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SUMMARY

Pulmonary neuroendocrine cells (PNECs) have crucial roles in airway physiology and immunity 

by producing bioactive amines and neuropeptides (NPs). A variety of human diseases exhibit 

PNEC hyperplasia. Given accumulated evidence that PNECs represent a heterogenous population 
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of cells, we investigate how PNECs differ, whether the heterogeneity is similarly present in mouse 

and human cells, and whether specific disease involves discrete PNECs. Herein, we identify three 

distinct types of PNECs in human and mouse airways based on single and double positivity for 

TUBB3 and the established NP markers. We show that the three PNEC types exhibit significant 

differences in NP expression, homeostatic turnover, and response to injury and disease. We 

provide evidence that these differences parallel their distinct cell of origin from basal stem cells 

(BSCs) or other airway epithelial progenitors.

In brief

Mou et al. find that the conducting airway harbors three distinct types of pulmonary 

neuroendocrine cells, distinguished by gene expression, cell of origin, and existence in solitary and 

clustered configurations. The expansion of PNEC types is selectively associated with NEHI and 

SIDS, suggesting their contribution to disease.

Graphical Abstract

INTRODUCTION

Pulmonary neuroendocrine cells (PNECs) comprise a rare population of epithelial cells in 

mammalian airways that uniquely express bioactive amines and neuropeptides (NPs), 

including calcitonin gene-related peptide (CGRP), gastrin-releasing peptide (GRP), and 

chromogranin A (CHGA) (Gosney et al., 1988; Weichselbaum et al., 2005). These cells are 
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crucial components of the innate immunity in airways, responding to environmental stimuli 

by releasing NPs and neurotransmitters to mediate a variety of functions.

PNECs can be found as solitary cells and in clusters (neuroepithelial bodies [NEBs]). 

PNECs are mostly studied in the configuration of NEBs that are found preferentially at 

airway bifurcations and bronchioalveolar duct junctions in animal models. This differs from 

humans, in which PNECs are mostly solitary and randomly distributed along the airways 

(Gosney et al., 1988; Weichselbaum et al., 2005). Human and mouse PNECs also differ in 

the expression of amines and the NP marker. For example, CGRP and γ-aminobutyric acid 

(GABA) are uniformly expressed by solitary PNECs and NEBs in the mouse intrapulmonary 

airway (Schnorbusch et al., 2013; Barrios et al., 2017). However, these two markers are 

detected in only a fraction of PNECs in humans and nonhuman primates (Gosney et al., 

1988; Weichselbaum et al., 2005; Barrios et al., 2019). NEBs and the total number of 

PNECs are markedly increased in a variety of human diseases, such as neuroendocrine 

hyperplasia in infancy (NEHI) (Young et al., 2011), asthma (Sui et al., 2018), and sudden 

infant death syndrome (SIDS) (Cutz et al., 1996, 2007).

There is accumulated evidence that PNECs represent a heterogenous population of cells. For 

example, in addition to airway epithelial progenitors that differentiate into PNECs during 

embryogenesis, basal stem cells (BSCs) have also been shown to generate PNECs (Gu et al., 

2014; Montoro et al., 2018). However, it is unclear how these populations differ, whether 

they are similarly present in mice and humans, and how they originate. Moreover, little is 

known about the contribution of different populations of PNECs to human diseases,

Here, we identified three distinct types of PNECs in humans and mice that exhibit 

significant differences in NP expression, homeostatic turnover, and response to injury and 

disease. We provide evidence that these differences parallel their distinct cell of origin. For 

clarity, the mouse airway is divided anatomically into the trachea, the main bronchus, and 

the intrapulmonary airway.

RESULTS

TUBB3 analysis reveals three distinct types of PNECs in human airways

During an analysis of neural innervation of human airways, we discovered rare cells in the 

airway epithelium expressing TUBB3, a neuron-specific tubulin beta 3 class III (TUBB3) 

(Figure 1A). Because TUBB3 was not previously known to be expressed by airway 

epithelial cells, we evaluated these TUBB3+ cells by double labeling sections from human 

donor lungs with a panel of established markers of epithelial cell types. All TUBB3+ cells 

expressed pan-epithelial markers (NKX2.1, FOX2, and SOX2) but not NeuN (neuron), p63 

(BSC), RFX3 (ciliated cell), MUC5B (goblet cell), and Pou2F3 (tuft cell) (Figures 1A and 

S1A). In addition, TUBB3 mostly overlapped with PNEC markers, including GRP, CHGA, 

synaptic vesicle glycoprotein 2A (SV2), and PGP9.5 (Figures 1B and S1B). To confirm their 

identity as PNECs, we found that all TUBB3+ cells, including a few without GRP 

expression, were positive for ASCL1, a PNEC-specifying transcriptional factor (Figure 1C) 

(Borges et al., 1997). Some of the TUBB3+ PNECs were in close proximity to nerves 

(Figure S1C), suggesting that these cells could be innervated. Of note, dendritic cells were 
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shown to express TUBB3 (Lee et al., 2005). However, resident CD11c+ dendritic cells in the 

human airway expressed neither TUBB3 nor GRP (Figure S1D). Lastly, in accord with 

previous reports (Gosney et al., 1988; Weichselbaum et al., 2005), most PNECs in the 

human lung were solitary. A few NEBs contained only single GRP+ PNECs (Figure 1D), 

suggesting that TUBB3 may preferentially mark solitary PNECs. From this analysis, we 

concluded that the human airway contains three types of PNECs: single NP+ (the classic 

PNEC that expresses NP markers but not TUBB3), NP+TUBB3+ (double positive for both), 

and single TUBB3+ (no NP expression).

We quantified the relative abundance of each PNEC types in healthy human lungs (Table 

S1). In airways sized from 2 to 3 mm in diameter to bronchioles, all PNECs accounted for 

0.3%–0.5% of epithelial cells. Among PNECs, single NP+ PNECs were the most abundant 

(66% ± 12%), followed by NP+TUBB3+ PNECs (24% ± 11%) and single TUBB3+ PNECs 

(10% ± 4%) (Figure 1E).

Discrete PNEC types are amplified in different human diseases

The findings above led us to inquire whether diseases associated with neuroendocrine 

hyperplasia could be distinguished by specific enrichment in any of these PNEC types. For 

that, we analyzed lung sections from biopsies or autopsies from infants diagnosed with 

NEHI or SIDS (Table S1). ASCL1 staining of patient samples to identify PNECs proved 

technically challenging. Because NP (GRP and CHGA) labels approximately 90% of 

PNECs in the human airway (Figure 1E), NP was used as a marker of PNECs.

NEHI is defined, in part, by an increase in the total number of PNECs, most of which exist 

as NEBs (Figure 1F) (Young et al., 2011). Immunofluorescence for NP (GRP) and TUBB3 

in lung biopsy sections of one NEHI patient (Table S1) revealed many NP+TUBB3+ NEBs 

(Figure 1F), increasing the percentage of NP+TUBB3+ PNECs to 62% compared with 24% 

± 11% in healthy lungs (Figure 1E).

Ten SIDS autopsy samples were divided into two groups based on the serum level of 

serotonin (5-HT) (Haynes et al., 2017). One sample from the high 5-HT group was excluded 

because of postmortem autolysis (Table S1). There was no difference in postconceptional 

(PC) age (defined as gestational age plus postnatal age) between the two SIDS groups (high 

5-HT, 54.5 ± 8 PC weeks; normal 5-HT, 55.7 ± 20.5 PC weeks). The postmortem interval 

between death and the start of autopsy was also similar between the two groups (high 5-HT, 

19.9 ± 6.7 h; normal 5-HT, 19.67 ± 5.4 h). The percentage of NP+TUBB3+ PNECs was 

quantified after single staining of adjacent sections for CHGA and TUBB3 (Figure 1G) and 

was compared between the two groups of SIDS cases and infants who had died from known 

causes (Table S1).

Previous reports showed that PNECs are increased in SIDS as are NEB numbers and size 

(Cutz et al., 1996, 2007). Similarly, we noted readily identifiable NEBs in SIDS lungs 

(Figure 1G) as compared with the rare NEBs seen in the controls. In the high 5-HT SIDS, 

the relative abundance of NP+TUBB3+ PNECs was significantly greater than it was in the 

control group (42.9% ± 6.6% versus 19.6% ± 10.3%, p < 0.01) (Figures 1G and 1H). In 

contrast, among the SIDS cases with normal serum levels of 5-HT, except for one outlier, we 
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found no change in the relative abundance of NP+TUBB3+ PNECs compared with that of 

controls (Figures 1G and 1H). We also quantified the number of single NP+ and NP
+TUBB3+ NEBs relative to airway length in the two SIDS groups. Although all SIDS 

samples had more single NP+ NEBs compared with that of the controls (Figure 1I), only 

high 5-HT SIDS samples had an increased number of NP+TUBB3+ NEBs per unit length of 

airway (Figure 1J).

Taken together, the abundance of NP+TUBB3+ PNECs is preferentially elevated in high 5-

HT SIDS cases, suggesting an increase in NP+TUBB3+ NEBs as a source of the 5-HT. 

Lastly, we found no evidence of PNEC proliferation in all SIDS cases, based on a lack of 

Ki67 labeling (Figure 1K), which indicates that, similar to NEHI (Young et al., 2011), PNEC 

hyperplasia in SIDS is unlikely to be caused by enhanced PNEC proliferation.

TUBB3+ PNECs are restricted in the mouse trachea and single, NP+ PNECs reside in the 
mouse intrapulmonary airway

We investigated whether these different PNEC types were similarly present in the mouse 

respiratory tract. In the intrapulmonary airway, independent of the solitary or clustered 

configuration, PNECs are single NP+ type because TUBB3 was found only in nerves 

associated with NEBs and airway smooth muscle (Figures 2A and 2B). However, recent 

single-cell RNA analysis identified an extended presence of PNECs in the mouse tracheal 

epithelium (Montoro et al., 2018). To gain insights into the diversity of these tracheal 

PNECs, we analyzed the reported single-cell sequencing database. This revealed two PNEC 

types (NP+ or single TUBB3+) confirmed by common expression of Ascl1 but showing 

clearly distinct global patterns of gene expression (Figures S2). Immunofluorescence for NP 

(CGRP) and TUBB3 in sections of adult mouse trachea showed that the PNECs were largely 

NP+TUBB3+ (61.3%) and single TUBB3+ cells (35.5%), with only a few single NP+ PNECs 

(3.2%) (Figures 2B and 2C). TUBB3+ cells were also found in main bronchi in mice but at 

too few to allow quantification.

To test whether the TUBB3+ cells (especially the single TUBB3+ PNECs) in the mouse 

trachea originated from a common Ascl1+ progenitor, we performed a lineage tracing assay 

in Ascl1-CreERT2;Rosa(tmRed) mice and assessed tmRed colocalization with CGRP and 

TUBB3 at day 2 (D7) and at 3 months (D97) post-tamoxifen (post-TAM) injection (Figure 

2D). In intrapulmonary airways, almost all CGRP+ PNECs (96.7% ± 3.9%) were tmRed+ 

(Figure 2E) at D7, confirming the high efficiency and stringency of lineage tracing. There 

was no change in the high percentage of tmRed+ PNECs at D97 compared with that of D7 

(Figures 2E and 2F). Therefore, single NP+ PNECs in the mouse intrapulmonary airway are 

either long lived or are maintained by self-renewal. In the trachea of TAM-treated, Ascl1-
CreERT2;Rosa(tmRed) mice, 95.3% of tmRed+ PNECs (101/106) were TUBB3+ at D7 

(Figures 2G and 2H). A few tmRed+TUBB3− cells may be undifferentiated PNEC 

progenitors. In addition, 96.2% of TUBB3+ cells were tmRed+ (Figure 2H). At D97, the 

percentage of TUBB3+ tmRed+ cells (85/116) was reduced by ~20% compared with that of 

D7 (Figures 2G and 2H), consistent with homeostatic replenishment of tmRed+ PNECs by 

an unlabeled progenitor population (BSCs) (Montoro et al., 2018). However, similar to the 
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results from D7, almost all tmRed+ cells remained TUBB3+ at D97 (85/87) (Figure 2H). 

These findings indicate that TUBB3 is a persistent marker of PNECs in the mouse trachea.

BSCs generate TUBB3+ PNECs

To investigate whether tracheal TUBB3+ PNECs originate from BSCs, we performed BSC 

lineage tracing in p63-CreERT2;Rosa(tmRed) mice. We have previously shown that TAM 

exposure at embryonic day (E) 17.5 results in robust (~90%) BSC labeling of the tracheal 

epithelium of 3-week-old pups (Yang et al., 2018). We found tmRed+ tracheal labeling in 

both NP+TUBB3+ and single TUBB3+ PNECs (Figures 3A and 3B). No tmRed+ cells were 

found in the intrapulmonary airway (Figure 3C). Similar results were obtained after BSC 

lineage labeling in adult mice (Figures S3A and S3B). Therefore, mouse BSCs generate 

TUBB3+ PNECs in the trachea but not elsewhere, consistent with the restricted BSC 

distribution in extrapulmonary airways.

Given that the airway repair after H1N1 influenza viral infection included the expansion of 

basal-like (p63+ and Krt5+) endogenous progenitors (Zuo et al., 2015; Yang et al., 2018), we 

asked whether this involved induction of any of the PNEC types. We performed a lineage-

tracing analysis of p63-CreERT2;Rosa(tmRed) adult mice before H1N1 viral infection. 

Staining of the intrapulmonary airway at 15 day after infection showed no p63 lineage 

labeling in CGRP+ PNECs that remained single NP+ (Figure S3C). In addition, club cells 

could not give rise to single NP+ PNECs in the intrapulmonary airway at baseline and in 

injury repair by lineage-tracing analysis using H1N1-infected, CC10-CreERT2;Rosa(tmRed) 
mice (Figures S3D–S3F). Furthermore, we found no evidence of proliferation of single NP+ 

PNECs during the course of H1N1-induced injury repair, despite robust Ki67 staining in 

other airway epithelial cell types (Figure S4). Thus, BSCs and club cells cannot generate 

single NP+ PNECs in the mouse intrapulmonary airway under H1N1-injury conditions.

We further investigated BSC as the progenitors of TUBB3+ PNECs by isolating and 

expanding tracheal BSCs from adult Ascl1-CreERT2;Rosa(tmRed) mice. These cells were 

cultured at the air-liquid interface (ALI) to induce differentiation and were treated with 4-

hydroxytamoxifen (4-OH-TAM) at ALI day 15 (Figure 3D). Analysis of these cultures 2–4 

days later showed almost all tmRed+ cells (99.3%) were single or double positive for 

PGP9.5 and TUBB3. Most TUBB3+ cells expressed PGP9.5 (518/604) (Figure 3E). 

Therefore, lineage labeling both in vivo and in vitro consistently shows that BSCs generate 

almost exclusively TUBB3+ PNECs.

To test whether BSCs were also the progenitor of TUBB3+ PNECs in human airways, we 

isolated bronchial BSCs from healthy adult lung donors (Mou et al., 2016). To eliminate 

possible contamination from neurons, we sorted epithelial cell adhesion molecule positive 

(EpCAM+) cells and seeded the cells at one cell per well (Figure 3F). At ALI day 14, 

TUBB3 immunoreactivity was identified in 0.2%–0.5% of the cells (Figure 3G); 87% of the 

TUBB3+ cells were GRP+, and 98% of the GRP+ cells expressed TUBB3 (Figure 3G). 

Furthermore, all TUBB3+ cells expressed pan-epithelial markers (SOX2 and FOXA2) but 

lacked the markers for club cells, basal cells, ciliated cells, and goblet cells (Figure 3H). 

These findings indicate that human BSCs differentiate into NP+TUBB3+ and single 

TUBB3+ PNECs.
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TUBB3 is required for cellular protrusions of PNECs

TUBB3 is a constituent of microtubules in neurons that act in concert with neurofilaments to 

maintain cell morphology and transport organelles and synaptic vesicles for communication 

with other neurons and innervated peripheral tissue (Prokop, 2020). Tubb3−/− mice are 

normal under homeostasis but exhibit delayed axon regeneration after nerve injury 

(Latremoliere et al., 2018). The role of TUBB3 in the airway epithelium has not been 

studied. To address that issue, we isolated basal cells from wild-type and Tubb3−/− adult 

tracheas and induced differentiation in ALI cultures. We found that TUBB3 deficiency had 

no effect on PNEC differentiation, NP expression, or baseline secretion of 5-HT (Figures 4A 

and 4E). Staining showed that wild-type PNECs displayed several patterns of cellular 

protrusions: “snail” (very short protrusion), “comet” and “sprout” (one protrusion), “split” 

(two protrusions), and “tripod” (3 protrusions) (Figures 4B–4D and S1F). In contrast, 

Tubb3−/− PNECs had significantly shorter protrusions, causing an increase in the abundance 

of snail PNECs and reciprocal decreases in split and tripod PNECs (Figures 4A–4D).

We then assessed the phenotype of PNECs in vivo in the trachea of Tubb3−/− adult mice. We 

found most (85%) of the PNECs in the wild-type trachea extended protrusions (Figures 2C, 

2G, 3B, 4F, and 4H). Similar protrusions of PNECs were also found in the human airway 

(Figures 1A, 1B, and S1) (Weichselbaum et al., 2005). In comparison, more than 40% of 

PNECs lacked apical protrusions in the trachea of Tubb3−/− mice (Figures 4F and 4H). 

However, TUBB3 deficiency had no effect on basal-lateral distribution of CGRP in PNECs 

(Figure 4F), the number of PNECs and BSCs in the trachea (Figures 4G and 4I), and the 

abundance of NEBs in the intrapulmonary airway that normally lack TUBB3 expression 

(Figure 4J). Therefore, TUBB3 is critical for apical and basal protrusions of PNECs.

DISCUSSION

Here, we identified three distinct types of PNECs occurring in the airways of mice and 

humans, and we provide insights into their ontogeny, phenotype, and occurrence in health 

and disease. The hierarchical relationship between the two new TUBB3+ PNEC types (NP
+TUBB3+ and single TUBB3+ PNECs) warrant future investigation. Mechanisms that 

regulate BSC differentiation into TUBB3+ PNECs are also unknown. A recent study has 

shown that BSCs directly differentiate into PNECs under hypoxia (Shivaraju et al., 2021), 

which may explain the hyperplasia of NP+TUBB3+ PNECs in NEHI and a subset of SIDS 

cases without the involvement of PNEC proliferation.

Cellular protrusions mediate the communication between the cell and the environment. We 

show that TUBB3+ PNECs are dependent on TUBB3 to extend apical and basal protrusions. 

As such, TUBB3 may endow PNECs with unique apical-to-basal communication, such that 

changes in the airway lumen can be sensed by the apical protrusion and transmitted to 

neighboring cells via NP and amines released from the basal protrusion. In contrast, NEBs 

do not express TUBB3 and appear to lack similar protrusions as TUBB3+ PNECs. We, thus, 

speculate that TUBB3+ PNECs and TUBB3− NEBs may have different sensing mechanisms.

We noted in SIDS that, compared with controls, cases with normal 5-HT levels had an 

increase in NP+ NEBs, whereas high 5-HT cases showed an increased number of NP
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+TUBB3+ NEBs. Given that these cells have been shown to serve as O2/CO2/pH sensors 

(Domnik and Cutz, 2011), an increase of NEBs in SIDS suggests changes in the lungs of 

SIDS infants in response to respiratory challenges. Novel to this study is the identification of 

the TUBB3+ PNECs in SIDS and their association with increased levels of serum 5-HT. It 

has been postulated that NEBs are a source of the increased serum 5-HT reported in a subset 

of SIDS infants (Haynes et al., 2017).

The present study generates new hypotheses about 5-HT-specific pathways of TUBB3+ 

NEBs in SIDS infants, especially given that TUBB3 in the mouse is not required for 5-HT 

secretion. Associations between peripheral serotonergic abnormalities, including those of 

pulmonary origin, and central serotonergic abnormalities (Duncan et al., 2010) are of 

interest to better understand the different etiologies of SIDS pathogenesis and the potential 

role of TUBB3+ PNEC-derived 5-HT in this etiology. In regard to NEHI, it is unknown 

whether patients with NEHI have high levels of blood or serum 5-HT.

Our findings demonstrate significant differences between humans and mice with respect to 

the distribution and clustering of PNECs. For human airway diseases that involve the 

hyperplasia of BSC-derived, TUBB3+ PNECs, such as NEHI and SIDS, the mouse 

intrapulmonary airway may be a limited model for mechanistic studies. Experimental 

systems derived from the mouse tracheal explant and airway BSCs may serve as a more 

disease-relevant model.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Xingbin Ai (xai@mgh.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—This study did not generate any unique datasets or code.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice—p63-CreERT2 mice were generated and characterized as described previously (Lee 

et al., 2014). The Rosa-tmRed line (stock number: 007914), CC10-CreERT2 line (stock 

number: 016225), Ascl1-CreERT2 line (stock number: 012882) were purchased from The 

Jackson Laboratory. Tubb3−/− mouse line was kindly provided by Dr. Engle at Boston 

Children’s Hospital, Harvard Medical School and was characterized previously 

(Latremoliere et al., 2018). For time-pregnancy experiments, male mice carrying the 

CreERT2 allele were mated with Rosa-tmRed female mice. Noon of the day when the 

vaginal plug was identified was determined as gestation day 0.5 (E0.5). The stages of 

embryogenesis for linage tracing was E13.5 and E17.5. All other experiments used adult 

mice at minimal 8 weeks of age. All studies were approved by Institutional Animal Care and 

Use committees at Columbia University and Massachusetts General Hospital, Harvard 

Medical School.
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Human donor lungs—Lungs from de-identified, male and female donors between 0–65 

years of age were purchased from International Institute for the Advancement of Medicine 

(IIAM), a non-profit institute that provides non-transplantable human tissues for medical 

research. 6 human donor lungs between 0–65 years of age (4 males and 2 females) were 

used in this study. These donors had no previous lung diseases, and mostly died of brain 

injuries and heart failure. All the information regarding the donor is anonymous. Because the 

experiment involves no intervention or interaction with the donors and relates to no living 

individuals, this project is deemed non-human subject research by institutional IRB 

committee.

Histological sections of lung biopsy samples from NEHI and SIDS patients—
The tissue sections of the NEHI patient were provided by Boston Children’s Hospital 

(BCH). The tissue sections of SIDS cases, and 3 of the 4 non-SIDS control cases were 

provided by the San Diego Office of the Medical Examiner (SDME), San Diego, CA, which 

is available to us for research under the auspices of California Law, Chapter 955, Statutes of 

1989. Serum serotonin values from the SIDS cases and SDME controls were previously 

reported by Haynes et al. (2017) (Table S1). This study was approved by IRB at Boston 

Children’s Hospital.

Primary human airway basal cells—Human adult airway basal cells were isolated 

from fresh discarded lung tissues from surgical specimens in MGH under an IRB-approved 

protocol (#2017P001479, Dr. Hongmei Mou) through lung transplantation team in MGH.

METHOD DETAILS

Lineage tracing analysis—Lineage tracing experiments were performed after mating 

male CreERT2 mice with Rosa(tmRed) female mice. Tamoxifen (TAM) was dissolved in 

sunflower seed oil at a concentration of 10 mg/mL (Sigma, T5648). For lineage tracing of 

basal stem cells in embryos, TAM was administered by gavage to pregnant mice at gestation 

day 13.5 and E17.5 (160 μg/g body weight) (Yang et al., 2018). For lineage tracing in 

postnatal mice, TAM (240 μg/g body weight) was given by oral gavage to both male and 

female mice of 3–5 weeks of age. The trachea and the intrapulmonary airway samples from 

Ascl1-CreERT2;Rosa(tmRed) mice were harvested 2 days and 3 months after the last TAM 

injection. The tissue samples from p63-CreERT2;Rosa(tmRed) mice and CC10-
CreERT2;Rosa(tmRed) mice were previously described (Yang et al., 2018). Samples were 

analyzed for CGRP and TUBB3 expression and colocalization with tmRed.

H1N1 (PR8) viral preparation and infection—The lung samples following H1N1 

infection were previously described (Yang et al., 2018) and were re-analyzed in this study 

for CGRP and TUBB3 expression. Briefly, adult mice were anesthetized by isoflurane 

followed intranasal administration of 120pfu of H1N1 virus in 30μl PBS. Control mice 

received PBS. Lungs were inflated with 4% paraformaldehyde in PBS and fixed overnight 

before samples were processed for paraffin-embedding. Tissue sections (6–8μm) were 

rehydrated before citric acid-based antigen retrieval and antibody staining following 

established protocols (Yang et al., 2018).
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Airway basal cell culture—Human and mouse basal cells were isolated and cultured 

using the established protocols (Mou et al., 2016; Levardon et al., 2018). Briefly, basal cells 

were maintained in Small Airway Epithelial Cell Medium (Lonza, CC-3118 or Promocell 

medium, C-21170) with 5–10 μM ROCKi (Tocris, 1254), 1 μM A-83–01 (Tocris, 2939), 0.1 

μM DMH-1 (Tocris, 4126) and 0.5 μM CHIR99021 (Tocris, 4423). Human cells were 

cultured on plates pre-coated with laminin-enriched 804G-conditioned medium, while 

mouse cells were cultured on plain plates without pre-coating. To expand, cells were 

dissociated with trypsin and re-seeded at 1:10 ratio. Mucociliary differentiation of airway 

basal cells in ALI was performed as previously described (Mou et al., 2016). Briefly, airway 

basal cells were seeded onto 0.4 μm transwell membranes pre-coated with 804G-conditioned 

medium at a cell density of > 6000 cells/mm2 and were allowed to attach for a minimum of 

12 hours. After the removal of unattached cells, the medium was replaced with complete 

Pneumacult-ALI medium (StemCell Technology, Cat. 05001) filling both the upper and 

lower chambers. The next day, the ALI medium was added only to the lower chamber to 

initiate differentiation at the airway-liquid interface. The ALI medium was changed daily 

until differentiation was well established after 14 days as a standard protocol. To lineage 

label PNECs in ALI culture derived from Ascl1-CreERT2;Rosa(tmRed) mice, 4-OH-

tamoxifen (1 μM, Sigma-Aldrich, H7904) was added to day 15 ALI culture. After 24 hours, 

the culture was rinsed with saline three times to remove 4-OH-tamoxifen. Cultures were 

fixed for staining on day 17–19 in ALI. For the measurement of serotonin secretion, ALI 

culture was replaced with fresh media and after 2 days, media were collected for ELISA for 

5-HT using a commercialized kit.

Antibody staining—Protocols of antibody staining were previously published (Mou et al., 

2016; Barrios et al., 2017). Briefly, for staining of the ALI culture, the transwell membrane 

was fixed with 4% PFA at room temperature for 10–15 min, followed by washing and 

permeabilization with PBS + 0.2% Triton X-100. The membrane was either used for 

wholemount staining or embedded in optimum cutting temperature compound for 4–7 μm 

frozen sections. For staining of paraffin sections, sections were re-hydrated before 

incubating with primary antibodies. For mouse monoclonal antibodies, M.O.M kit (Vector 

Labs BMK-2202) was used. Sections were stained using a standard staining protocol (Mou 

et al., 2016; Barrios et al., 2017). Immunofluorescence of cells on transwell membranes was 

visualized with the Olympus IX81 inverted fluorescence microscope. Images are captured at 

multiple focal planes and combined using MicroSuite FIVE (Olympus Soft Imaging 

Solutions) and Extended Focal Imaging (EFI) module to create a single in-focus image, 

capturing the cellular complexities of the thicker ALI cultures. Bright field images were 

taken using a digital camera (Nikon DS-Fi2). Primary antibodies include: rabbit anti-GRP 

(1:200, Immunostar, Cat#20073), rabbit anti-Chromogranin A (1:200 Abcam, ab45179), 

goat anti-CC10 (1:500, Santa Cruz, Cat#SC-9772), mouse anti-TUBB3 (TuJ1) (1:50, R&D 

Systems, MAB1195), rabbit anti-Nkx2.1 (1:100, Abcam, ab76013), rabbit anti-CGRP 

(1:1000, Sigma-Aldrich, C8198), goat anti-Foxa2 (1:200, Santa Cruz technology, sc-655), 

rabbit anti-NeuN (1:300, Abcam, Cat#ab190566), rabbit anti-p63 (1:200, Genetex, 

GTX102425), goat anti-Sox2 (1:200, R&D systems, AF2018), rabbit anti-RFX3 (1:500, 

Sigma, HPA035689), rabbit anti-Pou2F3 (1:250, Sigma-Aldrich, HPA019652), mouse anti-

SV2 (1;50, Developmental Studies Hybridoma Bank), mouse anti-Ezrin (1:50, 
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Developmental Studies Hybridoma Bank), rabbit anti-Ki67 (1:300, Cell Marque, Cat#SP6), 

mouse anti-Muc5B (1:200, Sigma-Aldrich, HPA008246). The following secondary 

antibodies were used: biotinylated goat anti-rabbit (1:200, Vector Laboratories, BA-1000), 

donkey anti-rabbit (conjugated with Alexa Fluor 647), donkey anti-mouse (conjugated with 

Alexa Fluor 488), donkey anti-rat (conjugated with Alexa Fluor 647). All conjugated 

secondary antibodies were purchased from Thermo Fisher Scientific. Nuclei were 

counterstained by DAPI.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of the abundance of 3 PNEC types in human lung tissue—For 

quantification of PNECs in healthy donor lungs, the number of fluorescently labeled cells 

that were single and doubly positive for GRP and TUBB3 were counted from the entire 

tissue section following double staining. For each donor, 3 sections from different biopsy 

samples were quantified and added together to represent one donor. For quantification of 

PNECs in the NEHI sample, the airways in the entire section, a total of 2 non-overlapping 

sections, were quantified for fluorescently positive cells after double staining for GRP and 

TUBB3. For quantification of PNECs in SIDS biopsy samples, adjacent tissue sections were 

single labeled for CHGA and TUBB3, respectively. Labeled cells were counted throughout 

the sections via a Neurolucida cell counting program (MBF Bioscience, Williston, VT). The 

percentage of a specific PNEC subpopulation was quantified by dividing the number of the 

specific PNECs by the total number of PNECs. For quantification of NEBs in SIDS cases, 

NEBs with 3 or more PNECs were counted on the entire tissue section. The length of the 

airway was measured by NIH ImageJ. For quantification of the proliferation of PNECs in 

SCID cases, adjacent tissue sections were single labeled for TUBB3 and Ki67, respectively.

Quantification of the 3 PNEC types in the trachea and the intrapulmonary 
airway in mice—For quantification of PNECs in mouse trachea, 5 longitudinal sections 

were used for each sample. For quantification of solitary PNECs and NEBs in mouse 

intrapulmonary airway, at least 3 sections were stained and 6–12 non-overlapping images 

(20X) images were quantified for each sample. Results represent the quantification from 3 

mice in each condition. The length of tracheal airway epithelium was measured by NIH 

ImageJ.

Quantification of PNECs in ALI culture—Whole mount staining of the transmembrane 

was performed before the membrane was imaged. PNECs were counted from 5 non 

overlapping images. The total number of cells were measured based on DAPI labeling. 

Results represent the quantification from a minimum of 2 independent experiments.

Statistical analyses—Quantification and statistical analyses were described in the 

Method details section above and Figure legends associated with each experiment. GraphPad 

Prism 6 was used for data analysis. Data in all bar graphs represent mean ± SEM from at 

least 2 independent experiments. For comparisons between two conditions, statistical 

significance was analyzed using the unpaired Student’s t test. The difference between 

experimental groups was considered statistically significant if P value was less than 0.05.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Rare TUBB3+ solitary pulmonary neuroendocrine cells reside in the 

conducting airway

• Airway basal stem cells generate TUBB3+ pulmonary neuroendocrine cells

• TUBB3 is required for cellular protrusions of pulmonary neuroendocrine cells

• TUBB3+ pulmonary neuroendocrine cells are amplified in infant diseases
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Figure 1. Identification of TUBB3+ PNECs in the human lung
(A–E) Human airways from healthy donors, sized from 2–3 mm in diameter to bronchioles, 

were double stained for TUBB3 and specified markers of airway epithelial cells and neurons 

(NeuNs) in (A), GRP in (B) and (D), and ASCL1 in (C). Arrowhead marks single GRP+ 

PNECs. Arrows mark GRP+TUBB3+ PNECs. Asterisks mark single TUBB3+ PNECs. 

Images in (C) are from two adjacent sections. The dotted lines in (B)–(D) mark basement 

membrane beneath the airway epithelium. (E) Quantification of the three types of PNECs in 

healthy donor lungs.

(F) Representative images of double staining for GRP and TUBB3 in a patient with NEHI. 

Arrows mark GRP+TUBB3+ PNECs. Background green fluorescence was caused by red 

blood cells.
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(G–J) Representative images of CHGA and TUBB3 staining of adjacent sections from SIDS 

cases (G). Arrows mark CHGA+TUBB3+ PNECs. Data were quantified as the percentage of 

PNECs that were NP+TUBB3+ in (H), the number of single NP+ NEBs in (I), and NP
+TUBB3+ NEBs in (J) per millimeter of airway epithelium in non-SIDS controls (n = 4), 

high 5-HT SIDS cases (n = 4), and normal 5-HT SIDS cases (n = 5). NEBs with more than 

three PNECs were counted.

(K) Representative images of staining for TUBB3 (arrow) and Ki67 (arrowhead) on adjacent 

sections from SIDS cases. Bar graphs represent means ± SEM. *p < 0.05, **p < 0.01 by 

Student’s t test. See also Figure S1 and Table S1.
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Figure 2. Characterization of the three PNEC types in the trachea and the intrapulmonary 
airway in mice
(A) Representative images of CGRP and TUBB3 staining in the intrapulmonary airway. The 

outlined area is shown in the bottom panel. n = 6.

(B) Relative abundance of the three PNEC types in the intrapulmonary (intra) airway and the 

trachea. n = 3 mice; five sections from each mouse.

(C) Representative images of double staining of mouse tracheal sections for TUBB3 and 

markers of epithelial cells. Arrows mark CGRP+TUBB3+ PNECs. Asterisk marks a single 

TUBB3+ PNEC. n = 6.

Mou et al. Page 17

Cell Rep. Author manuscript; available in PMC 2021 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Scheme of neuroendocrine cell lineage tracing using Ascl1-CreERT2;Rosa(tmRed) 
mice.

(E–H) Representative images of CGRP staining of the intrapulmonary airway (E) and the 

trachea (G) in TAM-treated, Ascl1-CreERT2;Rosa(tmRed) mice on D7 and D97. Arrow 

marks tmRed+ PNECs.

Data were quantified in (F) and (H). n = 3 mice, 3–5 sections from each mouse. See also 

Figure S2.
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Figure 3. BSCs generate TUBB3+ PNECs in culture
(A) Scheme of BSC lineage tracing in TAM-inducible, p63-CreERT2;Rosa(tmRed) mice.

(B and C) The trachea (B) and the intrapulmonary airway (C) were analyzed using 6–12 

fields (20×) per sample and a total of three mice. See also Figures S3 and S4.

(D) Scheme of PNEC lineage labeling of the Ascl1-CreERT2;Rosa(tmRed) BSC culture. 

The culture was treated with 4-OH-TAM on day 15 ALI and analyzed on days 17–19 of 

ALI.

(E) Relative abundance of the three PNEC types in ALI culture.

(F) Scheme of human BSC culture in ALI.

(G and H) Day 14 ALI culture was analyzed by staining for TUBB3 and the specified 

markers. In (B) and (G), arrows show GRP+TUBB3+ PNECs, and asterisks mark single 

TUBB3+ cells. Data are representative results using BSCs from three donors.
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Figure 4. TUBB3 is required for PNECs to form cellular protrusions
(A and C) Representative images of double staining for CHGA and TUBB3 in ALI culture 

of wild-type and Tubb3−/− BSCs. Asterisks mark “snail” PNECs with very short protrusions.

(B and D) Relative abundance of CHGA+ PNECs with protrusions of different lengths (B) 

and patterns (D) in wild-type and Tubb3−/− cultures. More than 500 PNECs were counted in 

each experiment, with a total of two independent experiments.

(E) 5-HT secretion in ALI culture of wild-type and Tubb3−/− BSCs by ELISA. Cultures in 

triplicates and from two independent experiments were assayed.

(F) Representative images of PNECs in the trachea of wild-type and Tubb3−/− mice. An 

asterisk marks a snail PNEC.

(G–I) Quantification of PGP9.5+ PNECs in (G), snail PNECs in (H), and p63+ BSCs in (I) 

per millimeter along the tracheal epithelium in wild-type and Tubb3−/− mice.

(J) Representative images of CGRP+ NEBs in the intrapulmonary airway of wild-type and 

Tubb3−/− mice.
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n = 15 sections from three mice of each genotype. Bar graphs represent means ± SEM. *p < 

0.05 by Student’s t test. Scale bars, 50 μm.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit polyclonal anti-GRP ImmunoStar Cat#20073; RRID: AB_572221

rabbit polyclonal anti-p63 Genetex Cat# GTX102425, RRID:AB_1952344

rabbit polyclonal anti-CGRP Sigma-Aldrich Cat#C8198; RID:AB_259091

rabbit polyclonal anti-Nkx2.1 Abcam Cat#ab76013; RRID:AB_1310784

goat anti-CC10 Santa Cruz Cat#sc-9772; RRID:AB_2238819

goat anti-Sox2 R&D systems Cat# AF2018, RRID:AB_355110)

goat anti-Foxa2 R&D systems Cat# AF2400, RRID:AB_2294104

rabbit polyclonal anti-RFX3 Sigma Cat# HPA035689, RRID:AB_10671224

rabbit polyclonal anti-Pou2f3 Sigma-Aldrich Cat# HPA019652, RRID:AB_185558

hamster monoclonal anti-CD11c, APC, clone N418 eBioscience Cat#17–0114-81; RRID: AB_469345

mouse monoclonal anti-Ascl1 BD Biosciences Cat# 556604, RRID:AB_396479

rabbit polyclonal anti-Muc5b Sigma-Aldrich Cat# HPA008246, RRID:AB_1854203

mouse monoclonal anti-SV2 Developmental Studies Hybridoma 
Bank

N/A

mouse monoclonal anti-neural class III beta-tubulin, 
Clone Tuj1

R&D Systems Cat#MAB1195; RRID: AB_357520

Rabbit monoclonal anti-Ki67 Cell Marque Cat# SP6

rabbit anti-CHGA Abcam Cat# ab45179, RRID:AB_726879

rabbit polyclonal anti-NeuN Abcam Cat#ab190565, RRID:AB_2732785

chicken polyclonal anti-Krt5 BioLegend Cat#905901, RRID:AB_2565054

APC anti-human CD326 (EPCAM) BioLegend Cat# 324207, RRID:AB_756081

donkey anti-goat; Alexa Fluor 488 Thermo Fisher Cat# A-11055; RRID:AB_2534102

donkey anti-goat; Alexa Fluor 568 Thermo Fisher Cat# A-11057; RRID:AB_2534104

donkey anti-rabbit; Alexa Fluor 568 Thermo Fisher Cat#A10042; RRID:AB_2534017

donkey anti-rabbit; Alexa Fluor 488 Thermo Fisher Cat# A-21206;RRID:AB_2535792

donkey anti-rabbit; Alexa Fluor 647 Thermo Fisher Cat# A-31573; RRID:AB_2536183

donkey anti-rat; Alexa Fluor 488 Jackson ImmunoResearch Cat#712–546-153; RRID:AB_2340686

donkey anti-mouse; Alexa Fluor 488 Thermo Fisher Cat# A-21202; RRID:AB_141607

donkey anti-mouse; Alexa Fluor 568 Thermo Fisher Cat# A10037; RRID:AB_2534013

biotinylated polyclonal anti-rabbit Vector Laboratories Cat# BA-1000, RRID:AB_2336201

Biotinylated polyclonal anti-mouse Vector Laboratories Cat# BA-2000, RRID:AB_2313581

Biological samples

human lungs from donors with no previous airway 
diseases

International Institute for the 
Advancement of Medicine

https://iiam.org/

tissue sections of a NEHI case Boston Children’s Hospital (BCH) N/A

tissue sections of non-SIDS controls and SIDS cases San Diego Medical Examiner (SDME) N/A

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma-Aldrich Cat#T5648

4-hydroxy-tamoxifen Sigma-Aldrich Cat#H7904

Sunflower seed oil Sigma-Aldrich Cat#S5007
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REAGENT or RESOURCE SOURCE IDENTIFIER

Y-27632 dihydrochloride Tocris Cat#1254

A-83–01 Tocris Cat#2939/10

DMH-1 Tocris Cat#4126

CHIR99021 Tocris Cat#4423

Critical commercial assays

Mouse on Mouse Kit Vector Laboratories Cat#BMK-2202

Standard ABC kit Vector Laboratories Cat#PK-6100

DAB Peroxidase Substrate Kit Vector Laboratories Cat# SK-4100

Serotonin ELISA Kit Enzo Life Sciences Cat# AD1–900-175

Experimental models: Organisms/strains

Mouse: Rosa(tmRed) The Jackson Laboratory JAX: 007914

Mouse: Ascl1-CreERT2 The Jackson Laboratory JAX: 012882

Mouse: CC10-CreERT2 The Jackson Laboratory JAX: 016225

Mouse: p63-CreERT2 Lee et al., 2014 N/A

Mouse: TUBB3−/− Latremoliere et al., 2018 N/A

Software and algorithms

GraphPad Prism 6 GraphPad Software https://www.graphpad.com

ImageJ 1.49v ImageJ https://imagej.nih.gov
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