGC‑1α) is the main mediator for mitochondrial 
biogenesis and function in mammals (113), and environmental 
chemicals have been revealed to induce mitochondrial damage 
via inhibiting PGC‑1α (114). Chen et al (115) reported that 
AhR activated by PM2.5 directly inhibits sirtuin 1, thereby 
both reducing the levels of PGC‑1α and increasing its level 
of acetylation, which has the effect of diminishing its activity. 
Damaged PGC‑1α subsequently induces mitochondrial 
dysfunction, ultimately leading to cardiac developmental 
defects in zebrafish juveniles (115). In addition, this research 
group also found that EOM derived from PM2.5 induces the 
overexpression of CYP1A1 via activating AhR, leading to the 
generation of mtROS. The increase in mtROS levels subse‑
quently exacerbates the opening of the mPTP, which, in turn, 
promotes the accumulation of mtROS. Opening of the mPTP 
promotes the release of pro‑apoptotic substances, thereby trig‑
gering the intrinsic apoptotic pathway and leading to cardiac 
defects (116). Further investigations are required, however, 
regarding the possible involvement of other associated mecha‑
nisms of mitochondrial dysfunction elicited by PM2.5, such 
as cytochrome c release, mtDNA changes and cell apoptosis, 
along with mitochondrial genomic variations in PM2.5‑induced 
cardiac developmental toxicity.

Epigenetic modification. Epigenetic modifications, including 
DNA methylation (DNAm), histone modifications and 
RNA‑mediated processes, are sensitive to environmental stress 
and are considered to serve as a ‘bridge’ between environmental 

and genetic factors by certain researchers (117,118). Epigenetic 
modifications fulfill an important role in cardiac development 
and the occurrence of various diseases, with DNAm as the 
primary form, which can be inherited and reversed. To date, 
however, little is known regarding the underlying molecular 
mechanisms through which PM2.5 triggers the epigenetic 
changes that lead to cardiac developmental toxicity.

1 N6‑Methyladenosine (M6A) RNA methylation. M6A RNA 
methylation, as the most common form of RNA modification, 
accounts for ~60% of the total number of RNA modifications. 
M6A RNA methylation, a dynamic and reversible process, 
occurs under the regulation of methyltransferases (including 
METTL3 and METTL14), demethylases (such as FTO and 
ALKBH5,), and binding proteins (including YTHDF1/2/3 and 
ythdc2/2) (119). M6A RNA methylation regulates gene expres‑
sion through affecting mRNA stability, selective splicing, 
nuclear output and protein translation (120,121). M6A RNA 
methylation has been reported to be involved in excessive 
cellular ROS production and apoptosis (122‑124). A crucial 
role of m6A modification in heart development has been 
demonstrated (124,125), and PM2.5 has been revealed to induce 
changes in m6A RNA methylation in rats and mice (126,127). 
Ji et al (128) found that EOM from PM2.5 caused a signifi‑
cant inhibition of m6A RNA methylation levels in zebrafish 
juvenile hearts mediated via the AhR, although this inhibi‑
tory effect was restored by supplementation with betaine (the 
predominant methyl donor in the carbon metabolism cycle). 
Betaine can also mitigate EOM‑induced ROS generation, cell 
apoptosis and cardiac defects, suggesting that EOM inhibits 
m6A RNA methylation by interfering with mettl14/mettl3 
expression, leading to cardiac defects (128). These findings 
validated the hypothesis that m6A modification fulfills an 
important role in cardiac developmental toxicity induced by 
PM2.5 exposure, although the antioxidant activity of betaine 
should not be overlooked. On the other hand, other studies 
have revealed that exposure to PM2.5 leads to an upregulation 
of the levels of Mettl3 and total m6A methylation in mice 
lung tissues (127,129). The differences noted in the expression 
levels of m6A methyltransferase may be due to the differential 
responses of these genes to PM2.5 exposure in embryonic/larval 
and adult tissues (130); another possibility is that changes in 
the level of m6A RNA methylation induced by PM2.5 exposure 
may be due to species specificity.

Supplementing the diet with AhR inhibitor, CH223191, 
has been reported to successfully circumvent the occurrence 
of EOM‑induced cardiac defects in zebrafish juveniles (17,55). 
Either adding betaine or overexpressing mett13/14 was 
revealed to ameliorate the effects of EOM‑induced intracel‑
lular and mtROS, as well as reducing the level of apoptosis 
in zebrafish juvenile cardiomyocytes. Therefore, changes that 
occur in the level of m6A RNA methylation may be an impor‑
tant underlying cause of EOM‑induced cardiac abnormalities. 
M6A modification has been revealed to regulate OS and cell 
apoptosis via regulating the expression of m6A‑modified 
genes (131,132). Cao et al (133) reported that exposure to PM2.5 
increases ROS generation and apoptosis in rat cardiomyocytes, 
leading to cardiac injury. In addition, EOM from PM2.5 led to 
OS‑mediated cell apoptosis in zebrafish juvenile hearts (55). 
Collectively, these studies have demonstrated that gestational 
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exposure to PM2.5 may cause OS and cell apoptosis through 
altering m6A modification, thereby causing cardiac develop‑
mental toxicity.

DNAm. DNAm, one of the most extensively studied 
epigenetic modifications, performs a crucial role in cardiac 
development. Abnormal DNAm has been revealed to be asso‑
ciated with the pathogenesis of CHD (134), and it has been 
revealed that PM2.5 causes abnormal changes in DNAm (135); 
therefore, it is possible that DNAm may be associated with 
the cardiac developmental toxicity that is induced by PM2.5 
exposure. As a major environmental sensor, AhR is able to 
bind and be activated by various environmental pollutants, 
including PAHs (136,137). Following activation, AhR is 
translocated from the cytoplasm to the nucleus, where it 
regulates the transcription of target genes by directly binding 
to exogenous xenobiotic response elements in the promoter 
regions (138). AhR activated by TCDD was revealed to regu‑
late the expression of DNA methyltransferase in zebrafish 
juveniles (139). Jiang et al (140) also found that EOM from 
PM2.5 was able to activate AhR, resulting in abnormal DNAm 
in the heart of zebrafish juveniles. Regarding the specific 
process of DNAm, PM2.5 exposure caused an upregulation 
of the levels of DNA methyltransferase 1 (DNMT1) in the 
lungs of mice; however, the level of DNMT1 was found to be 
downregulated in zebrafish embryos (140,141). Trace elements 
such as As, Pb, cadmium (Cd) and mercury carried by PM2.5 
particles are capable of penetrating the placenta (142), and 
this phenomenon has been revealed to cause alterations in 
placental DNAm (143,144). Supplementing the diet with folate 
was revealed to alleviate EOM‑induced DNAm changes, 
thereby protecting zebrafish embryos against the cardiac 
developmental toxicity of PM2.5 (140); this probably occurred 
since folate can act as a methyl donor to affect the expression 
of DNAm‑associated genes (145).

Exposure to air pollutants may alter epigenetic modifica‑
tions such as DNAm, which, in turn, may affect inflammation, 
disease development and the risk of deterioration. Exposure 
to several air pollutants associated with transportation, 
including PM2.5, black carbon, ozone, nitrogen oxides and 
PAHs, leads to a decrease in DNAm. This may be due to both 
the reduced expression of methionine adenosyl‑transferase 
1A and single carbon metabolism efficiency mediated by 
oxidative species, resulting in a scarcity of the methyl donor 
of S‑adenosylmethionine that is required for establishing and 
maintaining DNAm (146). Goodson et al (147) found that 
in utero exposure to diesel exhaust (DE) induced a decreased 
level of DNAm in the first exon of GM6307, suggesting that 
DE can affect the developing heart by altering epigenetic 
patterns. The mechanism(s) through which PM2.5 exposure 
leads to DNAm changes, however, have yet to be fully eluci‑
dated. It has been revealed that exposure to DE increases the 
production of ROS (148), which, in turn, interact with DNA, 
thereby oxidizing methyl‑cytosine to hydroxymethyl‑cyto‑
sine (HMC). HMC has been revealed to prevent the binding 
of methyl binding proteins (MBPs) to methylated cyto‑
sine (149), which prevents normal chromatin silencing from 
occurring at these sites. In addition, 8‑oxoguanine produced 
by guanine oxidative damage was also found to inhibit the 
binding of MBPs, thereby hindering the silencing of chro‑
matin regions (149).

PM2.5 has also been revealed to disrupt DNAm profiles (150), 
probably resulting in an exacerbation of the oxidative and 
inflammatory responses following PM2.5 exposure. PM2.5 
inhalation exerts acute effects on DNAm in the promoter 
regions of genes that are associated with mitochondrial func‑
tion and oxidative metabolism (151). Although mitochondria 
possess their own genetic material that differs from nuclear 
DNA, the majority of mitochondrial proteins are encoded by 
the nuclear genome. Exposure to PM2.5 has been revealed to 
cause a marked alteration in the DNAm of nuclear genes in the 
mitochondrial pathway, suggesting that mitochondria form the 
primary target of PM2.5. DNAm is a modifiable biochemical 
process, and supplementing the diet with B vitamins to ensure 
that methylation takes place has become an attractive means of 
drug intervention to counteract the loss of DNAm of inflamma‑
tory genes caused by PM2.5 (152). In addition, supplementing 
B vitamins may also minimize DNA hypermethylation to a 
great extent.

Histone acetylation modification. Histone acetylation 
modification is an important topic for epigenetic research. 
Unlike DNAm, the effects of histone modifications on gene 
expression may vary, depending on specific chemical modi‑
fications (153). Abnormal histone modifications associated 
with exposure to various environmental chemicals may 
lead to a large number of diseases, including cardiovascular 
diseases. For example, the histone modifications H3K9me2 
and H3K9ac were revealed to be associated with As exposure, 
increasing the risk of several cardiovascular diseases (154). 
In addition, Zhang et al (155) demonstrated an association 
between the H3K36me3 modification and exposure to PAHs 
and DNA damage, suggesting that the involvement of specific 
histone modifications in PAHs results in an induction of DNA 
damage responses. The processes of histone acetylation and 
deacetylation are considered to provide an important regula‑
tory mechanism for mediating cardiovascular development 
and myocardial injury. Histone deacetylation has been demon‑
strated to participate in the regulation of gene transcription 
under stress or pathological conditions (156). Histone acetyla‑
tion has an important role in myocardial hypertrophy events 
that are induced by PM2.5 exposure. Significantly increased 
protein levels of acetylated H3K9 were observed in the hearts 
of mice exposed to PM2.5, which led to an upregulation of 
hypertrophic transcription factors (75). In summary, the 
imbalances between histone methylation and demethylation, as 
well as between acetylation and deacetylation, that are caused 
by PM2.5 exposure are considered to increase the likelihood 
of cardiac dysplasia and cardiovascular system‑associated 
diseases.

Among the histone acetyltransferases (HATs), p300 is 
closely associated with the transcriptional regulation of cardiac 
development (157). SIRT3, the third type of histone deacetylase, 
is able to inhibit the OS response and promote the tricarboxylic 
acid cycle, which has the effect of enhancing myocardial ATP 
energy supply and contraction, as well as regulating the energy 
metabolism balance (158). Knockout of SIRT3 was revealed 
to lead to myocardial mitochondrial dysfunction and cardiac 
dysfunction (159). Furthermore, the abnormal expression of 
HATs and HDAC led to imbalanced histone acetylation modi‑
fications, giving rise to cardiac developmental disorders (160). 
Exposure to PM2.5 in the uterus is known to lead to cardiac 
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hypertrophy in adulthood. P300/CREB binding protein medi‑
ated histone acetylation modification may exert an important 
role in the upregulation of thickening transcription factors, 
such as GATA binding protein 4 (GATA4) and Mef2c. To 
date, the mechanism(s) of PM2.5‑induced histone modifica‑
tion are poorly understood. Environmental chemicals may 
directly alter histone methyltransferases or demethylases. For 
example, Ni exposure has been revealed to inhibit the activity 
of lysine‑specific demethylase 3A by binding and substituting 
Fe2+ ions, thereby increasing H3K9me2 modification (161).

ERS. The endoplasmic reticulum performs a crucial role in 
terms of protein synthesis and folding, and post‑translational 
modifications. The disruption of endoplasmic reticulum func‑
tion may lead to accumulated unfolded or misfolded proteins 
in the lumen, which activates the UPR, a complex intracel‑
lular signaling pathway aimed at restoring protein balance. 
The endoplasmic reticulum is closely associated with normal 
development and homeostasis of the internal environment, 
and it has a crucial role in cardiac development and func‑
tion (162). Zhu et al (163) found that Cd exposure increased 
ERS in myocardial tissue and primary cardiomyocytes, which 
was manifested in elevated levels of stress‑associated genes. 
Impaired cardiac contractility and prolonged diastolic dura‑
tion have been revealed to be common pathological features 
of the ERS‑stimulated heart (164). Previous studies have 
also suggested that PM2.5 is capable to induce ERS (165,166); 
however, the mechanism(s) underlying PM2.5‑induced ERS, 
and its role in cardiac development, has yet to be elucidated. 
EOM from PM2.5 was revealed to induce AhR‑mediated 
ROS production in zebrafish embryonic hearts (17,55,167). 
In addition, OS induces ERS through disrupting the normal 
processes of protein folding/transport and altering Ca2+ 
homeostasis (168‑170). On the other hand, ERS was also 
demonstrated to increase the content of ROS, and to induce 
OS (171). Early‑stage embryos are highly susceptible to oxida‑
tive damage, and excessive ROS is considered one of the 
causative agents for CHD (53,54); therefore, PM2.5 may induce 
ERS through AhR‑mediated ROS overproduction, thereby 
inducing cardiac developmental toxicity via oxidative damage.

Cardiac development is a coordinated process depending 
on the subtle balance among cell proliferation, apoptosis and 
differentiation. It is well established that long‑term or severe 
ERS can lead to cell apoptosis, with C/EBP homologous 
protein (CHOP) being recognized as one of the most impor‑
tant mediators. The expression of CHOP may be upregulated 
through activating all three ERS sensors, namely: Activating 
transcription factor 6, protein kinase RNA like endoplasmic 
reticulum kinase and inositol requiring enzyme 1α. As a 
transcription factor, CHOP induces cell apoptosis through 
downregulating members of the antiapoptotic Bcl protein 
family and increasing the level of endoplasmic reticulum 
oxidoreductin 1α. EOM was reported to induce apoptosis of 
zebrafish embryonic cardiomyocytes, although the increased 
level of apoptosis was attenuated via inhibiting AhR activity 
or ROS production (55,172); furthermore, ERS was found to 
have a key role in this process.

Autophagy. Autophagy is crucial for heart development. 
Numerous autophagic defects are known to be associated 

with cardiovascular diseases, including atherosclerosis and 
cardiomyopathy (172). Autophagy has an important role in the 
process of cardiac remodeling, including the morphogenesis of 
cardiac tissues and their eventual differentiation into cardio‑
myocytes. Atg5‑deficient mice were demonstrated to have 
abnormal heart valves and separated ventricular (173). In a 
zebrafish cardiac development model, knocking down the core 
autophagy genes resulted in various defects, including cardiac 
blood‑flow defects and atrial enlargement, among other 
defects (174). In addition, knocking down these autophagy 
genes resulted in profound changes in the levels of develop‑
mental genes, including certain key transcription factors that 
are necessary for cardiac development. The knockdown of 
these genes also led to the accumulation of dead cells in the 
developing heart, demonstrating the necessity of autophagic 
clearance of dead cells for normal cardiac remodeling. 
Cardiac‑specific Atg5 deficiency in adult mice was revealed 
to lead to mitochondrial aggregation and ventricular dilation, 
demonstrating the vital role that autophagy has in cardiac cell 
development and homeostasis (175).

As a common heavy metal adsorbed on PM2.5, Cd has been 
revealed to induce autophagy through a variety of mechanisms, 
including the ROS‑dependent signaling pathway. Cd can 
disrupt the electron transport chain in mitochondria, especially 
via binding to the Q0 site of cytochrome b on complex III, 
leading to an accumulation of semi‑ubiquinone. As an unstable 
molecule that easily transfers electrons to molecular oxygen, 
semi‑ubiquinone results in the formation of superoxide and 
OS (176). Secondly, there is the ERS pathway: Ca2+ is an impor‑
tant signaling molecule for ERS‑induced autophagy (177). ERS 
leads to the release of Ca2+ from the endoplasmic reticulum 
into the cytoplasm (178), thereby activating various kinases 
that are involved in the autophagy signaling pathway, including 
mammalian target of rapamycin (mTOR) and AMP‑activated 
protein kinase (177). Ca2+ on the outer surface of the endoplasmic 
reticulum membrane is closely associated with the initiation of 
autophagosome formation (179). Thirdly, there is the mTOR 
pathway: Cd activates the AKT/mTOR pathway, thus initiating 
autophagy, which thereby induces various diseases (180). 
Finally, there are the Beclin‑1 and Bcl‑2 family pathways: In the 
presence of Cd, the increased release of Ca2+ in the endoplasmic 
reticulum leads to a separation of Beclin‑1 from Bcl‑2, which 
thereby activates cellular autophagy (181).

As another cellular protective mechanism for UPR, 
autophagy contributes to the degradation of the accumulated 
unfolded or misfolded proteins in the endoplasmic reticulum, 
thereby restoring endoplasmic reticulum homeostasis 
and further improving the overall cell survival rate (182). 
However, autophagy is also a ‘double‑edged sword’ since 
excessive autophagy may promote cell death through exces‑
sive self‑digestion and the degradation of essential cellular 
components (183), thereby bringing about embryonic develop‑
mental toxicity (184). Autophagy exerts important roles in the 
processes of cellular and tissue balance, specialization, tissue 
differentiation and organogenesis (185); in addition, inflam‑
mation, ERS and autophagy are closely associated, and these 
processes have been revealed to interact with each other (186).

Apoptosis. As the principal means of cell death, apoptosis 
has an important role in maintaining cellular homeostasis. 
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Abnormal apoptosis can give rise to various diseases, including 
cardiovascular diseases. Apoptosis in mammalian cells is 
mainly triggered through two pathways: The endogenous 
(intrinsic) pathway initiated by mitochondria, and the exog‑
enous (extrinsic) pathway initiated by death receptors. 
The former is controlled by the Bcl‑2 family of proteins, 
whereas the latter involves members of the TNF family of 
proteins, with the resultant signaling cascade (187). Apoptosis 
induced by exposure to PM2.5 has a participatory role in a 
series of signaling pathways, including the MAPK (133) and 
PI3K/Akt (188) pathways, with caspase‑3 serving as a vital 
biomarker in this process (189). Yang et al (190) demonstrated 
that the mitochondria‑mediated apoptosis pathway has a key 
role in the PM2.5‑induced toxicity of AC16 cardiomyocytes, 
leading to cardiac dysfunction. The mitochondrial pathway 
mainly activates caspase‑9 by releasing cytochrome c into 
the cytoplasm, triggering downstream cascade reactions, and 
ultimately activating downstream caspase‑3 (191). However, in 
zebrafish, 2,3‑bromofluoranthene derived from PAHs is able 
to induce apoptosis of vascular endothelial cells and cardiac 
toxicity through both pathways simultaneously (192). In addi‑
tion, dysregulation of cellular Ca2+ homeostasis may also lead 
to cardiomyocyte apoptosis. Ca2+ is one of the most important 
signal‑transduction systems in cells, and a low intracellular 
Ca2+ concentration is a prerequisite for normal cellular func‑
tion. After PM2.5 has entered the circulatory system, it leads 
to an increase in the intracellular Ca2+ concentration, and an 
overload of Ca2+ will lead to DNA degradation, free radical 
production and protein kinase activation, ultimately leading to 
cell apoptosis (193).

Apoptosis can be induced by DNA damage and is crucial 
for normal cardiac development (194,195). Previous studies 
have suggested that excessive production of ROS during 
early embryonic development in zebrafish may lead to DNA 
damage and cell apoptosis (196‑198). Ren et al (55) found that 
the levels of 8‑hydroxydeoxyguanosine (8‑OHdG) and cH2AX 
were raised in the embryonic hearts of zebrafish exposed to 
EOM, although these increases were significantly reduced 
in the presence of the ROS scavenger, NAC. This further 
demonstrated that NAC is able to attenuate EOM‑induced 
apoptosis in zebrafish embryonic cardiomyocyte. Bcl2 binding 
component 3 (BBC3), a member of the Bcl‑2 family, is an 
important participant in apoptosis (199). BBC3 is localized 
at the mitochondria under apoptotic stimulations, leading to 
mitochondria‑mediated intrinsic cell apoptosis (200). Traf4a, a 
zebrafish homolog for human TNF receptor‑associated factor 
4, is also involved in the regulation of apoptosis (201,202). 
TRAF4 is also essential for development and can regulate ROS 
generation by stabilizing NADPH oxidase complexes (203). 
Knocking down BBC3 or TRAF4 leads to the termination 
of EOM‑induced excessive ROS production and apoptosis in 
zebrafish embryonic hearts, suggesting that both genes are 
required for this process. Therefore, overexpression of these 
two genes may exacerbate cardiac abnormalities in zebrafish 
juveniles induced by EOM derived from PM2.5.

However, it is necessary to further investigate whether 
other forms of cell death besides apoptosis and autophagic 
death, such as ferroptosis, may be associated with the cardiac 
developmental toxicity induced by PM2.5 exposure, since PM2.5 
exposure results in excessive amount of ROS, and severely 

damaged mitochondria release large amount of Fe, thereby 
inducing ferroptosis.

AhR signaling. AhR, an essential ligand‑activated transcrip‑
tion factor for the cytochrome P450 pathway, controls the 
expression of genes such as CYP1A1, CYP1B1 and CYP1A2 
in the cytochrome P450 family (204). AhR can be activated 
by numerous environmental pollutants, including PM2.5 (55). 
Following activation, AhR is dissociated from binding its 
ligands and enters the nucleus, forming a dimer with AhR 
nuclear transport protein, subsequently binding with enhancers 
to form heterologous reaction elements that are involved in 
the regulation of the expression of cytochrome P450 family 
genes. Employing the P19 cell line as an in vitro model, 
Chen et al (167) found that exposure to EOM derived from 
PM2.5 for 2 days led to an inhibition of cardiac differentiation 
for the next 14 days, demonstrating the persistent adverse 
effects of PM2.5 on cardiac development. Mechanistically, 
AhR mediates the inhibitory effects of EOM on P19 cell 
cardiac differentiation, probably through dysregulation of cell 
proliferation, altering the normal processes of Wnt signaling, 
and inducing breaks of DNA double strands.

It has been revealed that EOM derived from PM2.5 activates 
the AhR signaling pathway, leading to cardiac abnormalities 
in zebrafish embryos (17,205). AhR performs an essential 
role in the cardiac development of fish, mammals, and other 
organisms. Activation of AhR can impair the cardiac differ‑
entiation of human embryonic stem cells (ESCs) (206‑208). 
Considering that PAHs [such as BaK and benzo(a)pyrene] 
in EOM are strong AhR agonists, and that AhR signaling is 
activated following exposure to EOM, it may be inferred that 
AhR mediates EOM‑induced cardiac developmental toxicity. 
The AhR repressor (AhRR) forms a negative feedback loop 
with AhR (209). Two types of AhRR analogs (Ahrra and 
Ahrrb) exist in zebrafish, and knocking down Ahrrb (but not 
Ahrra) was revealed to enhance the inducive effects of the 
AhR agonist TCDD on the CYP1 superfamily genes (210). 
Therefore, the AhR inhibitor, CH223191, may inhibit the 
AhR signaling pathway by inducing Ahrrb expression. In 
EOM‑treated zebrafish, the mRNA levels of the most impor‑
tant AhR subtype, Ahr2, were found to remain unchanged, 
suggesting that the EOM activation of AhR may be based 
on conformational changes, rather than on mRNA level 
changes (211).

As a typical type of PAHs, exposure to TCDD impairs the 
cardiac differentiation of ESCs, and this impairment is mainly 
mediated by AhR. The generation of cardiomyocytes was most 
significantly inhibited in the case of human ESCs (and not mouse 
ESCs) exposed to TCDD during the ESC stage. By contrast, in 
the absence of TCDD, AhR is significantly inhibited in mouse 
ESCs, which decreases the expression of numerous pluripotent 
genes (212). In addition, ESC cardiac differentiation was found 
to be suppressed by TCDD exposure during embryonic forma‑
tion via disrupting activin, bone morphogenetic protein and 
the Wnt signaling pathway, and through altering the expres‑
sion of homologous cassette transcription factors (213‑216). 
These differences suggest that human and mouse ESCs exhibit 
different susceptibility to TCDD toxicity, possibly due to 
species‑specific differential expression patterns of AhR and its 
cofactors (217). Furthermore, AHR may regulate differential 
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target genes in different species or cells (218,219). Therefore, 
similarly to TCDD, PM2.5 can inhibit the activation of meso‑
dermal genes through AhR binding, interfering with the 
differentiation and development of normal cells, and thereby 
inhibiting mesodermal differentiation. Jiang et al (220) also 
found that PM2.5 can activate the PI3K/akt2/mammalian 
target of rapamycin complex 1 signaling pathway through 
AhR/ROS induced PTEN inhibition, leading to activation of 
the mitochondria‑mediated intrinsic apoptotic pathway and 
Wnt signaling inhibition, resulting in heart defects in zebrafish 
juveniles. It has been documented that folate supplementation 
during pregnancy helps to resist PM2.5‑induced cardiac devel‑
opmental toxicity via targeting the AhR and Wnt/β catenin 
signaling pathways (205). This provides theoretical support for 
alleviating PM2.5‑induced cardiac developmental toxicity.

Wnt signaling. The Wnt/β‑catenin signaling pathway has an 
essential role in the cardiac development of vertebrates (221), 
and its activation may induce cardiac specification in the 
early developmental stages, although this may be suppressed 
later (221). As a core transcription factor of the typical Wnt 
signaling pathway, β‑catenin is able to regulate the expression 
of key genes in cardiac development (222). Chen et al (167) 
found that the mRNA and protein levels of β‑catenin were 
downregulated in cells exposed to EOM derived from PM2.5, 
suggesting a role of Wnt signaling in EOM‑exerted cardiotoxic 
effects. It is well established that crosstalk exists between the 
AhR and Wnt/β‑catenin signaling pathways (223,224), since 
activated AhR can antagonize β‑catenin in colon cancer cells 
and zebrafish embryos (224). The Wnt/b‑catenin signaling 
pathway has also been revealed to be crucial for embryonic 
cardiac development. In the absence of Wnt, cytoplasmic 
β‑catenin is phosphorylated and degraded by a disruption 
complex composed of adenomatosis polysaccharide coli, Axin 
and glycogen synthase kinase‑3β. Upon Wnt stimulation, 
cytoplasmic β‑catenin is translocated into the nucleus, where 
it activates the transcription of genes essential for cardiac 
specification, such as Nkx2.5 and Sox9 (224‑226). CH223191 
and the Wnt/β‑catenin activator, CHIR, were found to rescue 
the most of the EOM‑induced cardiac defects, suggesting 
the involvement of the AhR and Wnt/β‑catenin signaling 
pathways in cardiac developmental toxicity resulting from 
PM2.5 exposure, and therefore the feasibility of employing 
AhR or Wnt/β‑catenin antagonists to prevent the cardiac 
developmental toxicity from occurring (17). The typical 
Wnt/β‑catenin signaling pathway regulates multiple steps in 
cardiac differentiation (167). The activation of Wnt signaling 
is crucial for both the formation of the mesoderm in the early 
stage of development as well as the morphogenesis of cardiac 
valve formation in later ones (227). Previous studies have 
demonstrated the inhibition of Wnt signaling by EOM in the 
embryonic heart of zebrafish (17,205), and both treatment with 
the ERS inhibitor 4‑phenylbutyric acid and CHOP knockdown 
significantly attenuated these inhibitory effects, probably by 
means of either affecting β‑catenin expression or inhibiting 
T cell factor (228).

DNA damage. Heavy metals and PAHs derived from 
PM2.5 can either individually or synergistically disrupt the 
double‑helix structure of DNA, leading to DNA damage. 

Valavanidis et al (229) identified a positive correlation 
between DNA reactivity and the concentration of total PAHs 
and transition metals. The expression and methylation of 
8‑oxoguanine glycosylase (OGG1) were found to be associ‑
ated with the ability of PAHs to induce oxidative DNA 
damage (230). Epigenetic changes fulfill an important role in 
the regulation of PAH‑induced DNA damage. H3K79 di‑meth‑
ylation (H3K79me2) is essential for DNA damage repair, and 
Zhang et al (231) found that exposure to PAHs reduced its 
overall level, revealing that it was probably serving as a marker 
for cellular homeostasis disruption. H3K79me2‑deficient cells 
are more susceptible to benzopyrene‑induced DNA damage 
than are normal cells. Improper methylation of H3K79me2 
can lead to low efficiency in DNA damage repair. Therefore, 
after long‑term exposure to PAHs, abnormal H3K79me2 may 
lead to genomic instability and accumulation of DNA muta‑
tions, thereby causing DNA damage. Zhao et al (232) found 
that PM2.5 and PAHs cause significant activation of the DNA 
damage‑susceptibility gene GADD153, resulting in a reduc‑
tion of the expression of the DNA‑repair genes, human MutT 
homolog 1 (MTH1) and X‑ray repair cross complementing 1, 
and this inhibitory effect exceeds the clearance effect of OGG1 
on damaged DNA, thereby increasing the risk of cardiac DNA 
damage.

OS, ionizing radiation and chemical reagents are all 
capable of causing DNA damage (233). Components of 
water‑soluble PM2.5 extracts are more likely to induce DNA 
oxidative damage compared with organic compounds (234). 
OS‑induced DNA damage has been revealed to be a key mech‑
anism of action in urban PM2.5 pollution (235). Excessive ROS 
generated by pollutants induces OS, thereby mediating DNA 
damage in the mouse heart (236). The organic components 
and transition metals (including Fe, Cu, Ni and Zn) in PM2.5 
can directly generate ROS (237), which either directly causes 
DNA deamination and base oxidation, or indirectly induces 
base alkylation through lipid peroxidation (238). Therefore, 
PM2.5‑induced OS can lead to DNA damage. DNA damage 
is usually associated with cell apoptosis (239). Both ROS‑ or 
RNS‑mediated DNA damage and redox‑mediated inhibition of 
DNA‑damage response proteins may lead to changes in DNA 
structure, thereby activating DNA‑repair signaling. The latter 
can regulate the activities of certain apoptosis factors, further 
demonstrating the close association between DNA damage 
and cell apoptosis (240). In human or animal cells, heavy 
metals derived from PM2.5 can cause various types of DNA 
damage, including chain breakage, diminishing the activity of 
endonuclease III, and damaging guanine glycosidase‑sensitive 
sites (49). Interestingly, antioxidants and ROS scavengers can 
significantly block the DNA damage resulting from PM2.5 
exposure.

DNA damage can also cause cell‑cycle arrest and induce 
apoptosis, and this may extensively disrupt the potential of 
progenitor cells, thereby impairing cardiac development (241). 
There is a large body of evidence suggesting that environ‑
mental pollutants, including PM2.5, may attack DNA by means 
of OS (45). Excessive ROS production during zebrafish embry‑
onic development has been revealed to lead to DNA damage 
and apoptosis (196). Elevated levels of 8‑OHdG and γ‑h2ax 
were observed in the zebrafish embryonic heart, although 
these were significantly circumvented by treatment with the 
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ROS scavenge, NAC. However, NAC could not completely 
reverse the DNA‑damage signaling processes induced by 
PM2.5, suggesting that OS is only partly responsible for causing 
the DNA damage (242). The cardiac DNA damage caused by 
PM2.5 is most likely to be involved in multiple signaling path‑
ways and synergistic effects of multiple molecules, and further 
in‑depth exploration in this regard is required.

Ca2+ homeostasis disorder. Ca2+ is essential for cardiac 
automation, electrical conduction, excitation transcription 
coupling and maintenance of vascular tone. It is not only 
necessary for cardiovascular contraction and relaxation, 
but it also serves a crucial role as a second messenger in 
signal‑transduction pathways (243). A Ca2+ imbalance can 
lead to various types of cardiomyopathy, and Ca2+ homeostasis 
is often considered a key factor in heart disease. Therefore, 
accurate Ca2+ signaling is crucial for maintaining cardiac 
function. Exposure to PM2.5 preferentially affects the expres‑
sion of Ca2+ signaling‑associated genes in human pluripotent 
stem cell‑derived cardiomyocytes, thereby increasing the 
likelihood of arrhythmia (244). PM2.5‑mediated OS and Ca2+ 
influx in endothelial cells cause cellular damage, ultimately 
leading to cell death (245). PM2.5 exposure may also increase 
the concentration of intracellular free Ca2+ ions by altering the 
expression of Ca2+ channel‑associated proteins in the mouse 
heart (246). Ca2+ also stimulates the assembly of contractile 
cytoskeleton structures in developing cells. The endoplasmic 
reticulum is known to have Ca2+ channels which play a crucial 
role in Ca2+ regulation (247). An increase in OS will lead to 
oxidative inactivation of endoplasmic reticulum Ca2+‑ATPase, 
thereby increasing cytoplasmic Ca2+ levels (248). Numerous 
details of the mechanism underlying PM2.5‑mediated intracel‑
lular Ca2+ imbalance in OS have been elucidated (246).

Cd can induce lipid abnormalities through ERS and Ca2+ 
imbalance (249). In addition, Cd disrupts Ca2+ homeostasis, 
affects vital genes associated with Ca2+ channels, and leads 
to excessive Ca2+ in the cytoplasm. Following exposure to Cd, 
the IrxA cluster, Mefs and Tbxs family transcription factors 
were found to be downregulated, suggesting the impairment of 
cardiac transcription, abnormal expression of cardiac markers 
(TnnT2, TnnC1, Gata4, Gata6 and Nkx2‑5), and the inhibition 
of cardiomyocyte maturation and differentiation (163).

4. Conclusion

Given the enormous environmental harm caused by PM2.5, 
society in its entirety can take certain actions to combat the 
damaging effects, including governmental policies, urban 
planning, technology and raising social ecological aware‑
ness. The strategies for regulating PM2.5 include reducing 
dust emissions during construction, transportation and 
other processes (including through dust removal and filtra‑
tion), controlling vehicle and industrial emissions (through 
promoting hybrid or electric vehicles), and transitioning from 
traditional energy sources to renewable energy sources (such 
as hydro, solar, geothermal, wind and nuclear energy). One of 
the most important aspects is to reduce fossil fuel‑associated 
PM2.5, as fossil fuel combustion occupies a central role in 
the health impacts associated with PM2.5. PM2.5 air pollution 
derived from fossil fuel combustion has been linked to over 10 

million premature deaths (250). These ubiquitous emissions 
from fossil fuel combustion are one of the biggest contribu‑
tors to the adverse effects of PM2.5 on health. The particles 
from fossil fuel combustion contain abundant transition metals 
[such as Ni, vanadium (V), Fe and Cu] that readily participate 
in redox reactions that generate OS. At the same time, sulfur 
(S), which is PM2.5‑adsorbent, increases the bioavailability 
of the transition metals, greatly enhancing the possibility of 
fossil fuel‑associated PM2.5 being a causative agent of OS and 
endangering overall health (251). In 2019, environmental air 
pollution caused ~7 million deaths worldwide (252). With the 
intensification of climate change, environmental air pollution 
is worsening. Since 1990, the number of deaths caused by envi‑
ronmental air pollution has increased by 51%, and continues 
to rise (253). Climate change poses a serious threat to human 
health, with the primary driving factor determined to be the 
sharp increase in greenhouse gas emissions that are caused 
by extensive fossil fuel combustion. A total of ~85% of air 
particulate pollution is caused by fuel combustion, and almost 
all air pollution is associated with sulfur oxides and nitrogen 
oxides (254). Therefore, reducing the use of fossil fuels, and 
the dependence on fossil fuels, is of great significance for 
optimizing the health benefits of mitigating climate change.

With the intensification of global air pollution, exposure to 
PM2.5 has been found to correlate closely with the incidence 
of CHD. The reported molecular mechanisms underlying 
the PM2.5‑exposure‑induced cardiac developmental toxicity 
mainly include: interference with genes related to cardiac 
development, dysfunction of genes associated with heart func‑
tion, OS, inflammation, mitochondrial impairment, epigenetic 
modification, ERS, autophagy, apoptosis, AhR signaling, Wnt 
signaling, DNA damage and disorders of Ca2+ homeostasis 
(Fig. 1). Due to the complexity, diversity and unclear toxicity 
attributed to PM2.5, continuing investigations on cardiac devel‑
opment toxicity derived from PM2.5 exposure inevitably face 
challenges, and it is necessary to further elucidate the mecha‑
nisms underlying PM2.5‑induced CHD in our future studies.

As a key factor in cardiac development and homeostasis, 
AhR signaling fulfills a key role in cardiac development. The 
interruption of AhR function during development can lead to 
potential cardiac developmental toxicity, and this comprises a 
number of dysregulated signaling pathways that participate in 
cardiac development, function and metabolism. At the same 
time, AhR is also a target for environmental factors that may 
disrupt the homeostasis of AhR, laying the foundation for 
CHD. Due to the widespread presence of AhR antagonists 
and methyl donors such as flavonoids, curcumin and betaine, 
that are found in daily foods, these may serve as favorable 
candidates for addressing the abnormal activation of AhR 
and changes in m6A RNA methylation derived from PM2.5 
exposure. Moreover, phytochemicals are able to alleviate the 
adverse effects of PM2.5 exposure on human health, predomi‑
nantly via inhibiting OS, ERS and Fe deposition, which 
subsequently alleviates inflammatory reactions, along with 
regulating autophagy. Taken together, these findings provide a 
potential approach for therapeutic intervention with regard to 
the cardiac developmental toxicity caused by PM2.5 exposure.

Although mitochondria are the most important source of 
ROS, increasing evidence has suggested that other organelles 
as the potential sources of ROS, such as the endoplasmic 

https://www.spandidos-publications.com/10.3892/etm.2024.12756
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reticulum, peroxisomes and cell membranes, are also impor‑
tant. Therefore, understanding the sources of ROS is of great 
significance for targeted therapy, dosage selection and pollu‑
tion control. Considering the high energy consumption of 
the heart and the role of mitochondria as the body's energy 
production factory, mitochondria may be a promising thera‑
peutic target for the prevention and treatment of CHD. Given 
the deepening understanding of mitochondrial biology, the 
widespread application of large‑scale experimental animal 
models, and the rapid development of new scientific and tech‑
nological advancements, mitochondrial medicine may become 
a realistic therapeutic option in the near future.

The molecular mechanisms underlying the toxicity of 
PM2.5 exposure to cardiac development are markedly more 
complex than were previously considered, and there are 
numerous remaining issues to be addressed; for example, 
how interactions between various cells (such as crosstalk 
among endothelial, smooth muscle and immune cells) may 
have a role in this process, and what key factors and signaling 
pathways are involved in the cardiac developmental toxicity 
that is induced by PM2.5 exposure. It remains unclear how 
these signaling pathways interact with each other, and how 
the concentration and duration of PM2.5 exposure affect 

them. These issues retain their significance, and merit further 
in‑depth research. In addition, the chemical composition of 
PM2.5 is complex, with different sources and toxic effects, and 
the components of PM2.5 vary differentially across different 
regions and seasons. Therefore, it is difficult to form system‑
atic research conclusions. In addition, further investigations 
are needed to determine whether the toxic effects of PM2.5 
on cardiac development are mediated solely with PM2.5 
functioning as a carrier, or whether PM2.5 interacts with the 
toxic substances it carries. Therefore, the interactions among 
different components of PM2.5 and their combined effects with 
other air pollutants should be also explored. Evidently, it is 
necessary to perform additional studies on the spatiotemporal 
distribution characteristics and physicochemical properties 
of PM2.5, and analyze its effects on cardiac development at 
different stages, locations and levels, including an assessment 
of the various physicochemical components.

In summary, the present review elaborates the potential 
molecular mechanisms underlying the cardiac developmental 
toxicity induced by gestational PM2.5 (including some of its 
specific components) exposure, and the complexity presents 
numerous challenges and opportunities for future investiga‑
tions. Understanding the interplay of various signaling 

Figure 1. The underlying mechanisms involved in PM2.5‑induced cardiac developmental toxicity (drawn using Figdraw.com). PAHs, EOM, EC/BC, inorganic 
ions, metals and OC are different sources of PM2.5. After being inhaled in the lung, PM2.5 can enter the fetus through the air‑blood barrier and placental 
barrier, as well as induce adverse reactions such as inflammation and OS in the mother and placenta to generate large amounts of harmful products such as 
pro‑inflammatory cytokines and reactive oxygen species, thereby causing cardiac developmental toxicity to the fetus. The underlying mechanisms involved 
include: interference with genes related to cardiac development, dysfunction of genes associated with heart function, OS, inflammation, mitochondrial 
impairment, epigenetic modification, endoplasmic reticulum stress, autophagy, apoptosis, Aryl hydrogen receptor signaling, Wnt signaling, DNA damage and 
disorders of Ca2+ homeostasis. PAHs: mainly derived from natural fires and volcanic eruptions, transportation, industrial production, and incomplete combus‑
tion; Heavy metals: mainly from daily power generation, industrial production and automobile exhaust emissions; EC/BC: mainly from direct combustion 
emissions, including industrial pollution, agricultural pollution, transportation pollution and domestic pollution sources; Transition metals: mainly from fossil 
fuel combustion, industrial processes, road dust and construction; EOM: mainly derived from direct emissions and secondary reactions related to combustion; 
Inorganic ions (including SO4

‑, NO3
‑ and NH4

+): mainly derived from secondary reactions. OC: mainly from motor vehicle emissions, coal‑fired emissions, 
biomass combustion, catering fumes and secondary reactions. PAHs, polycyclic aromatic hydrocarbons; EOM, extractable organic matter; EC, element 
carbon; OS, oxidative stress; BC, black carbon; OC, organic carbon.
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pathways during this process, alongside the concentration and 
duration of PM2.5 exposure, will be crucial for advancing our 
knowledge in this field. In addition, exploring the individual 
and synergistical cardiac developmental toxicity effects 
induced by differential PM2.5 components will be vital for 
developing effective intervention measures and regulatory 
strategies. In order to deepen our understanding of the cardiac 
developmental toxicity induced by PM2.5, future researches 
should focus on longitudinal studies evaluating the long‑term 
effects of early exposure on the cardiac outcomes. This will 
provide insights into potential interventions to mitigate these 
effects. Addressing these multifaceted challenges will provide 
supports for public health policies to reduce exposure to 
PM2.5 and improve population health outcomes. Ultimately, a 
comprehensive understanding of PM2.5's toxicological effects 
will contribute to the scientific community and empower 
policymakers to implement effective strategies safeguarding 
public health, particularly among vulnerable populations.
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