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Epilepsy detection based on electroencephalogram (EEG) signal is of great significance to diagnosis and treatment of epilepsy.*e
denoised EEG signal is adopted by most traditional epilepsy detection methods. But due to nonideal denoising ability, the loss of
local information and residual noise will occur, resulting in detection performance degradation. To solve the problem, the paper
proposed an epilepsy detection method in noisy environment. Although epileptic signals and nonepileptic signals have some
discrimination, they need to overcome the interference of noise. Hence, the improved sample entropy and phase synchronization
indexes of corresponding 2 intrinsic mode functions (IMFs) caused by variational mode decomposition (VMD) are proposed as
features, which can reduce the impact of noise on detection performance. *e experimental results show that the accuracy,
sensitivity, and specificity are 91.78%, 91.27%, and 93.61%, respectively. It can be used as an auxiliary method for clinical treatment
of epilepsy.

1. Introduction

Epilepsy is one of the common nervous system diseases
affecting about 60 million people around the world [1].
Epilepsy detection results are one of the main basis for
neurosurgeons to treat epilepsy. Traditional epilepsy de-
tection is completed by neurosurgeons according to their
own clinical experience by observing the electroencepha-
logram (EEG) [2]. *is method not only takes a lot of time
but also depends on the subjective judgment of neurosur-
geons. *erefore, the realization of automatic high perfor-
mance epilepsy detection is the main research direction for
scholars [3].

As far as the authors know, the denoised EEG signals are
widely used to detect epilepsy. But the epilepsy detection
method based on denoised signal is limited in practical
application because of the nonideal denoising.*e denoising
methods are divided into two classes. One is completed by
bandpass filter based on the assumption that signal and noise
live in different frequency bands. But boundary effect of filter
causes poor filtering effect near the cut-off frequency. *e

other is to identify noise based on the assumption that noise
and signal come from different sources. *e independent
component analysis method (ICA) is an outstanding rep-
resentative of this class [4]. ICA officially states that it can
filter out 95% of the noise, but the filtering effect of this
method will become worse with the reduction of channels.
In addition, ICA will consume a lot of time and cannot
achieve real-time epilepsy detection. At the same time, the 2
classes of denoising methods will filter out some epileptic
signals by mistake sometimes, resulting in the loss of epi-
leptic information. To avoid the phenomenon, the paper
realized epilepsy detection based on the complete signals in
noisy environment.

EEG is a complex physiological phenomenon produced
by the interaction of different tissues and organs. *e non-
linear method can accurately describe the physiological fea-
tures and obtain more information close to the real state of
brain regulation [5, 6]. *e most common nonlinear analysis
methods include correlation dimension, Lyapunov exponent,
and sample entropy. Because correlation dimension and
Lyapunov exponent have certain requirements on data length

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6180441, 11 pages
https://doi.org/10.1155/2022/6180441

mailto:lijinb@sdas.org
https://orcid.org/0000-0002-1455-6742
https://orcid.org/0000-0002-2432-8807
https://orcid.org/0000-0002-2425-377X
https://orcid.org/0000-0002-4579-8808
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6180441


[7], sample entropy is widely used for EEG analysis at present
[8]. As far as authors know, sample entropy is obtained based
on denoised signal in epilepsy detection so far. *e sample
entropy may be different from the real sample entropy due to
the nonideal denoising. At the same time, the sample entropy
represents the overall complexity of signal but lacks local
information.*e paper utilizes changing trend of local sample
entropy to improve sample entropy, so that the improved
sample entropy can represent overall complexity and local
complexity, which can truly represent the characters of signals
in noisy environment.

Phase synchronization is the result of brain nerve in-
teraction, which can represent small dynamic changes be-
cause of its high sensitivity [9, 10]. In clinical application,
neurosurgeons will determine the type of epilepsy according
to the features in different frequency bands so as to make a
treatment plan [11]. *e frequency bands will be different
because of the individual difference of patients. Sometimes,
the bandpass filter can not eliminate the influence. Variational
mode decomposition (VMD) solves the problem of frequency
band decomposition as an adaptive decomposition method
[12]. In the paper, phase synchronization index is selected as
measurement method of phase synchronization. *e signals
from channel FZCZ and channel CZPZ are decomposed into
6 IMFs living in different frequency bands by VMD, re-
spectively. 5 phase synchronization indexes of corresponding
2 IMFs (excluding IMF6) from different channels are selected
for epilepsy detection because of their remarkable ability of
epilepsy detection in noisy environment.

In the paper, the improved sample entropy and phase
synchronization indexes are adopted in noisy environment.
*e main contributions can be summarized as follows.

(i) *e improved sample entropy is proposed in noisy
environment. It overcomes the shortcoming that
the sample entropy cannot represent the real
complexity of partial signals because of the local
special signals sometimes. Comparing to traditional
sample entropy, the improved sample entropy has
stronger epilepsy detection ability in noisy
environment.

(ii) In order to obtain features that can be used by
neurologists, frequency band decomposition is re-
alized by VMD. It can solve the problem that fixed
frequency band cannot be extracted due to indi-
vidual differences of patients. *e 5 phase syn-
chronization indexes between corresponding 2
IMFs (excluding IMF6) are proved to have strong
epilepsy detection ability in noisy environment.

(iii) As far as the authors know, this paper realized
epilepsy detection in noisy environment for the first
time. It avoids epilepsy information loss in the
process of filtering.

*e remaining of the paper is organized as follows.
Section 2 reviews the block diagram of epilepsy detection
and the principle of adopted method in the paper. Section 3
reviews the experimental processing and results, which
contains feature extraction, feature analysis, and realization

of epilepsy detection. Section 4 reviews a brief conclusion
and research direction in the future.

2. Principle and Methods

2.1. Overall Structure of Epilepsy Detection. In the paper, the
signals from channel FZCZ and channel CZPZ are selected
and processed by outlier processing. *e improved sample
entropy is obtained which can truly represent the complexity
of the signals in noisy environment. *e signals from the 2
channels are divided into 6 IMFs by VMD, respectively. 5
phase synchronization indexes of corresponding 2 IMFs
(excluding IMF6) are selected as the features. *e random
forest model is used to realize epilepsy detection based on
the improved sample entropy and phase synchronization
index. *e block diagram of epilepsy detection is shown in
Figure 1.

2.2. VMD. VMD is a completely nonrecursive signal de-
composition method, which mainly decomposes the signal
into several narrow band components around different
center frequencies. *e center frequency is constantly
changing. By finding the optimal solution of the constrained
variational model, the variational modal components are
obtained. *e adaptive segmentation of each component in
the frequency domain is completed. More details are in [12].
EEG signal can be decomposed into multiple components
living in different frequency bands by VMD in the paper. An
example of VMD is shown in Figure 2.

2.3. Improved Sample Entropy. *e paper proposes a sample
entropy improving method which can represent signal
complexity in noisy environment truly. *e processing
contains nonuniform processing and adjustment.

2.3.1. Principle of Sample Entropy. Sample entropy is an
important index to describe the complexity of signal [13]; the
steps are as follows.

Step 1. *e sequence x(n)(n � 1, 2, . . . , N) is composed of
a group of P-dimensional vectors denoted as X(l). It is
expressed as

X(l) � [x(l), x(l + 1), . . . , x(l + p − 1)],

l � 1 ∼ N − P + 1,
(1)

Step 2. Define the distance D[X(l), X(s)] between vectors
X(l) and X(s) as the largest difference between the corre-
sponding elements of the two vectors. D[X(l), X(s)] is
expressed as follows:

D[X(l), X(s)] � Max
k�0∼P−1

[|x(l + k) − x(s + k)|]. (2)

Step 3. Given threshold R, count the number of D[X(l),
X(s)] less than R and the proportion of this number to the
total N−P, which is given by
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, (3)

where M is the number that satisfies D[X(l), X(s)] < R,
l� 1∼N+P+ 1, l≠ s.

Step 4. Calculate the average value of B
p

l (r) as follows:

B
p
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Step 5. *e sequence is composed of P+ 1 vector in order,
and step 1 to step 4 are repeated to get the P+ 1 vector
denoted as Bp+1(r).

Step 6. *e sample entropy of x(n) is denoted as

SampEn � − lim
N⟶∞

ln
B

p+1
(r)

B
p
(r)

. (5)

2.3.2. Nonuniform Processing. Compared with nonepileptic
signals, the proportion of epileptic signals with high am-
plitude in noisy environment is larger. In order to reduce the

influence of noise on the amplitude of EEG signal, the
nonuniform processing method is proposed. *e method
can enlarge the amplitude difference between epileptic
signals and nonepileptic signals. It is denoted as follows:

y �

x, |x|≤ 80,

log10|x − 70|, x> 80,

log10|x + 70|, x< −80,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where x and y are the signal before and after nonuniform
processing, respectively.

2.3.3. Sample Entropy Adjustment. *e existing EEG anal-
ysis methods are to divide the signal into several periods and
extract feature in each period. Sample entropy is widely used
in epilepsy detection. Sample entropy is the performance of
overall complexity but lacking local information [14].
Sometimes sample entropy is decided mainly by local special
signal. *e development of epilepsy is not sudden but a
process of evolution with time. *erefore, the changing
trend of local sample entropy represents the feature of the
overall sample entropy to a certain extent [15]. *e paper
proposes a sample entropy improving method for epilepsy
detection, which takes 2 seconds as an analysis period and
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Figure 2: Example of VMD (the number of IMFs is 6).
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divides 2 seconds into 8 segments. According to the
changing trend of sample entropy in 8 segments, this paper
adjusts the sample entropy so as to improve the epilepsy
recognition ability in noisy environment. *e improved
sample entropy is denoted as follows:

SampEnimp � SampEn + μ∗ α − μ∗ β, (7)

SampEn and SampEnimp denote sample entropy and im-
proved sample entropy, respectively. a is the nonepileptic
modulation coefficient of sample entropy. When the sample
entropy in each segment increases 20% for 3 consecutive
times, a is set to 1; otherwise it is set to 0. ß is the epileptic
modulation coefficient of sample entropy. When the sample
entropy in each segment decreases 20% for 3 consecutive
times, ß is set to 1; otherwise it is set to 0. µ is adjustment
factor which is determined by the difference of sample
entropy between epileptic signals and nonepileptic signals in
specific channel.

2.4. Phase Synchronization. It is important to select signals
based on features from different regions. *e original signal
transmits to the scalp through complex paths. It will be
affected by other signals. In the paper, the EEG signal is
obtained from 5 regions based on position: forehead region,
left temporal region, right temporal region, occipital region,
and hippocampus region. *e region division is shown in
Figure 3. *e signals in the same regions mostly come from
the same source, so they usually have strong similarity [16].

Phase synchronization means that there is a certain
relationship between 2 phases of signals. When the ampli-
tude of the two signals remains uncorrelated, the phase of
the two signals may be in a synchronous state [17].*e phase
synchronization can be described as follows.

Assuming that two oscillatory systems X and Y interact
with each other and the output signals of the system are x (t)
and y(t), the n:m (n, m is a natural number) phase syn-
chronization is defined where θx(t) � ωx(t) +Φx,
θy(t) � ωy(t) +Φy, ωx/ωy � m/n. θx(t) and θy(t) are in-
stantaneous phase of x(t) and y(t), respectively. Φx and Φy

are initial phase of x(t) and y(t), respectively. δ is a normal
number with smaller value. If X and Y have the same fre-
quency, ωx/ωy � m/n � 1, phase difference Δθxy(t) is
denoted as Δθxy(t) � θx(t) − θy(t) � Φx −Φy � ΔΦxy.

Phase synchronization index is an important index to
measure phase synchronization which is defined as follows:

c ≡ 〈ejΔθxy(t)〉t


 �

�����������������������������

〈cos Δθxy(t) 〉
2
t

+〈sin Δθxy(t) 〉
2
t



,

(8)

where means getting average.

3. Experiments and Results

3.1.ExperimentalData. In this paper, the data is provided by
Massachusetts Institute of Technology (MIT) [18]. *e data
contains 24 EEG records of 23 patients, which are collected
by 10–20 international standard systems. *e start time and
end time of epilepsy are manually labeled by epilepsy

experts. *e total duration of record is 979.8 hours, in-
cluding 197 records of epileptic signals lasting 3.23 hours.
*e data contains many types of epileptic data, which is large
and representative. It is widely used for epilepsy detection.

3.2. Outlier Processing. In the paper, outlier processing is
used to reduce the impact of noise. 120 seconds’ epileptic
signals and 120 seconds’ nonepileptic signals of patient 18
are randomly selected as example, respectively. 2 seconds
was taken as an analysis period. Outliers in each period were
identified by the Pauta criterion and replaced bymedian.*e
number of outliers is shown in Figure 4.

It can be seen from Figure 4 that the number of
outliers which is got from nonepileptic signals is larger
than that from epileptic signal. *e main reason is that the
outliers with smaller amplitude are submerged by epi-
leptic signals with high amplitude, resulting in the re-
duction of outliers.

*e outliers in EEG signal usually affect the performance
of epilepsy detection. Some outliers are caused by noise.
Hence outlier processing is used to reduce the impact of
noise. At present, ICA is widely used as one of the best
denoising methods, which can remove up to 95% of the
noise. Hence the signal processed by ICA is used as the
reference standard. *e outliers in each period were iden-
tified by the Pauta criterion. *e signals are obtained by
outlier processing and ICA processing, respectively. *e
correlation coefficient of the signals is shown in Figure 5.

It can be seen from Figure 5 that EEG signals from
different channels have strong correlation with the signals
after ICA denoising and outlier processing. It indicates that
the outliers processing can reduce the effort of noise as ICA.

3.3. Improved Sample Entropy. Compared with nonepileptic
signals, the amplitude of epileptic signal is relatively higher.
In order to enlarge the difference between epileptic signal
and nonepileptic signal, the paper adopts nonuniform
processing method to process EEG signal. *e paper takes
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signal from channel FZCZ of patient 18 as an example. *e
amplitude distribution of epileptic signals and nonepileptic
signals is given in Figure 6. It can be seen from Figure 6 that,
compared with epileptic signals, the number of nonepileptic
signals with high amplitude is relatively smaller.

By enlarging the amplitude difference between epileptic
signals and nonepileptic signals, it can further enlarge the
difference between them, so as to complete high perfor-
mance epilepsy detection.

*e analysis of variance (ANOVA) is used to analyze the
significance difference between epileptic signals and non-
epileptic signals. *e P-value decrease proportion is shown
in Figure 7. *e smaller the P-value, the stronger the ability
of distinguishing epilepsy from nonepilepsy. It can be seen
from Figure 7 that the significant difference decreases ob-
viously after nonuniform processing.

*e adjustment factor is decided by average sample
entropy of epileptic signals and nonepileptic signals. *e
average sample entropy is shown in Table 1.

It can be seen from Table 1 that the relationship between
sample entropy of epileptic signals and nonepileptic signals
in the same channels is uncertain. *e main reason is that

different channels locate in different positions of brain, so
they are affected by different noise and signals in other
channels.

Sometimes sample entropy cannot truly represent the
complexity of EEG signal because of local special signals. In
order to get the complexity of local signal, the 2-second
period is divided into 8 segments (represented as No 1, No 2,
etc.). *e sample entropy of signals in each segment is
calculated respectively. *e changing trend of sample en-
tropy between 8 segments is integrated into the whole
sample entropy. *e partial sample entropy needs to be
adjusted as given in Table 2.*e sample entropy meeting the
ascending adjustment requirements accounts for 4.21% of
the total. *e sample entropy meeting the descending ad-
justment standard accounts for 2.94% of the total. *e
sample entropy meeting the descending adjustment stan-
dard and ascending adjustment standard accounts for 0.04%
of the total. *e sample entropy will be adjusted based on
adjustment factors when meeting adjustment standard. *e
adjustment factor is obtained according to average sample
entropy of specific channel in Table 1. Take channel CZPZ as
an example; the average sample entropy of epileptic signals is
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Table 1: Average sample entropy of epileptic signals and nonepileptic signals.

Epileptic signals Nonepileptic signals
Channel Average Channel Average Channel Average Channel Average
FP1F7 0.66 F4C4 0.59 FP1F7 0.71 F4C4 0.70
F7T7 0.78 C4P4 0.61 F7T7 0.67 C4P4 0.75
T7P7 0.86 P4O2 0.66 T7P7 0.76 P4O2 0.71
P7O1 0.83 FP2F8 0.79 P7O1 0.79 FP2F8 0.89
FP1F3 0.75 F8T8 0.86 FP1F3 0.66 F8T8 0.81
F3C3 0.60 T8P8 0.95 F3C3 0.65 T8P8 0.84
C3P3 0.65 P8O2 0.91 C3P3 0.70 P8O2 0.97
P3O1 0.73 FZCZ 0.45 P3O1 0.81 FZCZ 0.58
FP2F4 0.61 CZPZ 0.71 FP2F4 0.64 CZPZ 0.66

Table 2: Examples of sample entropy meeting the adjustment standard.

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 Whole Continuous ascending Continuous descending
0.24 0.21 0.12 0.25 0.35 0.52 0.53 0.33 0.36 Yes
0.14 0.18 0.25 0.41 0.17 0.44 0.16 0.03 0.21 Yes
0.14 0.33 0.46 0.56 0.62 0.25 0.35 0.67 0.35 Yes
0.57 0.43 0.41 0.13 0.37 0.53 0.99 0.35 0.37 Yes
0.07 0.11 0.66 1.06 0.84 0.59 0.38 0.38 0.25 Yes
0.07 0.65 0.38 0.22 0.08 0.34 0.26 0.31 0.32 Yes
1.15 0.42 0.31 0.07 0.14 0.10 0.24 0.34 0.29 Yes
0.34 0.54 0.84 0.53 0.33 0.07 0.35 0.66 0.37 Yes
0.73 0.21 0.40 0.83 0.76 0.54 0.42 0.20 0.38 Yes
1.03 0.67 0.48 0.34 0.55 0.90 1.41 1.50 0.77 Yes Yes
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0.66, and the average sample entropy of nonepileptic signals
is 0.71. *erefore, the adjustment factor of channel CZPZ is
the difference of epileptic signals and nonepileptic signals
(0.05 in this case).

*e ANOVA is used to analyze the significance differ-
ence of the improved sample entropy between epileptic
signals and nonepileptic signals. *e P-value is obtained by
this method. *e significance difference of sample entropy
before and after adjustment was calculated. *e results are
shown in Table 3. It can be seen from Table 3 that the
significance of epileptic signals and nonepileptic signals after
adjustment significantly increases. In particular, the P-value
of signals in channel F7T7 is adjusted from 0.045 to 0.023 by
sample entropy adjustment. *erefore, the improved sample
entropy improves the detection ability of epileptic signals
and nonepileptic signals.

*e data acquisition environment is nonideal. Hence,
data missing is inevitable in the processing of acquisition.
*e robustness of the improved sample entropy is analyzed
in the paper. In the paper, the data which have no data
missing are chosen as reference standard. *e incomplete
data is generated by randomly removing data in the pro-
portion of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. *e paper
calculates the correlation coefficient between incomplete
data and complete data. *e results are shown in Figure 8. It
can be seen from Figure 8 that the correlation coefficient of
the improved sample entropy in noisy environment is larger
than that of the traditional sample entropy based on the
denoised signals in the same proportion of datamissing.*is
phenomenon shows that the improved sample entropy has
stronger robustness than traditional sample entropy.

3.4. Phase Synchronization Analysis in the Same Regions.
*e interaction between signals at the same frequency
bands is active, which contains abundant physiological
information. In order to get many IMFs at different
frequency bands, the EEG signals are decomposed by
VMD in the paper. It is of great significance to select the
appropriate number of IMFs (denoted as K). If the K value
is too small, it will produce insufficient decomposition,
resulting in the neglect of meaningful information. If
the K value is too large, the center frequency of different
IMFs may be close to each other, resulting in mode ali-
asing. Hence, the center frequency observation method is
adopted to get K value in [19]. *e center frequency of the
same IMF in different times is different. *erefore, the
average center frequency is adopted by taking the average
value of the center frequency of the same IMF. *e paper
analyzes the relationship between the number of IMFs and
the average center frequency of each IMF. *e results are
shown in Figure 9.

It can be seen from Figure 9 that when the number of
IMFs is 6, the average center frequency of each IMF has an
obvious difference. However, when the number of IMFs is 7,
the center frequency difference between IMFs is smaller than
the number of IMFs which is 6. *e phenomenon is caused
by excessive decomposition of VMD. It can be concluded
that 6 is the best number of IMFs in the paper.

*e signals from 2 channels in the same region are
decomposed to get IMFs by VMD. *e average phase
synchronization index of corresponding 2 IMFs in the same
region is analyzed. *e results are shown in Table 4.

It can be seen from Table 4 that there are some differ-
ences in the average phase synchronization index of IMFs in
different regions. *e farther away from the hippocampus,
the lower the phase synchronization. On the whole, the
phase synchronization of epileptic signals is higher than that
of nonepileptic signals. *e main reason is nonepileptic
signals containing more random features than epileptic
signals. When epileptic signals occur, the proportion of
epileptic information in EEG signal becomes larger, so the
degree of synchronization is higher. At the same time, with
the increase of IMF’s frequency, the phase synchronization
index gradually decreases. *e phase synchronization in-
formation carried by IMF in high frequency is significantly
less than that carried by IMF in low frequency.

In the paper, the EEG of patient 18 was randomly se-
lected for analysis with 2 seconds as analysis period. *e
signal is decomposed into 6 IMFs by VMD (K� 6). In the
same region, the significance difference of phase synchro-
nization index of corresponding 2 IMFs is analyzed. *e P-
value obtained by ANOVA is shown in Table 5.

It can be seen from Table 5 that when the phase syn-
chronization index is used as the feature of epilepsy and
nonepilepsy in noisy environment, the significance is more
obvious than after signal denoising. *e main reason is that
when denoising method is used to remove noise, only
considering amplitude and frequency but ignoring phase
results in partial phase information loss. *us, the phase
synchronization index is affected. *ere is a significant
difference in the detection ability of different IMFs of epi-
lepsy and nonepilepsy in different region.*e significance of
the IMFs in the hippocampus region is obvious on the
whole. *is region is closest to the source of epileptic sei-
zures.*eoretically, the epileptic information obtained is the
most timely. *erefore, the phase coupling features of the
hippocampus region are the best choice for phase syn-
chronization analysis.

3.5. Phase Synchronization Analysis in the Different Regions.
In the paper, 5 channels from 5 different regions were
randomly selected for analysis. Channel FP1F3 in the
forehead region, channel F7T7 in the left temporal region,
F8T8 channel in the right temporal region, channel P7O1 in
the occipital region, and channel FZCZ in the hippocampal
region are selected as a representative channel. *e data
from each channel is decomposed into 6 IMFs by VMD.*e
ANOVA method is used for significance analysis between
epileptic signals and nonepileptic signals. *e results are
shown in Table 6. It can be seen from Table 6 that the most of
significance of epileptic signals and nonepileptic signals is
obvious in different regions, but there is at least one pair of
IMFs whose significance is not obvious. *erefore, the
significance between epileptic signals and nonepileptic
signals in the different regions is more worse than in the
same regions.
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Table 3: Comparison of significance difference before and after adjustment (P-value).

Channel Before
adjustment

After
adjustment Channel Before

adjustment
After

adjustment Channel Before adjustment After adjustment

FP1F7 6.24∗10−4 1.05∗10−4 C3P3 2.14∗10−15 2.33∗10−15 FP2F8 5.61∗ 10−7 5.17∗10−7

F7T7 0.46 0.023 P3O1 1.48∗∗10−4 1.48∗10−4 F8T8 9.25∗10−5 8.16∗10−5

T7P7 8.21∗ 10−3 6.28∗10−3 FP2F4 9.56∗10−6 9.56∗10−6 T8P8 0.46 0.41
P7O1 0.26 0.20 F4C4 2.88∗10−15 2.51∗ 10−15 P8O2 6.26∗10−11 6.26∗10−11

FP1F3 7.02∗10−6 6.25∗10−6 C4P4 2.15∗10−11 1.77∗10−11 FZCZ 1.48∗10−12 1.11∗ 10−12

F3C3 0.012 9.33∗10−3 P4O2 8.80∗10−6 8.80∗10−6 CZPZ 7.93∗10−30 7.25∗10−30

0.05 0.1 0.15 0.2 0.25 0.3
Proportion of Missing Data

0.2

0.4

0.6

0.8

1

C
or

re
lat

io
n 

C
oe

ffi
ci

en
t

Sample Entropy of Denoised Epileptic Signal
Improved Sample Entropy of Epileptic Signal in Noisy Environment
Sample Entropy of Denoised Nonepileptic Signal
Improved Sample Entropy of Nonepileptic Signal in Noisy Environment

Figure 8: *e robustness analysis of improved sample entropy.
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Figure 9: Average center frequency of every IMF: (a) *e number of IMFs is 6. (b) *e number of IMFs is 7.

Table 4: Average of phase synchronization index of corresponding 2 IMFs.

Region Type IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6

Forehead region (FP1F3–FP2F4) Epileptic 0.94 0.92 0.87 0.71 0.33 0.24
Nonepileptic 0.90 0.84 0.76 0.62 0.44 0.14

Left temporal region (F7T7–T7P7) Epileptic 0.93 0.90 0.80 0.67 0.39 0.31
Nonepileptic 0.87 0.77 0.64 0.52 0.32 0.17

Right temporal region (F8T8–T8P8) Epileptic 0.95 0.90 0.78 0.61 0.32 0.3
Nonepileptic 0.86 0.76 0.64 0.54 0.22 0.15

Occipital region (P7O1–P4O2) Epileptic 0.93 0.91 0.80 0.43 0.48 0.51
Nonepileptic 0.87 0.81 0.76 0.52 0.26 0.16

Hippocampus region (FZCZ–CZPZ) Epileptic 0.97 0.95 0.91 0.77 0.23 0.26
Nonepileptic 0.91 0.86 0.79 0.78 0.40 0.19
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3.6. Epilepsy Detection Results. In the paper, channel FZCZ
and channel CZPZ in the hippocampus region are selected as
analysis channels, and 2 seconds is taken as an analysis
period.*e improved sample entropy is used as features.*e
signals from two channels are decomposed into 6 IMFs by
VMD, respectively, and phase synchronization index be-
tween corresponding IMFs (excluding IMF6) is calculated,
which is a total of 7 signal features.*e random forest model
is used to realize epilepsy detection. Random forest is an
ensemble learning algorithm, which is a representative of
bagging. By combining multiple weak classifiers, the final
result is obtained by voting or taking the mean value.
Random forest model has high performance and general-
ization. *e grid search method is used to optimize the
model parameters. *e optimal number of decision trees is

900, and the number of variables randomly selected each
time is 5. In order to reduce overfitting, the 10-fold cross
validation is used to complete the performance verification.
Many scholars make use of the same data to achieve epilepsy
detection, and the performance is shown in Table 7.

It can be seen from Table 7 that themethod proposed in the
paper can achieve epilepsy detection in noisy environment.
From the experimental results, it can be inferred that the im-
proved sample entropy and phase synchronization index
combined with VMD can perform well as features in noisy
environment. *e signal loss caused by denoising is avoided,
and the signal integrity is guaranteed to the greatest extent. At
the same time, only two channels are selected.*e 10-fold cross
validation can ensure the results are independent on subject.
From the 10-fold cross validation results, it can be seen that the

Table 5: Significance difference of signals in the same brain region (P-value).

Region Type IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6

Forehead region (FP1F3–FP2F4) Denoisednoisy 2.65∗10−4 8.87∗10−12 8.89∗10−6 0.75 2.3∗10−7 2.82∗10−8

4.98∗10−4 5.2∗10−11 5.0∗10−6 0.5064 3.0∗10−7 6.3∗10−9

Left temporal region (F7T7–T7P7) Denoisednoisy 2.75∗10−6 4.62∗10−9 2.4∗10−5 6.3∗10−4 0.0016 1.36∗10−6

9.6∗10−8 4.0∗10−9 8.63∗10−5 0.0025 2.0∗10−5 4.5∗10−13

Right temporal region (F8T8–T8P8) Denoisednoisy 0.3533 0.0113 0.2365 0.2265 7.89∗10−23 8.95∗10−53

0.443 0.0125 0.2564 0.1812 8.5∗10−23 2.5∗10−53

Occipital region (P7O1–P4O2) Denoisednoisy 1.49∗10−5 7.04∗10−10 0.0193 0.0034 3.7∗10−12 7.48∗10−43

5.0∗10−5 1.24∗10−10 0.0279 0.0254 2.27∗10−11 4.29∗10−45

Hippocampus region (FZCZ–CZPZ) Denoisednoisy 6.42∗10−4 3.44∗10−4 1.53∗10−8 0.0011 6.85∗10−14 0.2568
9.98∗10−5 1.80∗10−7 3.36∗10−6 0.0038 6.18∗10−12 0.2082

Table 6: Significance difference of signals in different brain regions (P-value).

Channel IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6
F7T7–P3O1 1.62∗10−6 1.11∗ 10−7 0.0341 2.99∗10−8 0.7576 4.19∗10−5

F7T7–FP2F4 0.0014 3.61∗ 10−5 0.0564 0.9567 0.0173 0.0011
F7T7–T8P8 0.0095 6.57∗10−4 0.465 5.72∗10−4 0.1283 4.99∗10−4

F7T7–FZCZ 1.47∗10−5 3.09∗10−7 0.0423 0.2848 0.1465 1.94∗10−6

P3O1–T8P8 0.0013 1.70∗10−4 0.9580 1.11∗ 10−14 0.065 9.1∗ 10−5

P3O1–FZCZ 3.43∗10−8 7.80∗10−15 0.1801 1.91∗ 10−14 0.2255 7.21∗ 10−4

P3O1–FP2F4 7.46∗10−5 8.81∗ 10−12 0.0996 1.41∗ 10−16 0.2695 6.07∗10−7

FP2F4–T8P8 0.0364 0.0022 0.5932 2.34∗10−5 0.4861 8.94∗10−6

FP2F4–FZCZ 2.79∗10−5 3.36∗10−10 0.0184 0.8411 5.62∗10−19 0.0018
T8P8–FZCZ 0.0017 8.51∗ 10−6 0.8036 3.46∗10−8 0.9007 2.6∗10−8

Table 7: Epilepsy detection performance (100%).

Accuracy Sensitivity Specificity Number of channel Noisy
Reference [20] 85.6 91.7 80.6 18 No
Reference [21] 91.09 87.83 94.35 18 No
Reference [22] 95.00 97.50 95.00 18 No
Reference [23] 95.71 98.65 84.15 23 No
Reference [24] 99.05 95.45 99.10 5 No
Reference [25] 99.6 100 99.8 23 No
Reference [26] 99.63 97.84 99.63 5 No
Reference [27] 99.66 99.72 99.60 8 No
Reference [28] 72.10 74.78 69.34 1 No
Reference [29] 75.21 50.96 87.37 1 No
Reference [30] 92.13 87.10 94.65 1 No
Reference [31] 92.79 93.07 94.84 1 No
Proposed method 91.78 91.27 93.61 2 Yes
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method is effective with high accuracy. At the same time, the
method can detect most of epilepsy and only very few non-
epileptic signals are classified as epileptic signal.

4. Conclusion

Epilepsy detection is realized in noisy environment which can
avoid information loss generated by denoising. *e improved
sample entropy and phase synchronization index are selected as
features in the paper. *e improved sample entropy has
stronger epilepsy detection ability than sample entropy through
nonuniform processing and adjustment. *e channels in the
same region can act better than in the different region when
used for phase synchronization analysis. VMD is used to
adaptively decompose the signal into 6 IMFs, and the phase
synchronization indexes between corresponding 2 IMFs (ex-
cluding IMF6) can distinguish epilepsy from nonepilepsy. *e
random forest model realizes epilepsy detection. *e results
show that the accuracy, sensitivity, and specificity are 91.78%,
91.27%, and 93.61%, respectively. *e results verify the ad-
vantage of the paper.*at is, themethod can still detect epilepsy
with high performance based on EEG signal contained by
complex noise. Because of the lack of epilepsy information
caused by filtering, some epilepsy cannot be detected. *e
method effectively avoids the delay of diagnosis time which is
caused by the false epilepsy detection. Hence, the method has a
wider application potential.

However, the method has a disadvantage. *at is,
channel CZPZ and channel FZCZ do not always contain
enough epilepsy information used for detecting, especially
for some refractory epilepsy. In some special period, the 2
channels are not optimal channels when the quality of the
two channels is poor. *erefore, establishment of adaptive
unfixed channel selection method can further improve the
performance of epilepsy detection through the improvement
of local performance.*e adaptive channel selectionmethod
in noisy environment will be our research work in the future.
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