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The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant

area of research. While most valvular pathologies are rooted in biomechanical changes,

the technologies for studying these pathologies and identifying treatments have largely

been limited. Nonetheless, significant advancements are underway to better understand

the biomechanics of heart valves, pathologies, and interventional therapeutics, and

these advancements have largely been driven by crucial in silico, ex vivo, and

in vivo modeling technologies. These modalities represent cutting-edge abilities for

generating novel insights regarding native, disease, and repair physiologies, and each

has unique advantages and limitations for advancing study in this field. In particular, novel

ex vivo modeling technologies represent an especially promising class of translatable

research that leverages the advantages from both in silico and in vivo modeling

to provide deep quantitative and qualitative insights on valvular biomechanics. The

frontiers of this work are being discovered by innovative research groups that have

used creative, interdisciplinary approaches toward recapitulating in vivo physiology,

changing the landscape of clinical understanding and practice for cardiovascular surgery

and medicine.
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INTRODUCTION

Valvular heart disease is a significant cause of global morbidity and mortality, with a prognosis
rivaling many types of cancer (1). While there are a wide variety of repair operations and
devices, most of these strategies have been historically based upon anatomy and subjective visual
appearance, and quantitative mechanical foundations have been limited as interventional insights
have largely been driven by clinical outcomes. Moreover, many valvular pathologies are rooted
in biomechanical changes, yet the technologies for studying these pathologies and identifying
treatments have largely been limited. This disconnect is particularly evident in the lack of
surgeon consensus regarding debates such as optimal repair techniques and mechanisms behind
disease pathologies and operations (2–5). However, significant advancements have been made
to better understand heart valves and have largely been driven by in silico, ex vivo, and in vivo
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modeling technologies, which have provided the underlying
platforms for generating many new analyses and insights. In
particular, ex vivo modeling represents an especially promising
class of translatable research that leverages the advantages from
both in silico and in vivo modeling to provide deep quantitative
and qualitative understandings of valvular biomechanics. Each
of these modalities has unique advantages and disadvantages,
and presented is a review of recent, impactful developments
in the field, including the key outlooks and limitations of
the technologies.

IN SILICO MODELING

Computational simulations have been a major driving force for
generating greater intuition of heart valve mechanics. As imaging
modalities and mechanical characterization of biological systems
have improved, so have the relevance and realism of these models
to better predict physiologic outcomes. A particular area of
study that has seen major advancements from in silico, image-
based modeling is that of MV dynamics. Pioneering the clinical
application of new computational technologies, researchers
have used real-time 3D echocardiography to generate patient-
specific computational models of the MV (6–11). Using these
models, publications have revealed pathological dynamics and
generated useful quantifications based on valvular geometry. For
example, by characterizing mitral annulus motion, researchers
found that the cyclic, saddle-shape conformational changes
of the annulus are important for efficient operation of the
valve, reducing systolic strains on the posterior leaflet and
peak leaflet stresses, potentially improving long-term durability
(12, 13). These findings have large implications for informing
clinical practice, as the annuloplasty procedure, which often
results in fixing the mitral annulus, is the most common MV
surgical intervention (6, 8). By correlating native mechanics
to pathological annular biomechanical changes via image-
based computational modeling, these studies have compared
annuloplasty rings and identified areas of surgical intervention
for improving care. Additional studies that model the MV have
provided valuable insights describing the physiologic, pathologic,
and repaired operation of the valve (14–21).

The study of prosthetic valvular replacements, particularly of
the AV, is another area where in silico models are making great
strides. Using computational flow or imaging-based models,
researchers have created unique metrics that evaluate valvular
replacement performance, addressing aspects such as leaflet
thrombosis, abnormal flow patterns, blood damage, hinge design
outcomes, paravalvular leakage, and left ventricular dynamics,
while also creating novel preoperative, patient-specific planning
protocols and prediction tools for surgical or transcatheter
interventions (22–32). These models provide detailed views
through unique quantifications, developing deeper intuition
behind the valvular mechanics. They have been crucial for

Abbreviations: MV, mitral valve; AV, aortic valve; LV, left ventricle; MR,

mitral regurgitation; AR, aortic regurgitation; VSARR, valve-sparing aortic root

replacement; MRI, magnetic resonance imaging.

understanding complex phenomena, such as the value of a bi-
leaflet prosthetic or the effect of neosinuses on the downstream
aortic wall shear stresses and turbulence, and are providing useful
new perspectives for comparing treatment options (22–24, 33).

Specifically regarding the AV, in silico modeling has enabled
the simulation and study of many relevant mechanical
parameters, leading to a detailed, new understanding of
the native physiology as well as complex pathologies. Many
innovative models have been developed and utilized to answer
questions regarding, for example, hemodynamic anomalies and
surgical repair techniques (34–36). In particular, a series of
computational studies aimed at researching the bicuspid AV
pathology has elucidated new insights such as the phenomena
that specific bicuspid AV geometries induce regions of high stress
concentrations in the leaflets, whichmay influence themechanics
of long-term degradation as well as leaflet calcification (37–39).
These studies, coupled with hemodynamic simulations that can
identify the temporal effects of blood flow on the AV leaflets, have
generated powerful tools for comparing healthy and structural
disease states with computationally generated and, in some
cases, patient-specific models (40–42). This work highlights the
power of in silico modeling: creating new connections between
phenomena that would otherwise be unintuitive to understand
and difficult to detect and setting a new benchmark of material
and actionable mechanical data.

In silicomodels have many unique advantages for studying the
heart. Specifically, by using computational models, researchers
have generated unique comparisons, visualizations, and
quantifications that would otherwise be very difficult to do.
For example, using a lattice-Boltzmann method, a recent
publication outlined the dynamics and surface shear stresses
on a specific prosthetic valve hinge at an individual blood
platelet level of granularity, generating a blood damage index
based on a linear shear stress-exposure time model (23). Such
metrics are almost impossible to quantify without computational
modeling. However, in silico models require many unifying,
homogenous assumptions, such as cellular response, parameter
identification of tissue properties, and muscle fiber interactions,
which can be quite far from the heterogeneous, patient-specific,
in vivo physiology (43–45). While work is being done to
incorporate neural networks for building accelerated, enhanced
models, their unifying assumptions are often obstacles for
generating accurate, relevant conclusions (46, 47). Regardless,
in silico modeling provides a truly unique value proposition for
greater biomechanical intuition of the heart, and these studies
demonstrate the foundational research that has guided further
experimentation and, ultimately, clinical practice.

EX VIVO MODELING

Ex vivo heart simulators allow researchers to study heart
biomechanics with a high level of accuracy and control and
are powerful tools for better understanding native physiology,
pathologies, and treatments. This modality usually involves
mounting explanted large animal valves in fluid filled chambers
and/or flow loops, driving physiologic flows with a pulsatile linear
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FIGURE 1 | Detailed, labeled image of a left heart simulator. This system uses

explanted large animal heart valves and a piston pump to generate and

measure physiologic pressures and flows through the valves to study disease

pathologies, repair techniques, and surgical devices. Simulators such as these

provide useful platforms for modeling heart valve biomechanics and represent

a promising new class of research in this field, directly informing clinical

understandings and practice.

piston pump (Figure 1). These simulators are often instrumented
with flow and pressure sensors to measure hemodynamics, and
valves can be imaged using echocardiography, videography,
or MRI. Moreover, many of these systems have leveraged the
use of a symbiotic, multimodal approach with computational
strategies, which have provided critical biomechanical insights,
particularly regarding deeper hemodynamic understanding,
using technology such as particle image velocimetry (48–52).
This comprehensive modeling approach has allowed for the
use of more sophisticated computationally derived data, which
when applied to ex vivo systems, provides more detailed
quantitative analyses.

Much of the early work of ex vivomodeling focused on mitral,
aortic, and tricuspid valvular physiology and biomechanics
(50, 53–60). Building on this technology, researchers have
studied a wide variety of phenomena including coaptation area,
mitral and tricuspid annular geometry, mechanisms behind
regurgitation, and transcatheter prosthetic valve design and
deployment strategies (61–78). Many of these publications have
changed the understandings of key interactions, particularly
those of MV annulus dynamics and the downstream effects on
MR and annuloplasty repair. In a series of studies, researchers
decoupled the effects of the mitral annulus and leaflet geometry,
demonstrating that the D-shaped annulus allows for more
efficient LV filling by minimizing energy dissipation (58, 61,
79, 80). Extrapolating further, a recent publication focused on
creating a dynamically contracting mitral annulus to recapitulate

the natural annular changes. With stereophotogrammetry, the
authors tracked the anterior leaflet of a porcine MV, identifying
increased leaflet strain when implanting a rigid annuloplasty
ring (81).

Novel research is expanding the capabilities and applications
of ex vivo modeling, focusing on generating immediately,
clinically translatable insights for valvular treatment and surgical
care. In a series of recent studies, researchers evaluated the
biomechanical effects of apical and papillary neochord anchoring
locations for MR repair, exploring the mechanical outcomes
of novel percutaneous neochordoplasty technologies (82, 83).
These studies were enabled by the development of optical
fiber-based force-sensing neochordae, which provide minimally
invasive, highly sensitive chordal strain measurements (84). It
was determined that apical neochord anchoring increases the rate
of loading on the surrounding chordae and neochord, suggesting
increased stresses on and long-term durability concerns for
the MV apparatus (83). This work was directly relevant
for percutaneous neochordoplasty technologies, as the results
provided mechanical bases that possibly corroborated early
clinical results. A follow-up study proposed a new device design
to alleviate these increased loading rates by introducing an
elastic transapical artificial papillary muscle that shortens the
length of the chord and dissipates sharp increases in force
(85). Studies such as these demonstrate the transformative
nature of ex vivo simulation, altering the clinical landscape by
providing convincing new evidences for informing surgical and
interventional care, which are driving how treatments are being
developed and evaluated (86–90).

The strength of ex vivo experimentation can be seen in a
series of AV studies that directly compares treatment techniques
for VSARR replacement via their biomechanical outcomes
(Figure 2). By experimenting with many different clinically
used conduit configurations in a heart simulator, researchers
were able to identify the subtle hemodynamic differences
between repair strategies, bringing quantitative understanding
to a topic that was previously, largely based on surgeon
preference (91, 92). Specifically, using a combination of pressure,
flow, echocardiographic, and high-speed videometric data, the
researchers were able to derive a variety of biomechanical
parameters including hemodynamics, graft compliance, leaflet
kinematics (i.e., mean cusp opening and closing velocity and
relative cusp opening and closing force), aortic root distensibility,
and pulsed- and continuous-wave Doppler data. From these
studies, it was concluded that straight grafts were associated
with lower regurgitant fractions and more favorable leaflet
mechanics, specifically lower cusp opening and closing velocities
and relative forces (p≤ 0.01 for each), most closely recapitulating
native aortic root biomechanics. Additionally, work on novel
AR models has led to detailed understandings behind disease
mechanisms, such as cusp prolapse, bicuspid AV, and root
aneurysm, and repairs, such as free margin suspension, free
margin plication, and VSARR, which will lead to important
insights on optimal repair strategies for AR (93–95). In these
studies, while a wide variety of hemodynamic parameters
were measured and extracted from pressure and flow data,
regurgitation was specifically derived from flow measurements
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FIGURE 2 | Long-axis view of five clinically used conduit configurations for VSARR, mounted within an ex vivo left heart simulator and attached to coronary

circulation. Ex vivo experimentation allows for highly controlled, direct comparisons of surgical techniques, helping to identify optimal treatments and prostheses.

Reprinted from Paulsen et al. (91).

through the AV by integrating flow through the aorta during
diastole. Moreover, pulsed- and continuous-wave Doppler,
measured via echocardiography, provided further biomechanical
data regarding regurgitation, peak velocity, peak gradient,
and mean gradient. By combining ex vivo modeling with
clinical guidance and expertise, research groups are leveraging
physiologic heart simulators to biomechanically inform surgical
practice, guiding optimal treatment strategies and exponentially
advancing patient care.

While these technologies have provided incredible insights, ex
vivo modeling is primarily limited by obstacles in physiologic
accuracy and sensing capability. Since this modality uses
explanted large animal tissues, fidelity is lost in not only the
differences between animal and human hearts but also the
inabilities to replicate entire systems and kinematics. An example
that highlights this discrepancy is the phase mismatch limitation,
which describes the condition where pulsatile piston pumps
will initiate expansion of the tissues during systole, when in
reality, heart tissue contracts. Regarding sensing capabilities,
much work is being done to improve the quantitative metrics
measured and derived from ex vivo systems. Examples include
minimally invasive optical chordal force sensors and coaptation
force distribution load sensors (84, 96). These technologies,
adapted for heart simulation, can provide deeper insights and
improved quantification. Moreover, expanding work has been
spearheaded by trailblazing groups that have pushed the edge of
capability in the effort to generate greater clinical and physiologic
relevance of ex vivo simulation.

Two recent studies have pushed the frontiers, leading to a new
level of realism for valvular modeling. A significant limitation of

current MV simulation is that systems are unable to include the
complexmotion of the papillary muscles, which have been shown
to translate and rotate with every heartbeat in vivo (97). These lost
interactions crucially affect the motion and forces on the chordae
tendineae and leaflets and play an important role for valve
function and accurate ex vivo modeling. However, in a recent
pioneering publication, researchers developed a biomimetic
robotic system that captured and replicated this motion ex
vivo (98). These robots use a six degree-of-freedom motion
mechanism that allows for full tracking of the papillary muscle
motion in three translation and three rotational axes, showing
the effective capability to actuate any physical trajectory within
its workspace. This system represents a major advancement in
modeling the MV and provides a platform for closer simulation
of true physiologic accuracy.

Another monumental achievement in heart simulation
presented the development of an organosynthetic, biohybrid
heart model that uses custom molded silicone and advanced
tissue adhesion capabilities to fabricate a synthetic ventricular
myocardium on an explanted porcine heart (99). Researchers
implanted pneumatic actuators as the contractile elements in
the synthetic myocardium to drive heart function. The model’s
fidelity was evaluated using echocardiography and 4D MRI
and was found to have many geometric and hemodynamic
similarities to in vivo images. This organosynthetic heart
provides an advanced, highly accurate, contractile-based
flow generation mechanism that can replace state-of-the-art
piston pumps. Specifically, by introducing silicone-embedded
contractile elements, this innovative model addresses the
inverted phase limitation, one of the largest obstacles of current
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systems. While integrated sensors can provide hemodynamic
data, the most exciting potential is the use of this technology
with MRI imaging, as the pneumatically driven actuators
allow for a metal-free system. This innovation enables access
to a host of MRI-based biomechanical metrics such as high-
fidelity 4D flow imaging and analysis, in a geometrically
accurate and dynamic left ventricular chamber, leading the
way for a new generation of hyper-realistic, ex vivo heart
simulation technology.

IN VIVO MODELING

While in silico modeling and ex vivo modeling provide
many valuable insights for developing fundamental and
rapid understanding of the heart and valves, large-
animal in vivo modeling remains the closest among these
modalities at studying physiological truth. Large-animal
modeling has provided a valuable platform in the valvular
biomechanics research ecosystem, and while its primary,
traditional use case has been informing surgical technique
or device development, pioneering work with implanted,
instrumented sensing has shown the potential for using
these models to inform the fundamental biomechanics
as well.

Early work using large animals primarily centered around
ischemic modeling, as coronary vasculature ligation or
percutaneous ethanol injection provides straightforward
mechanisms for inducing targeted infarction and subsequent
ischemia (100–104). In studying ischemic valvular biomechanics,
researchers have used these models to analyze a wide variety
of phenomena such as ischemic remodeling of MV annular
dynamics, surgical techniques, such as posterior leaflet
augmentation and chordal cutting, the relationship between
ischemic MR and ventricular remodeling, and the effects
of annuloplasty ring selection and sizing for ischemic MR
repair (102, 103, 105–113). While studies such as these have
shown the power of in vivo modeling capabilities, there are
some key limitations with this line of research. Primarily,
working with large-animal models comes with much greater
financial costs, limited sample sizes due to administrative
humane animal care protocols, and surgical coordination
required for developing animal models and conducting in
vivo experiments, and as such there are few laboratories
in the world equipped to execute these kinds of studies.
Moreover, the usefulness of in vivo experimentation is greatly
limited by the number of reliable valvular large-animal
disease models, and unfortunately, not many exist (114).
However, other works have targeted the expansion of these
models including an annular dilation-based, non-ischemic
MR model using multiple annular incisions and a mitral
leaflet flail model using chordal transection to induce leaflet
prolapse and subsequent acute MR (104, 115). Outside of
the MV, researchers have worked on a variety of different
in vivo techniques including pacing-induced tachycardia to
generate dilated cardiomyopathy and subsequent valvular
regurgitation, valvular lesions to generate aortic constriction,

and surgically altered leaflets to generate coaptation failure and
AR (114, 116–121).

While much progress is being made to develop new in
vivo models, biomechanics-focused work aims to generate
implantable instrumentation for improved quantification and
analysis of underlying phenomena. In a series of studies,
researchers developed and utilized a mitral annulus force
transducer that measures in-plane radial forces resulting from
annular contraction (122). This has led to several lines
of experimentation aimed at characterizing mitral annular
dynamics in native, pathological, and repair scenarios (123–129).
Another instrumented, in vivo biomechanics study translates
the fiber Bragg grating neochordae, which directly measures
chordal forces, for in vivo use. These sensors were implanted in
a rare ovine case of functional MR, and chordal force profiles
were generated for pathological and restored conditions post-
annuloplasty. This was the first in vivo study to show that mitral
ring annuloplasty reduces elevated chordal forces associated with
chronic functional MR (130). Publications such as these reveal
the potential for implantable, in vivo instrumentation to inform
valvular biomechanics and surgical repair.

COMPARISON OF THE MODELING
MODALITIES

In silico modeling, ex vivo modeling, and in vivo modeling
represent the major capabilities for better understanding and
engineering for valvular heart disease. These three modalities
comprise the modern ecosystem driving valvular biomechanics
research. While each has its own strengths and weaknesses,
used in a collaborative, comprehensive manner, modeling
technologies can allow for dramatic expansion of this field.
The strength of in silico modeling lies in the ability to
generate numerous new insights and ideas based on a finite
element level approach and unique and intuitive quantifications
and visualizations, supported by a plethora of data and
mathematically derived biomechanical metrics. While these
models face challenges, specifically regarding compounding
inaccuracies due to homogenized, unifying assumptions that can
result in weaker physiologic relevance, the types of questions
and hypotheses that can be evaluated in silico are distinctively
expansive and can provide the basis for deeper investigations.
On the other hand, in vivo modeling sits on the opposite end
of the spectrum in many regards. While these models are almost
unparalleled in their physiologic accuracy, they are largely limited
by cost, smaller sample sizes, surgical expertise requirements,
availability of collaborative interdisciplinary engineering and
surgical infrastructure, and the number of reproducible disease
models. However, ex vivo modeling has the potential to bridge
the translational gap for research in this field, leveraging
the advantages of both in silico and in vivo modalities
to create an unprecedented level of cost-effective, rapidly
iterable, physiologic accuracy. These models have proven to
be instrumental to modern research of valvular biomechanics,
especially in their ability to immediately inform and improve
clinical care.
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CONCLUSIONS

The field of heart valve biomechanics is a rapidly expanding,
highly clinically relevant area of research that has been
driven by crucial in silico, ex vivo, and in vivo modeling
technologies. Thesemodalities represent cutting-edge abilities for
generating novel insights regarding native, disease, and repair
physiologies, and each has unique advantages and limitations
for advancing study in this field. However, leveraged in a
collaborative, comprehensive manner, modeling technologies
can allow researchers to expand the holistic understanding of
heart valves from a wide variety of perspectives, developing
critical intuition of these complex systems. Moreover, research
in valvular biomechanics has a particularly direct link to
clinical translation, as new findings are often immediately
and directly manifested and implemented in surgical practice,
altering patient outcomes.

In particular, novel ex vivo modeling technologies represent
an especially promising class of translatable research, providing
unique quantitative and qualitative insights on valvular
biomechanics. Research that aims to develop new technology
adapted for ex vivo heart simulation has expanded the capabilities

and usefulness of these systems, boosting the clinical and
physiologic relevance of this modality while maintaining enough
control and measurement ability to generate insightful new
quantifications. Overall, the frontiers of this work are being
driven by innovative research groups that have used creative,
interdisciplinary approaches toward recapitulating in vivo
physiology, changing the landscape of many related disciplines
and positively affecting the lives of patients worldwide.
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