

Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage (*Brassica rapa*)

Xiaochun Wei^{1†}, Md. Abdur Rahim^{2†}, Yanyan Zhao¹, Shuangjuan Yang¹, Zhiyong Wang¹, Henan Su¹, Lin Li¹, Liujing Niu¹, Md. Harun-Ur-Rashid², Yuxiang Yuan^{1*} and Xiaowei Zhang^{1*}

¹ Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China, ² Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

Chinese cabbage is one of the most important and widely consumed vegetables in China. The developmental transition from the vegetative to reproductive phase is a crucial process in the life cycle of flowering plants. In spring-sown Chinese cabbage, late bolting is desirable over early bolting. In this study, we analyzed double haploid (DH) lines of late bolting ("Y410-1" and "SY2004") heading Chinese cabbage (Brassica rapa var. pekinensis) and early-bolting Chinese cabbage ("CX14-1") (B. rapa ssp. chinensis var. parachinensis) by comparative transcriptome profiling using the Illumina RNA-seq platform. We assembled 721.49 million clean highquality paired-end reads into 47,363 transcripts and 47,363 genes, including 3,144 novel unigenes. There were 12,932, 4,732, and 4,732 differentially expressed genes (DEGs) in pairwise comparisons of Y410-1 vs. CX14-1, SY2004 vs. CX14-1, and Y410-1 vs. SY2004, respectively. The RNA-seq results were confirmed by reverse transcription quantitative real-time PCR (RT-gPCR). A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs revealed significant enrichment for plant hormone and signal transduction as well as starch and sucrose metabolism pathways. Among DEGs related to plant hormone and signal transduction, six unigenes encoding the indole-3-acetic acid-induced protein ARG7 (BraA02g009130), auxinresponsive protein SAUR41 (BraA09g058230), serine/threonine-protein kinase BSK11 (BraA07g032960), auxin-induced protein 15A (BraA10g019860), and abscisic acid receptor PYR1 (BraA08g012630 and BraA01g009450), were upregulated in both late bolting Chinese cabbage lines (Y410-1 and SY2004) and were identified as putative candidates for the trait. These results improve our understanding of the molecular mechanisms underlying flowering in Chinese cabbage and provide a foundation for studies of this key trait in related species.

Keywords: comparative transcriptome, early bolting, late bolting, differentially expressed genes, Chinese cabbage

INTRODUCTION

Brassica belongs to the Brassicaceae family, which consists of several economically important vegetable crops consumed worldwide (Cheng et al., 2014). Vegetables in this genus exhibits various morphotypes, including leafy heads (cabbage, *Brassica oleracea* var. *capitata*; Chinese cabbage, *Brassica rapa* var. *pekinensis*), enlarged inflorescences (cauliflower, *B. oleracea* var. *botrytis*; broccoli,

OPEN ACCESS

Edited by:

Zhiyong Liu, Shenyang Agricultural University, China

Reviewed by:

Pengtao Ma, Yantai University, China Shengnan Huang, Shenyang Agricultural University, China

*Correspondence:

Yuxiang Yuan yuxiangyuan126@126.com Xiaowei Zhang xiaowei5737@163.com

[†] These authors have contributed equally to this work

Specialty section:

This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics

> Received: 03 August 2020 Accepted: 18 January 2021 Published: 04 March 2021

Citation:

Wei X, Rahim MA, Zhao Y, Yang S, Wang Z, Su H, Li L, Niu L, Harun-Ur-Rashid M, Yuan Y and Zhang X (2021) Comparative Transcriptome Analysis of Earlyand Late-Bolting Traits in Chinese Cabbage (Brassica rapa). Front. Genet. 12:590830. doi: 10.3389/fgene.2021.590830

1

B. oleracea var. *italica*), enlarged axillary buds (Brussels sprouts, *B. oleracea* var. *gemmifera*), enlarged stems (kohlrabi, *B. oleracea* var. *gongylodes*), and enlarged roots (turnip, *B. rapa* subsp. *rapa*) (Zhao et al., 2005; Cheng et al., 2014, 2016). Furthermore, these vegetables contain various health-promoting secondary metabolites, including glucosinolates, phenolics, carotenoids, flavonoids, and anthocyanins, which have protective effects against inflammation, cardiovascular diseases, and age-related diseases (Manchali et al., 2012).

Brassica rapa subspecies show high morphological diversity (Zhao et al., 2005). In particular, the heading Chinese cabbage (*B. rapa* L. subsp. *pekinensis*) is one of the most important *Brassica* vegetables in Asian countries, especially in China, Korea, and Japan (Bong et al., 2012; Cheng et al., 2014). It is a major vegetable crop produced in China, where it is considered as a key source of mineral nutrition (Wu et al., 2008). Moreover, Chinese cabbage is the main ingredient of the most popular traditional Korean side dish kimchi (Bong et al., 2012; Lee et al., 2014). The flowering Chinese cabbage (*B. rapa* ssp. *chinensis* var. *parachinensis*) produces elongated, tender, and thick stalks with rapid bolting as edible organs (Cheng et al., 2014; Huang et al., 2017). Pak choi (*B. rapa* subsp. *chinensis*) produces smooth dark green leaves with a prominent white midrib instead of forming a leafy head (Zhao et al., 2005).

In angiosperms, flowering is the most important developmental transition in the plant life cycle (Song et al., 2015). This transition is controlled by endogenous and environmental signals (Song et al., 2015; Zhang et al., 2015). More than 180 genes identified by functional analyses are associated with flowering time in Arabidopsis (Fornara et al., 2010). Several of these genes form a complex regulatory network involving six key pathways, including photoperiod, vernalization, ambient temperature, age, autonomy, and gibberellin pathways (Fornara et al., 2010; Zhang et al., 2015; Huang et al., 2017). However, photoperiod and vernalization related to day length and low temperatures, respectively, have also been identified as the major pathways for the regulation of flowering time (reviewed in Song et al., 2013). Several homologs of Arabidopsis genes related to flowering in B. rapa and other plant species have been identified (Andersen et al., 2004; Greenup et al., 2009; Cheng et al., 2011; Duan et al., 2015; Xu et al., 2015). Mutations in the CONSTANS (CO), GIGANTEA (GI), and FLOWERING LOCUS T (FT), related to the photoperiod pathway, result in delayed flowering, but short days do not affect flowering time, unlike wild-type Arabidopsis (Suárez-López et al., 2001; Simpson and Dean, 2002; Moon et al., 2003). The CO gene encodes a zinc finger transcription factor that triggers the transcriptional upregulation of downstream floral integrator genes, including FT and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), in leaves under long-day conditions (Samach et al., 2000; Srikanth and Schmid, 2011; Zhang et al., 2015). Furthermore, FT and SOC1 act as activators of floral meristem identity genes, such as LEAFY (LFY) and APETALA 1 (AP1) (Amasino, 2005). In Arabidopsis, FRIGIDA (FRI; encoding two coiled-coil motif-containing protein) and FLOWERING LOCUS C (FLC; encoding a MADS-box transcription factor) are involved in the annual winter habit (late flowering) (Michaels and Amasino, 1999; Johanson et al.,

2000; Moon et al., 2003; Amasino, 2005). Mutations in these genes result in early flowering in Arabidopsis (Michaels and Amasino, 1999; Johanson et al., 2000; Choi et al., 2011). FRI positively regulates the transcription of the flowering repressor, FLC (Choi et al., 2011). In contrast, vernalization results in early flowering via suppressing the FLC (Michaels and Amasino, 1999; Sheldon et al., 1999). Three genes, VIN3 (VERNALIZATION INSENSITIVE 3), VRN2 (VERNALIZATION 2), and VRN1 (VERNALIZATION 1), are required for the cold-mediated repression of FLC (Kobayashi et al., 1999; Gendall et al., 2001; Sung and Amasino, 2004). Su et al. (2018) reported that BrVIN3.1 and BrFLC1 are the important genetic determinants of bolting time variation in B. rapa. Recent reports have revealed that there are various orthologs of FLC and FT for flowering time variation in B. rapa and B. oleracea (Schiessl et al., 2017). In B. rapa, there are two copies of FT on chromosomes A02 and A07 and four copies of FLC on chromosomes A02, A03, and A10 (reviewed in Schiessl et al., 2017). Moreover, Shu et al. (2018) reported a major quantitative trait locus (QTL) (Ef2.1) for early flowering in "broccoli × cabbage" and identified BolGRF6 as a putative candidate for early flowering in broccoli. BrSDG8 code for encoding a histone methyltransferase is associated with bolting in B. rapa ssp. pekinensis (Fu et al., 2020). Huang et al. (2020) found that histone methyltransferase CURLY LEAF (CLF; Bra032169) controls the expression of flowering-related genes, and mutation in the Bra032169 caused early bolting in Chinese cabbage.

Gibberellic acid (GA), a plant hormone, plays an important role in the regulation of flowering time (Bernier, 1988). In *Arabidopsis*, the application of exogenous GA promotes flowering under short-day conditions (Langridge, 1957; Chandler and Dean, 1994). Mutations in genes related to GA biosynthesis and signaling can alter flowering time in *Arabidopsis* (Wilson et al., 1992; Sun and Kamiya, 1994; Jacobsen et al., 1996). In *Brassica napus*, flower initiation, flowering time, and shoot elongation are regulated by endogenous GA (Dahanayake and Galwey, 1999). Exogenous GA can stimulate flower development, while an inhibitor of GA delays or inhibits flowering in *Brassica* (Rood et al., 1989; Zanewich et al., 1990).

In flowering Chinese cabbage, aerial vegetative parts and floral buds are consumed. The early-bolting flowering Chinese cabbage double haploid (DH) line "CX14-1" is characterized by rapid flower stalk development and early flowering. In contrast, late-bolting heading Chinese cabbage exhibits a long period of vegetative growth before flower bud initiation. In *B. rapa*, longday conditions together with vernalization promote reproductive growth over vegetative growth; consequently, plants bolt before reaching the harvesting stage, which is a serious problem in this crop (Zhang et al., 2015). Therefore, late-bolting traits are desirable than early flowering for the cultivation of spring-sown Chinese cabbage.

In this study, we performed transcriptome sequencing of flower bud samples from early-bolting flowering Chinese cabbage ("CX14-1") (*B. rapa* ssp. *chinensis* var. *parachinensis*) and latebolting ("Y410-1" and "SY2004") heading Chinese cabbage (*B. rapa* var. *pekinensis*) DH lines using the Illumina platform, with a focus on genes related to plant hormone signaling.

MATERIALS AND METHODS

Plant Materials

The late-bolting DH heading Chinese cabbage (*B. rapa* L. ssp. *pekinensis*) lines "Y410-1" and "SY2004" and a vernalizationindependent early-bolting flowering Chinese cabbage (*B. rapa* ssp. *chinensis* var. *parachinensis*) DH line "CX14-1" were used (**Figure 1**). The plants were grown in the experimental field at Yuanyang (113° 97' E and 35° 5' N), Henan Academy of Agricultural Sciences, China. The flower primordia of these lines were used for RNA sequencing. The samples were collected, immediately frozen in liquid nitrogen, and stored at -80°C.

Total RNA Isolation, Library Construction, RNA Sequencing, and Assembly

The frozen flower bud samples were ground into a powder in liquid nitrogen. Thereafter, total RNA was isolated from 100 mg of powder using the RNeasy Mini Kit (Qiagen, Valencia, CA, United States) according to the manufacturer's guidelines. The concentration, integrity, and purity of the RNA samples were determined using a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, United States) and Agilent 2100 Bio Analyzer (Agilent Technologies, Palo Alto, CA, United States). RNA samples with more than seven RNA integrity numbers (RINs) were used for RNA-seq library preparation with biological replications. Nine RNA-seq libraries were constructed using the NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs, Beverly, MA, United States) following the manufacturer's recommendations. The clustering of the indexcoded samples was performed on a cBot Cluster Generation System using the TruSeq PE Cluster Kit v4-cBot-HS (Illumina, San Diego, CA, United States) according to the manufacturer's instructions. After cluster generation, the library preparations were sequenced on the Illumina high-throughput sequencingby-synthesis technology platform to generate paired-end reads. The adapter sequences and low-quality reads were removed. The clean reads were then mapped to the *B. rapa* (Chiifu-401) v. 3.0 reference genome [*Brassica* database (BRAD)]¹ using HISAT2².

Functional Annotation and Novel Gene Discovery

The functions of assembled genes and novel gene discovery were performed by BLAST searches against the NR [National Center for Biotechnology Information (NCBI) non-redundant protein sequences³], Swiss-Prot⁴, gene ontology (GO)⁵, Clusters of Orthologous Groups of proteins (COG)⁶, Pfam⁷, and Kyoto

²http://ccb.jhu.edu/software/hisat2/index.shtml

¹http://brassicadb.org/brad/

³ftp://ftp.ncbi.nih.gov/blast/db/

⁴http://www.uniprot.org/

⁵http://www.geneontology.org/

⁶http://www.ncbi.nlm.nih.gov/COG/

⁷http://pfam.xfam.org/

Encyclopedia of Genes and Genomes (KEGG)⁸ databases. After prediction of the amino acid sequences of the new genes, HMMER (Eddy, 1998) was used for comparisons with the Pfam database to obtain annotation information.

Quantification of Gene Expression and Identification of Differentially Expressed Genes

Gene expression levels were estimated by fragments per kilobase of transcript per million fragments mapped (FPKM). The FPKM value for each gene was quantified according to the length of the gene and read count mapped to this gene. Differentially expressed genes (DEGs) between early-bolting and late-bolting Chinese cabbage lines were identified using the R package DEGseq (Wang et al., 2010). The resulting *p*-values were adjusted using the Benjamini and Hochberg method to control the false discovery rate. Genes with an adjusted *p*-value < 0.01 found by DEseq were identified as DEGs.

Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis

Gene ontology enrichment analysis of the DEGs was implemented by the GOseq R packages based on the Wallenius non-central hyper-geometric distribution (Young et al., 2010), which can adjust for gene length bias in DEGs. KEGG (Kanehisa et al., 2008) is a database resource for understanding highlevel functions and utilities of the biological system from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other highthroughput experimental technologies (see text foot note 8). We used KOBAS (Mao et al., 2005) software to test the statistical enrichment of differential expression genes in KEGG pathways. A GO enrichment analysis of DEGs was performed using the GOseq R package based on the Wallenius non-central hypergeometric distribution (Young et al., 2010), which can adjust for gene length bias in DEGs.

cDNA Synthesis and qPCR Validation

A total of 1 μ g of RNA was used for cDNA synthesis using SuperScript III following the manufacturer's protocol (Invitrogen, Gaithersburg, MD, United States). Then, the FPKM values for nine randomly selected genes were validated by reverse transcription quantitative real-time PCR (RT-qPCR) using the LightCycler 480II (Roche, Mannheim, Germany). A total of 45 ng of cDNA was used as a template for RTqPCR with gene-specific primers (**Supplementary Table 1**) using 2 × SyGreen Mix (qPCRBIO Lo-ROX) (PCR Biosystems, London, United Kingdom). Thermocycling conditions were 95°C for 5 min, 45 cycles of 95°C for 10 s, 60°C for 10 s, and 72°C for 15 s. At the end of the PCR cycles, the Ct values were analyzed using LightCycler 480II software (Roche). The efficiency of each gene-specific primer was determined using pooled cDNA samples. The expression of each gene was normalized using the comparative $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001) with *BrActin* as a reference gene.

RESULTS

Transcriptome Sequencing of Early- and Late-Bolting Chinese Cabbage Floral Buds

We performed transcriptome analyses of two late-bolting heading Chinese cabbage (B. rapa L. ssp. pekinensis) DH lines (Y410-1 and SY2004) and one early-bolting flowering Chinese cabbage DH line (CX14-1) (B. rapa ssp. chinensis var. parachinensis) with three biological replications using Illumina sequencing technology. The raw reads generated by RNA-seq were deposited in the NCBI "Sequence Reads Archive" (SRA) under the accession number PRJNA605481. After removal of low-quality sequences, adapters, and ambiguous reads, a total of 721.49 million clean paired-end reads were obtained (Table 1). The clean reads for each sample totaled 8.81 Gb, and the Q30 base percentage was 92.71% or greater (Table 1). The clean reads were aligned with the B. rapa (Chiifu-401) v. 3.0 reference genome (BRAD, see text foot note 1), and the efficiency of the alignment ranged from 86.20 to 89.54%. Furthermore, variable splicing prediction, a gene structure analysis, and new gene discovery were performed based on the comparison. The clean reads were then assembled into 47,363 transcripts and 47,363 genes, of which 3,144 were predicted as novel genes (Supplementary Table 2).

Identification of Differentially Expressed Genes

A total of 30,375 DEGs (**Supplementary Tables 3-5**) were identified in pairwise comparisons (Y410-1 vs. SY2004, Y410-1 vs. CX14-1, and SY2004 vs. CX14-1) (**Figure 2A**). The most DEGs were found in Y410-1 vs. CX14-1 (12,932), with 7,913 upregulated and 5,019 downregulated genes (**Figure 2**). The fewest DEGs were found in Y410-1 vs. SY2004 (4732), with 2,925 and 1,807 up- and downregulated genes, respectively (**Figure 2B**). Overall, 1,445 DEGs were common to all comparisons. Volcano plots (**Figure 3**) and MA plots (**Figure 4**) were generated to summarize significant DEGs. The upregulated and downregulated genes in comparisons between each pair of early-bolting Chinese cabbage lines were determined by hierarchical clustering based on FPKM values (**Figure 5**).

Functional Annotation and Classification

The putative functions of assembled genes were annotated by searches against public databases, including GO, COG, KEGG Orthology (KOG), KEGG, eggNOG, PFAM, NR, and SWISS-PROT. Among them, 47,214, 40,497, 35, 083, 32,944, and 24,390 genes were annotated to the NR, eggNOG, PFAM, SWISS-PROT, and KOG databases, respectively (**Table 2**). In addition, 2,564 of 3,144 novel genes were functionally annotated (**Supplementary Table 2**). Furthermore, we performed GO, COG, and KEGG pathway analyses to illustrate the biological functions of the Chinese cabbage floral bud transcriptomes.

⁸http://www.genome.jp/kegg/

Samples		Y410-1			SY2004				
	T1	T2	тз	T4	Т5	Т6	Т7	Т8	Т9
Clean reads	84,649,952	110,937,646	86,119,332	61,878,880	58,846,612	62,047,916	82,928,554	89,056,338	85,030,426
Clean bases	12.62	16.56	12.85	9.23	8.81	9.27	12.39	13.26	12.67
GC content (%)	47.56%	47.65%	47.75%	47.56%	47.47%	47.60%	47.39%	47.21%	47.25%
Q30 (%)	94.57%	94.75%	94.41%	92.76%	92.81%	92.71%	95.22%	94.56%	94.75%
Mapped reads	73,679,588 (87.04%)	97,117,048 (87.54%)	75,349,891 (87.49%)	54,591,125 (88.22%)	52,692,240 (89.54%)	55,186,834 (88.94%)	72,209,297 (87.07%)	76,873,854 (86.32%)	73,294,494 (86.20%)
Uniquely mapped reads	72,019,424 (85.08%)	94,886,164 (85.53%)	73,661,268 (85.53%)	53,399,380 (86.30%)	51,512,996 (87.54%)	53,981,346 (87.00%)	70,403,562 (84.90%)	74,887,781 (84.09%)	71,481,831 (84.07%)
Multiple map reads	1,660,164 (1.96%)	2,230,884 (2.01%)	1,688,623 (1.96%)	1,191,745 (1.93%)	1,179,244 (2.00%)	1,205,488 (1.94%)	1,805,735 (2.18%)	1,986,073 (2.23%)	1,812,663 (2.13%)
Reads map to "+"	36,562,440 (43.19%)	48,204,505 (43.45%)	37,387,481 (43.41%)	27,067,998 (43.74%)	26,126,686 (44.40%)	27,361,985 (44.10%)	35,865,686 (43.25%)	38,167,001 (42.86%)	36,400,366 (42.81%)
Reads map to "-"	36,694,556 (43.35%)	48,376,741 (43.61%)	37,538,457 (43.59%)	27,220,998 (43.99%)	26,275,023 (44.65%)	27,524,467 (44.36%)	35,975,214 (43.38%)	38,287,253 (42.99%)	36,504,731 (42.93%)

TABLE 1 | Overview of the Chinese cabbage transcriptome sequencing and assembly.

Q30 is the percentage of bases within a Phred value > 30.

A GO term enrichment analysis was performed to identify terms in three general categories, biological process (BP), molecular function (MF), and cellular component (CC)

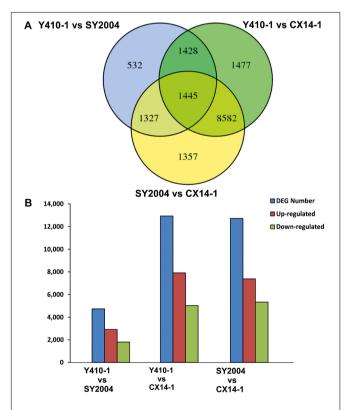
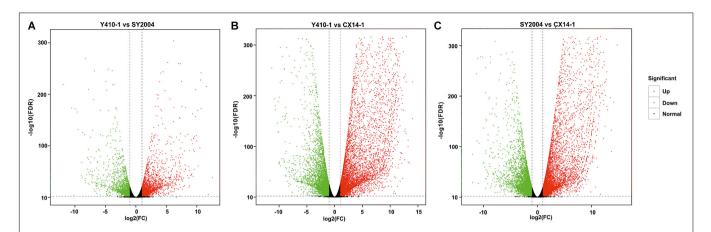
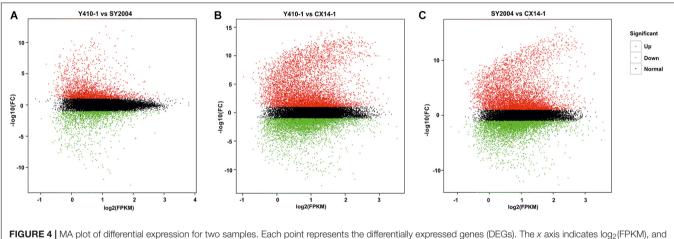



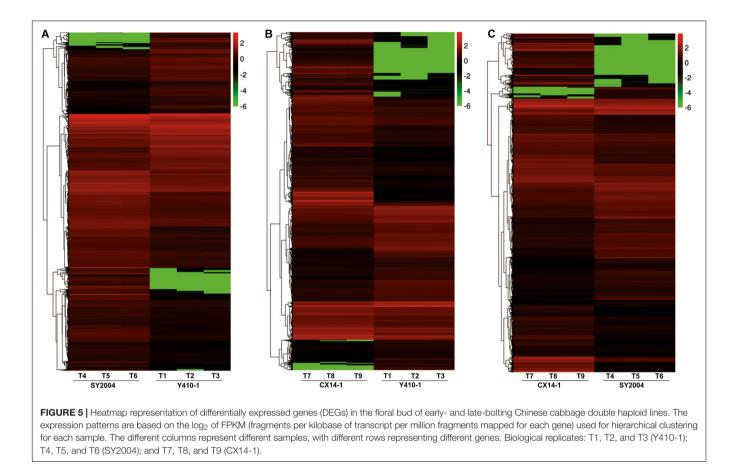
FIGURE 2 | Differentially expressed genes (DEGs) between early- and late-bolting Chinese cabbage double haploid lines. (A) Venn diagram DEGs identified through pairwise comparisons. (B) Number of up- and downregulated genes in each comparison. Venn diagram was generated using the freely available VENNY 2.1 online tool (http://bioinfogp.cnb.csic.es/ tools/venny/).


(Berardini et al., 2004) (Figure 6A). A total of 37,394 genes were assigned to 54 main functional groups. The cellular process (GO:0009987), metabolic process (GO:0008152), and singleorganism process (GO:0044699) were the most important in the BP category. Cell (GO:0005623), cell part (GO:0044464), and organelle (GO:0043226) were highly enriched in CC. Binding (GO:0005488) and catalytic activity (GO:0003824) were the most important GO terms in MF (Supplementary Table 6-8 and Figure 6A). These results indicated that early and late bolting might be associated with DEGs in these functional subgroups. According to a COG functional annotation analysis, 14,411 genes were classified into 25 COG categories (Figure 6B). The predominant COG categories represented in the Chinese cabbage floral bud transcriptomes were G (carbohydrate transport and metabolism), R (general function prediction only), and T (signal transduction mechanisms) (Figure 7B). Several genes in these categories were differentially expressed, which might contribute to flowering time differences between the early- and late-bolting Chinese cabbage DH lines.

Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analysis of the Differentially Expressed Genes

Different gene products interact with each other to exert biological functions, and pathway annotation analyses are therefore useful to predict the functions of gene. KEGG is a resource for the systematic analysis of gene function and genomic information databases, providing information about genes and expression patterns from a whole network perspective (Kanehisa et al., 2004). We therefore analyzed the metabolic pathways of the DEGs between early- and late-bolting Chinese cabbage lines using the KEGG database. Total 2,430 and 2,417 DEGs were assigned to 124, 128, and 127 pathways for Y410-1 vs. SY2004, Y410-1 vs. CX14-1, and SY2004 vs. CX14-1, respectively (**Supplementary Table 9**). Moreover, these pathways involved 15,408 genes, which were different from the DEGs

FIGURE 3 Volcano plots of differentially expressed genes (DEGs) for each comparison in flower bud of early- and late-bolting Chinese cabbage double haploid lines. The *x* and *y* axes indicate logarithm fold change [log₂(FC)] of the difference in the expression of a gene between two samples and the negative logarithm of the statistical significance [log₂(FDR)] of the change in gene expression, respectively. The red and green dots represent significantly up- and downregulated genes, respectively; while black dots represent non-differentiated genes. FC, fold change; FDR, false discovery rate.


FIGURE 4 | MA plot of differential expression for two samples. Each point represents the differentially expressed genes (DEGs). The *x* axis indicates log₂(FPKM), and the *y* axis indicates log₂(FC). The red and green dots represent significantly up- and downregulated genes, respectively; while black dots represent non-differentiated genes. FPKM, fragments per kilobase of transcript per million fragments mapped; FC, fold change.

assigned to pathways, indicating that some genes contribute to more than one KEGG pathway (Table 2 and Supplementary Table 9). For example, the novel gene predicted in this study "Brassica_rapa_newGene_2848" is involved in homologous recombination, mismatch repair, nucleotide excision repair, and DNA replication. However, six pathways, including plantpathogen interaction, starch and sucrose metabolism, carbon metabolism, biosynthesis of amino acids, phenylpropanoid biosynthesis, and plant hormone signal transduction, contained over 100 DEGs between early- and late-bolting lines (SY410-1 vs. CX14-1 and SY2004 vs. CX14-1) (Figure 6C). Further, a KEGG pathway enrichment analysis of DEGs between early-and latebolting lines revealed that plant hormone and signal transduction (197 genes) (Ko04075), starch and sucrose metabolism (158 genes) (Ko00500), and phenylalanine biosynthesis (117 genes) (Ko00940) are highly enriched for Y410-1 vs. CX14-1, while carbon metabolism (177 genes) (Ko01200), plant hormone and signal transduction (191 genes) (Ko04075), starch and

sucrose metabolism (151 genes) (Ko00500), and phenylalanine biosynthesis (117 genes) (Ko00940) are highly enriched for SY2004 vs. CX14-1 (**Figure 7** and **Supplementary Table 8**). Plant hormone and signal transduction as well as starch and sucrose metabolism were common to both comparisons. Among genes related to plant hormone and signal transduction, 98 and 99 genes were up- and downregulated in Y410-1 vs. CX14-1 (**Supplementary Table 10**), and 89 and 102 genes were up- and downregulated in SY2004 vs. CX14-1 (**Supplementary Table 10**).

Expression Patterns of Differentially Expressed Genes Related to Plant Hormone and Signal Transduction

The expression levels of most of the DEGs related to ABA receptors were downregulated, except *PYL8* and *PYL9*, while most of the DEGs encoding ABA-insensitive five-like protein

were upregulated in late-bolting Y410-1 compared with earlybolting flowering Chinese cabbage DH lines (**Figure 8** and **Supplementary Table 9**). Similarly, the expression levels of most of the DEGs related to ABA receptors were downregulated, except for *PYL8* and *PYL9*. In contrast, most of the DEGs related to ABA-insensitive 5-like proteins were upregulated in late-bolting compared with early-bolting flowering Chinese cabbage DH lines (**Figure 8** and **Supplementary Table 10**).

TABLE 2 | Summary of functional annotation and classification of assembled genes.

Database annotated	No. of genes	Length (300 ≤ 1,000)	Length (≥1,000)
COG	14,411	4,341	9,839
GO	37,394	15,993	19,336
KEGG	15,408	6,204	8,422
KOG	24,390	9,639	13,624
Pfam	35,083	14,009	20,085
Swiss-Prot	32,944	13,405	18,021
eggnog	40,497	17,383	20,916
NR	47,214	21,202	22,487
All	47,363	21,268	22,505

COG, Clusters of Orthologous Groups of proteins; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; KOG, KEGG Orthology. The expression levels of DEGs encoding gibberellin receptors GID1A and GID1B were upregulated in both late-bolting (Y410-1 and SY2004) heading Chinese cabbage compared with the early-bolting flowering Chinese cabbage DH line (**Figure 8** and **Supplementary Table 10**).

The expression levels of JA signaling genes, like *jasmonate-amino synthetase (JAR1*, a GH3 family of protein), were downregulated in both late-bolting heading Chinese cabbage DH lines (Y410-1 and SY2004) compared with the early-bolting flowering Chinese cabbage DH line (**Figure 8** and **Supplementary Table 10**). Moreover, the expression levels of DEGs encoding TIFY proteins were upregulated in the early-bolting flowering Chinese cabbage DH line (CX14-1) compared with both late-bolting heading Chinese cabbage lines (**Figure 8** and **Supplementary Table 10**).

The expression levels of DEGs encoding brassinazoleresistant 2 proteins (*BraA09g056680*, *BraA06g014960*, and *BraA08g028240*) and brassinosteroid-insensitive 1-associated receptor kinase 1 (*BraA08g016610*) were upregulated, whereas BRI1 kinase inhibitor 1 (*BraA02g030240*) was downregulated in both late-bolting heading Chinese cabbage lines compared with early-bolting flowering Chinese cabbage DH lines (**Figure 8** and **Supplementary Table 9**). Furthermore, two DEGs related to DELLA protein RGA1 (*BraA06g040430*) and RGA2 (*BraA09g023210*) were upregulated in both late-bolting heading Chinese cabbage lines.

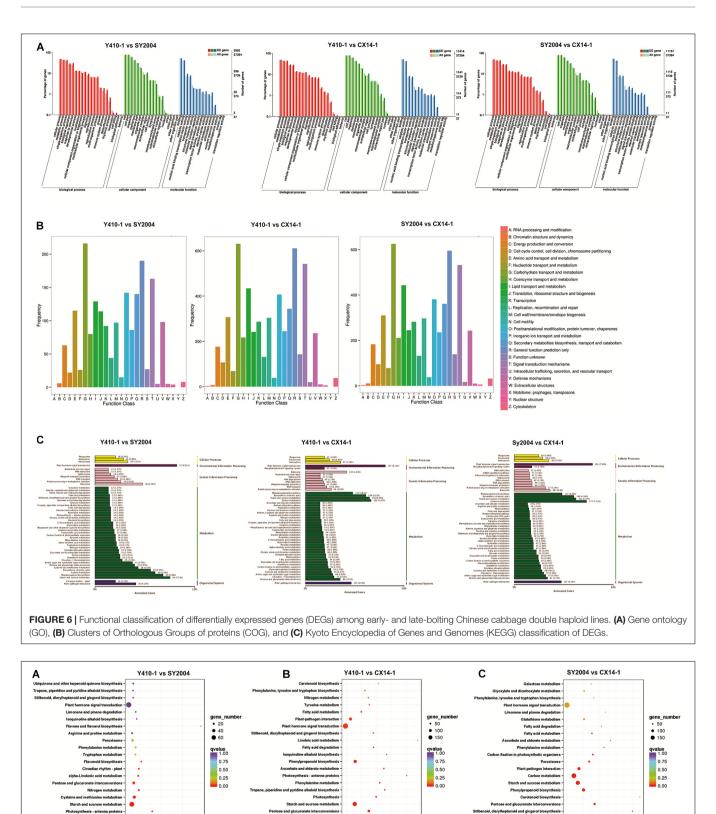


FIGURE 7 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment scatter plot of differentially expressed genes. Rich factor is the ratio of the differentially expressed gene number to the total gene number in a certain pathway. The dot size and color indicate the number of genes and the range of the false discovery rate (FDR) value, respectively.

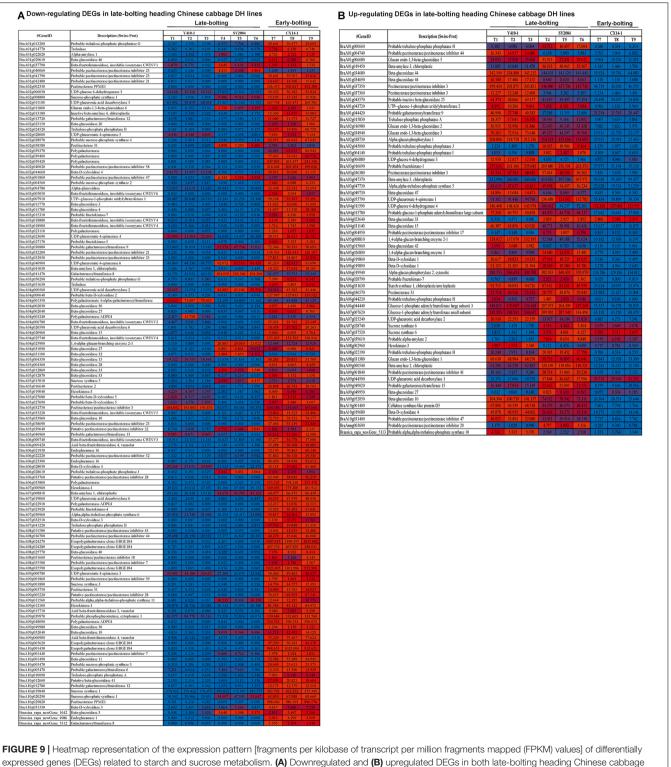
1.95

2.25

1.50 1.75 2.00 Rich factor

5.0 7.5 Rich factor 1.4 1.6 1.8 Rich factor 20

		Late-bolting Earl-bolting				Late-bolting		Early-b	
#GeneID	Description (Swiss-Prot)	Y410-1 T1 T2 T3	SY2004 T4 T5 T6	CX14-1 T7 T8 T9	#GeneID	Description (Swiss-Prot)	Y410-1 T1 T2 T3	SY2004 T4 T5 Te	CX14-1 T7 T8
1g000880	Serine/threonine-protein kinase SRK2F	1.251 0.817 0.565	2.493 2.646 2.278	36.654 39.505 37.912	BraA01g004130	Cyclin-D3-1	18.126 13.514 15.599	13,993 14,627 16.3	6.459
1g003550	Auxin-responsive protein SAUR50		5.227 4.943 6.194	26.726 28.605 19.424	BraA01g014680	Auxin response factor 9	6 539 5 781 5 953	7.070 5.427 6.2	9 0.662
1g004270	Serine/threonine-protein kinase SRK2E		1.429 2.013 1.588	3.279 3.719 3.093	BraA01g016840	Regulatory protein NPR1	17,784 18,295 19,000		3.692
01g008880	Auxin-responsive protein IAA11	3.675 3.951 3.076			BraA01g016870	Regulatory protein NPR2	13.587 13.237 12.721		85 1.704
01g009450	Abseisie acid receptor PYR1	0.049 0.090 0.000		2.899 2.179 2.625	BraA01g023270	Cyclin-D3-3	28 007 25 572 24 669	29.420 27.197 29.1	06 6.625
01g013230	Auxin-responsive protein SAUR36	3.003 3.019 2.970		28.976 31.826 27.492	BraA01g030980	Ethylene receptor 2	25,759 36,761 35,446	14.055 12.595 14.0	
01g034810	Protein TIFY 6B	5.743 5.903 6.063		29.996 27.948 28.470	BraA01g032170	Histidine-containing ph photransfer protein 1	15.946 16.221 15.958	10.607 10.407 16.2	81 2.193
01g036620	Auxin-responsive protein IAA19	3.533 2.556 3.335		38.038 34.046 32.533	BraA02g003280	Transcription factor TGA4	7.236 6.747 6.073	7.043 7.632 7.73	7 1.328
02g004740	Protein TIFY 9	0.154 0.106 0.430		12.948 18.402 14.882	BraA02g003280 BraA02g013860		7.236 6.747 6.075	7.045 7.052 7.7.	36 6.750
028004820	Indole-3-acetic acid-amido synthetase GH3.17	0.071 0.124 0.149	0.021 0.088 0.094	1.939 2.148 1.932		Indole-3-acetic acid-amido synthetase GH3.6	65.731 73.027 71.087	21.980 22.348 23.0	
02g009130 02g011810	Indole-3-acetic acid-induced protein ARG7 Two-component response regulator ARR18	0.000 0.049 0.011 0.012 0.232 0.130	0.029 0.003 0.043	11.810 12.624 9.614	BraA02g033740 BraA03g017680	Ethylene-responsive transcription factor 2	10.228 9.716 8.418	31.575 33.802 27.9	73 2.678
02g011810	Auxin-responsive protein SAUR32	1.624 1.778 1.157	5.337 3.155 5.245	7.432 0.010 0.050		Auxin-responsive protein IAA13	3.462 3.506 3.674	11.095 9.645 10.6	8 0.167
	Protein TIFY 7	6.382 5.989 5.566	3.337 3.133 3.243	142 401 142 506 151 010	BraA03g019900	Auxin transporter protein 1		8.264 7.435 8.9	
402g020000 402g021020	Protein TIFY 11B	17.025 16.664 17.917			BraA03g021190	Auxin transporter-like protein 2	6.380 5.809 6.625		6 1.624
402g024300	Auxin transporter-like protein 3	5.312 5.349 4.742	25.389 24.405 23.304	9 977 11 026 10 752	BraA03g025290	ETHYLENE INSENSITIVE 3-like 1 protein	29.125 29.449 28.720	23.972 23.633 24.4	6.531
402g024500	BRI1 kinase inhibitor 1	1.698 1.373 2.728		5 191 5 372 4 394	BraA03g025870	Auxin transporter-like protein 2	13.173 12.692 12.836		70 3.761
403g005650	Protein TIFY 9	1.704 2.109 1.580		28.067 25.587 28.200	BraA03g038820	ABSCISIC ACID-INSENSITIVE 5-like protein 7	2.668 1.897 2.337	1.838 1.604 1.83	0 0.280
403g008300	Auxin-responsive protein SAUR21	0.914 0.576 1.393		4.845 5.824 4.074	BraA03g042590	Pathogenesis-related protein 1	61.470 41.122 39.868	23.027 28.342 27.3	
403g009810	Indole-3-acetic acid-induced protein ARG7	0.000 0.000 0.000		8 341 9.963 7.727	BraA03g045010	Cyclin-D3-3	3.816 3.936 3.255		4 1.433
403g020010	Abseisie acid receptor PYL4		6.031 3.880 5.347	27.573 25.107 28.956	BraA03g046670	Two-component response regulator ARR2	2.280 1.750 1.625	2.392 2.438 2.93	3 0.669
03g021430	Abseisic acid receptor PYL6	1.702 0.960 1.687		9.603 9.357 9.297	BraA03g057090	Two-component response regulator ARR10	18.027 17.582 16.923	15.884 16.820 18.4	74 5.824
403g021580	Two-component response regulator ARR16	2.048 0.989 1.512		15.861 15.179 17.358	BraA03g058630	Cyclin-D3-1	30.907 26.652 27.185	19.442 18.377 18.1	36 3.915
\03g027900	Auxin-responsive protein SAUR36	0.000 0.000 0.000		27.939 30.427 29.741	BraA03g059070	Auxin-responsive protein SAUR20	4.703 4.614 3.959	5.856 6.681 5.2	5 0.756
403g028670	GRR1-like protein 1	25.808 26.215 25.887		46.627 44.123 45.717	BraA04g000380	Gibberellin receptor GID1B	1.446 1.178 1.054	1.381 1.347 1.2	0.364
\03g036990	Auxin-responsive protein IAA19	8.631 8.862 11.936	3.638 4.659 3.641	45.786 50.115 47.277	BraA05g002190	Regulatory protein NPR5	4.600 5.416 5.059	2.932 3.580 3.3	
03g043530	Probable inactive receptor-like kinase BSK12	0.000 0.000 0.000		1.189 1.159 1.223	BraA05g013460	Ethylene-responsive transcription factor 15	16.248 18.163 17.296	7.492 9.350 8.0	4 0.470
03g047820	Abseisic acid receptor PYR1	47.433 42.106 46.642		119.131 112.876 119.553	BraA05g027980	ABSCISIC ACID-INSENSITIVE 5-like protein 7	18.065 17.408 18.363	16.845 19.214 17.5	
103g053600	Indole-3-acetic acid-amido synthetase GH3.5	0.919 1.026 1.134	2.459 2.484 3.275	5.633 5.881 5.347	BraA05g040050	Gibberellin receptor GID1A	35.347 45.975 43.943	37.547 45.288 38.1	48 15.541
\03g058530	ABSCISIC ACID-INSENSITIVE 5-like protein 6	2.688 2.348 2.958	0.000 0.000 0.000	4.496 6.344 5.881	BraA06g003820	ABSCISIC ACID-INSENSITIVE 5-like protein 4	10.857 10.866 11.143	11.815 13.328 11.2	33 1.128
\04g001580	Auxin-responsive protein SAUR36		2.761 3.594 3.013	5.921 6.346 5.935	BraA06g007440	4-substituted benzeates-glutamate ligase GH3.12	5 327 5 541 5 732	1.459 1.802 1.75	8 0.725
04g003480	Regulatory protein NPR6	0.181 0.467 0.411	0.173 0.223 0.163	1.438 1.603 1.128	BraA06g014960	Protein BRASSINAZOLE-RESISTANT 2	126.641 126.771 125.539	125.897 136.438 117.0	43 39.542
04g008290	Auxin-responsive protein SAUR15	0.000 0.000 0.000		42.113 39.440 38.716	BraA06g015450	Auxin response factor 5	12.360 11.264 11.435	12 483 13 511 14 0	27 3.736
\04g025810	Protein ABSCISIC ACID-INSENSITIVE 5	0.198 0.071 0.160		9.315 9.083 10.151	BraA06g033000	Auxin-responsive protein IAA28	31.496 25.096 27.039	16 152 16 278 14 5	
04g032040	Jasmonic acid-amido synthetase JAR1	0.736 0.571 0.527	0.859 0.917 0.842	2.409 2.370 2.679	BraA06g041230	Ethylene-responsive transcription factor 2	24.536 25.061 25.961	13.190 10.480 10.8	
05g005770	Abseisie acid receptor PYL6	2.476 4.167 1.950		13.098 13.869 14.675	BraA06g041230	Transcription factor bHLH28	24.536 25.061 25.961	1.216 1.591 1.70	7 0.486
405g007500	Auxin transporter protein 1	34.950 33.231 35.162		128.666 125.715 133.807	BraA07g016670	Cyclin-D3-2	17.426 18.424 18.465	10.281 10.710 13.4	35 1.606
05g029670	Protein TIFY 6B	2.808 2.457 2.735			BraA07g022730	Regulatory protein NPR6	1.762 3.711 3.478	1.296 1.816 0.8	
405g031540	Auxin-responsive protein IAA19	15.070 13.580 12.953		76.891 77.942 72.812		Protein TRANSPORT INHIBITOR RESPONSE 1	15 922 14 912 15 025		58 4.723
05g035520	Protein ph phatase 2C 37	33.993 34.934 36.364	36.879 38.327 39.191	75.216 71.638 73.144	BraA07g025310			13.340 14.642 13.6 5.984 6.290 4.5	
406g001750	Auxin-responsive protein IAA6	0.269 0.473 0.324 0.030 0.077 0.093		7.561 6.538 6.167	BraA07g026840	Transcription factor TGA7	3.643 3.254 2.834		0.817
406g005530	Transcription factor TGA9	0.000 0.000 0.000		4.200 4.818 4.746 11.629 14.475 13.244	BraA07g026930	Auxin transporter-like protein 3	4 223 4 684 4 519	22.118 18.693 20.1	
406g007450	4-substituted benzoates-glutamate ligase GH3.12			7 474 8 749 8 728	BraA07g033750	Transcription factor PERIANTHIA			
406g007460 406g012490	4-substituted benzoates-glutamate ligase GH3.12 Auxin-responsive protein SAUR41	1.718 1.431 1.681 3.131 3.547 3.293	2.333 2.014 1.500	16 217 12 915 14 517	BraA08g015730	Auxin-responsive protein SAUR50		11.629 21.682 12.3	
106g022270	Indole-3-acetic acid-induced protein ARG7	1.998 1.459 2.112		25 206 20 262 20 004	BraA08g019880	Regulatory protein NPR1	4.903 5.303 5.731	6.613 6.313 6.44	
07g002570	Indole-3-acetic acid-amido synthetase GH3.17	0.162 0.237 0.370		0.567 0.966 1.328	BraA08g019900	Protein ph phatase 2C 56	8.519 9.131 8.536	10.229 9.358 9.44	
407g002710	Auxin-responsive protein SAUR50	0.000 0.043 0.000		3.600 3.985 4.098	BraA08g026970	Transcription factor TGA3	2.360 2.674 1.956		63 0.265
407g011840	Indole-3-acetic acid-amido synthetase GH3.17	0.201 0.310 0.411	0.576 0.611 0.443	7 477 9 300 7 392	BraA09g005750	Auxin-responsive protein IAA28	5.472 3.965 4.336	11.983 10.419 10.0	25 1.342
07g016220	Auxin-responsive protein SAUR50	1.298 1.261 1.156	2.434 4.169 3.229	12 111 13 531 16 787	BraA09g013710	Regulatory protein NPR1	5.177 4.683 4.516	5.555 4.825 4.75	8 0.465
07g022670	Two-component response regulator ARR9	2.248 1.859 2.205		11.017 11.186 10.912	BraA09g022350	Transcription factor bHLH28		3.350 3.362 3.10	
407g024750	Abseisie acid receptor PYL9	0.066 0.000 0.048	0.404 0.088 0.379	5.333 4.246 3.271	BraA09g022610	Ethylene-responsive transcription factor 2	11.607 14.844 12.673	13.326 13.464 14.6	0.925
07g027690	Auxin-responsive protein SAUR50	0.557 0.238 0.877		5.039 6.320 4.765	BraA09g036560	Indole-3-acetic acid-amido synthetase GH3.17	0.822 0.797 0.805	0.519 0.532 0.8	8 0.064
07g032960	Serine/threonine-protein kinase BSK11	0.032 0.083 0.030		6.473 6.839 6.562	BraA09g040870	Transcription factor TGA3	37.371 40.257 30.125	27.282 40.349 38.2	12 10.056
407g038660	Protein TIFY 10B	29.840 29.015 29.815		61.298 60.373 63.571	BraA09g047460	ABSCISIC ACID-INSENSITIVE 5-like protein 2	3.605 5.152 4.919	5.659 5.861 3.14	
408g010620	Auxin-responsive protein IAA14	1.300 1.360 1.067		6.587 6.531 6.542	BraA09g051620	Auxin-responsive protein IAA30	2.031 1.731 1.842	2.151 2.831 3.6	4 0.488
408g012630	Abseisic acid receptor PYR1	0.943 0.163 0.175		45.474 49.108 55.843	BraA09g052310	Gibberellin receptor GID1B	8.855 9.136 8.671	12.555 10.956 12.7	60 2.150
408g029290	Protein TIFY 11A	13.363 11.542 13.327	26.691 26.705 26.289	106.713 112.715 108.944	BraA09g055860	Auxin transporter-like protein 2	20.626 18.843 18.036	25.319 22.410 25.1	41 4.612
08g034940	Ethylene response sensor 2	6.291 5.068 5.554	2.779 3.246 3.188	16.004 14.754 15.221	BraA09g056680	Protein BRASSINAZOLE-RESISTANT 2	2.627 6.216 2.803	1.261 1.342 2.54	0.625
09g001190	GRR1-like protein 1	0.000 0.103 0.054		2.021 1.796 1.951	BraA09g062360	Transcription factor PIF3	11.347 11.880 11.601		52 1.845
09g010220	Probable indole-3-acetic acid-amido synthetase GH3.1	0.211 0.180 0.293		15.547 13.765 15.128	BraA09g065000	Auxin-responsive protein IAA3	20.978 22.866 24.115		92 2.113
09g019950	Auxin-responsive protein IAA4	29.799 24.946 27.532		46.200 46.908 46.784	BraA10g000590	Abscisic acid receptor PYL9		30.971 29.968 26.4	22 6.692
09g022370	Transcription factor bHLH28	0.065 0.326 0.092	0.451 0.428 0.206	1.942 1.465 1.947	BraA10g001990	Histidine-containing ph photransfer protein 5		18.851 21.099 16.6	10 5.298
09g026350	Auxin-responsive protein SAUR36	0.785 1.404 1.876		25.500 26.664 31.083	BraA10g003090	Auxin-responsive protein IAA12	11.297 12.479 10.530		
09g047720	Two-component response regulator ARR9	1.075 0.952 0.755		4.215 4.408 4.198	BraA10g006100	Protein ph phatase 2C 3	7.671 9.076 9.258	5.468 5.788 5.6	
109g050440	Auxin-responsive protein SAUR36	0.886 0.585 0.502		2.099 2.150 2.135	BraA10g0011520	Abscisic acid receptor PYL8	5.017 4.042 5.337		0 1.450
09g055720	Auxin-responsive protein SAUR50	0.560 1.129 1.898		17.311 19.376 17.963	BraA10g014950	Protein ph phatase 2C 77	22 757 22 277 22 001	26 275 27 290 20 5	08 2.512
09g056830	Protein TIFY 10A	0.682 0.906 0.454	14.068 14.530 12.963	44.827 43.710 48.438	BraA10g014950 BraA10g015660	Protein ph phatase 2C 77 Xyloglucan endotransgluc ylase/hydrolase protein 22	11.050 11.400 22.981	4659 6422 43	
09g058230	Auxin-responsive protein SAUR41	0.000 0.083 0.285		52.157 50.939 53.365	IBRAA TUgu 15660	Ayrogracar endotransgiue yrase/nydrorase protein 22	11.009 11.490 6.279	4.059 0.422 4.3.	1.165
09g062830	Transcription factor TGA9	0.000 0.000 0.000		1.679 2.077 2.359					
09g063330	Protein ph phatase 2C 3	0.182 0.049 0.000		3.475 3.015 4.242					
10g002610	Auxin-responsive protein IAA10	2.337 2.316 2.860		8.296 9.679 9.806					
10g002790	Auxin-responsive protein IAA17	6.829 7.025 5.928		22.961 25.171 21.995					
10g002840	Ethylene response sensor 2	1.780 2.345 1.967 1.167 1.553 1.580		52.567 52.009 53.536					
10g016990	Probable protein ph phatase 2C 78			19.973 20.867 21.595					
10g019860	Auxin-induced protein 15A	0.172 0.499 0.213		33.545 35.104 24.368					
10g025420	Indole-3-acetic acid-amido synthetase GH3.17	0.000 0.000 0.000		12.336 12.656 10.708					
10g025540	Protein TIFY 9	3.153 3.305 3.316	6.805 6.505 5.005	113.757 113.060 116.578					
10g028350	Abseisie acid receptor PYL5	4.218 4.424 4.683	9.498 7.314 6.656	14.542 15.593 14.553					
.ca_rapa_newGene_412	4 Putative two-component response regulator-like APRR6	0.000 0.000 0.000	0.000 0.000 0.000	2.246 2.785 3.273					


In case of ethylene signaling genes, DEGs encoding ethylene response sensors, such as *ethylene response sensor 2* and *ethylene-insensitive 3-like 3*, were downregulated, while *ethylene-responsive transcription factor 2* (*BraA06g041230*, *BraA02g033740*, and *BraA09g022610*), *ethylene-responsive transcription factor 15* (*BraA05g013460* and *BraA04g022530*), and ethylene receptors, such as *ethylene-insensitive 3-like 1* (*BraA03g025290*), were upregulated in both late-bolting heading Chinese cabbage DH lines compared with the early-bolting flowering Chinese cabbage DH line (**Figure 8** and **Supplementary Table 10**).

The unigenes related to auxin signal transduction, including auxin-responsive proteins, auxin transporter-like proteins, auxin responsive factor (ARF), and auxin-induced proteins, were differentially expressed between late-bolting heading Chinese cabbage and early-bolting flowering Chinese cabbage DH lines. The expression levels of 34 of these DEGs were upregulated in late-bolting flowering Chinese cabbage Y410-1 compared with early-bolting flowering Chinese cabbage DH lines. Likewise, 27 and 33 DEGs were down- and upregulated, respectively, in another late-bolting DH line, SY2004 (Figure 8 and Supplementary Table 10). However, among these DEGs, 27 upregulated and 15 downregulated were common to both latebolting lines (**Supplementary Table 10**).

Expression Patterns of Differentially Expressed Genes Related to Starch and Sucrose Metabolism

Among the DEGs related to starch and sucrose metabolism, trehalose-phosphate phosphatase (A, B, G, and J), trehalase, beta-glucosidase, beta-fructofuranosidase, alpha-amylase, pectinesterase/pectinesterase inhibitor, sucrose-phosphate synthase, UDP-glucuronic acid decarboxylase, inactive beta-amylase, galacturonosyltransferase, UDP-glucuronate 4-epimerase, polygalacturonase, beta-D-xylosidase (2, 3, 5), alpha-glucosidase, UTP-glucose-1-phosphate uridylyltransferase 1, fructokinase (4, 5, 7), galacturonosyltransferase, polygalacturonate 4-alpha-galacturonosyltransferase, 1,4-alpha-glucan-branching enzyme, hexokinase, acid betafructofuranosidase, endoglucanase, alpha-trehalose-phosphate synthase, and exopolygalacturonase were downregulated in

both late-bolting heading Chinese cabbage DH lines (Y410-1 and SY2004) compared with the early-bolting flowering Chinese cabbage (**Figure 9**). On the other hand, trehalosephosphate phosphatase (I, H), glucan endo-1,3-beta-glucosidase, UTP-glucose-1-phosphate uridylyltransferase 2, alpha-glucan phosphorylase (1, 2), fructokinase-1, glucose-1-phosphate adenylyltransferase large subunit, beta-D-xylosidase (1, 4), starch synthase 1, and cellulose synthase-like protein D5 were

double haploid (DH) lines.

upregulated in both late-bolting heading Chinese cabbage lines (Figure 9).

Validation of RNA-seq Data by RT-qPCR

We further tested the reliability of FPKM expression patterns (determined by RNA-seq) by RT-qPCR. Eight DEGs were randomly selected, and their relative expression levels were quantified using the same RNA samples extracted from earlyand late-bolting Chinese cabbage lines for RNA sequencing. The results confirmed that the expression patterns of the analyzed unigenes were consistent with the FPKM expression pattern obtained by RNA-seq (Figure 10).

DISCUSSION

Late bolting is an important economic trait in spring-sown lines, and late-bolting varieties have been developed and characterized for off-season production to meet the annual demand for Chinese cabbage (Yang et al., 2007; Su et al., 2018). Nevertheless, little is

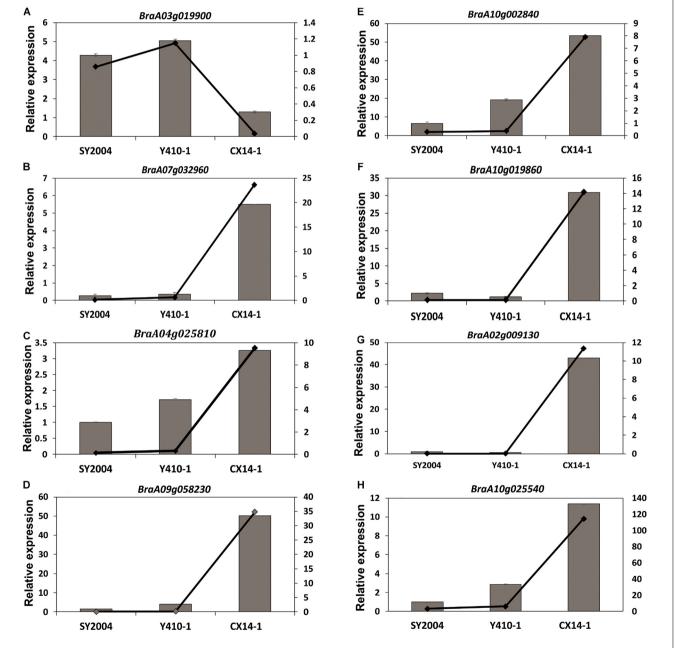


FIGURE 10 | Relative expression of eight unigenes in the floral bud of early- and late-bolting Chinese cabbage double haploid lines. Error bar represents ± SE of the means of triplicates. The superimposed line graph represents the RNA-seq expression profiles [fragments per kilobase of transcript per million fragments mapped (FPKM)].

known about the genes and pathways associated with flowering time in flowering Chinese cabbage (B. rapa ssp. chinensis var. parachinensis) and late-bolting heading Chinese cabbage (B. rapa var. pekinensis). RNA sequencing technology has been effectively utilized for transcriptome analyses in a wide range of texa (Wang et al., 2009; Lu et al., 2010). This high-throughput sequencing technology can be used to determine global gene expression differences between populations or species with phenotypic differences and responses to environmental stress (Mortazavi et al., 2008; Wang et al., 2009; Miao and Luo, 2013). In the present study, we performed a comparative transcriptome analysis of early-bolting Chinese cabbage DH lines by RNA-seq. We obtained 721.49 million clean paired-end reads assembled into 47,363 unigenes, including 3,144 genes predicted as novel (Table 1 and Supplementary Table 2). We detected 12,932 (Y410-1 vs. CX14-1) and 12,711 (SY2004 vs. CX14-1) DEGs between two sets of early- and late-bolting Chinese cabbage (Figure 2A and Supplementary Tables 4, 5).

A functional analysis of assembled unigenes revealed that the predominant COG categories were carbohydrate transport and metabolism, general function prediction only, and signal transduction mechanisms (**Figure 6B**). Several unigenes in these categories were differentially expressed and might explain the difference in flowering times in early-bolting Chinese cabbage DH lines. Moreover, we identified 3,144 novel unigenes, of which 2,564 were functionally annotated (**Supplementary Table 2**).

A KEGG pathway enrichment analysis of DEGs between early- and late-bolting DH lines indicated that plant hormone and signal transduction (Ko04075) and starch and sucrose metabolism (Ko00500) were the most enriched pathways in both comparisons (**Supplementary Table 9**). These results suggest that unigenes related to plant hormones, signal transduction, and sucrose metabolism are involved in the regulation of flowering time in these Chinese cabbage DH lines.

The "no hydrotropic response" (nhr1) Arabidopsis mutants show high levels of ABA, resulting in late flowering (Quiroz-Figueroa et al., 2010), whereas ABA-deficient (aba2 and aba3) or ABA-insensitive (abai4) mutants show early flowering than wild types (Martínez-Zapater et al., 1994; Matsoukas, 2014). Moreover, Zhu et al. (2013) demonstrated that ABA-insensitive 5 (ABI5, encoding a bZIP transcription factor) delayed flowering time in Arabidopsis under long-day conditions. Our results also indicated that the expression levels of most genes encoding ABI5-like proteins (ABA-insensitive 5-like protein 2, ABAinsensitive 5-like protein 4, ABA-insensitive 5-like protein 5, ABA-insensitive 5-like protein 6, and ABA-insensitive 5-like protein 7) were higher in late-bolting Chinese cabbage DH lines than in early-bolting flowering Chinese cabbage (Figure 8 and Supplementary Table 10).

Previous studies of mutants related to GA biosynthesis or signal transduction have revealed that GA can alter the flowering time (Wilson et al., 1992; Peng and Harberd, 1993; Sun and Kamiya, 1994; Jacobsen et al., 1996; Peng et al., 1997; Andres et al., 2014). Moreover, the DELLA domain protein RGA (repressor of ga1-3), GAI (GA insensitive), and RGAlike1 (RGL1 and RGL2) act as negative regulators of the GA signaling pathway (Yu et al., 2004; Silverstone et al., 2007). Our results revealed that two DEGs encoding DELLA proteins RGA1 (BraA06g040430) and RGA2 (BraA09g023210) are upregulated in late-bolting heading Chinese cabbage "Y410-1" (**Figure 8** and **Supplementary Table 10**) and downregulated at the flowering stage compared with the vegetative stages in early-bolting flowering Chinese cabbage. These results suggest that the downregulation of negative regulators of the GA signaling pathway might increase GA levels, and the lack of function of these genes may trigger early bolting. Similar results have been reported by Huang et al. (2017), who reported that *RGA1* and *RGA2* are downregulated in flowering Chinese cabbage.

Several previous studies have indicated that the phytohormone jasmonic acid (JA) also regulates flowering time in *Arabidopsis* (Zhai et al., 2015). The F-box protein COI1 (coronatine insensitive 1) degrades JAZ (contains TIFY and Jas domains) repressors (Hoo and Howe, 2009). Transcript levels of *NaJAZd* and *NaJAZh* are upregulated in the early floral stages of *NaJAZi*-silenced plants due to the high JA content in the flowers (Li et al., 2017). Our results also showed that DEGs encoding TIFY proteins are more highly expressed in the early-bolting flowering Chinese cabbage DH line (CX14-1) than in both late-bolting heading Chinese cabbage lines (**Figure 8** and **Supplementary Table 10**). These results suggest that the elevated expression of these genes in early flowering Chinese cabbage might be related to a high JA content.

Another steroidal phytohormone, brassinosteroid (BR), promotes flower induction in plants (Matsoukas, 2014). The BR signaling genes BZR1 (brassinazole-resistant1) and BES1 suppress the expression of important genes related to BR biosynthesis (CPD, constitutive photomorphogenesis, and dwarfism; DWF4, and DWARF4) by binding to their promoter regions in Arabidopsis (Wei et al., 2017). Moreover, BR-deficient/BRinsensitive mutants show delayed flowering time (Domagalska et al., 2007; Zhu et al., 2013). We also found that DEGs related to BZR1, BZR2, and BRI1 (brassinosteroid insensitive 1) were more highly expressed in both late-bolting heading Chinese cabbage DH lines than in early-bolting flowering Chinese cabbage (Figure 8 and Supplementary Table 10). These results suggest that the upregulation of BR signaling genes might affect BR biosynthesis and cause late bolting in late-bolting heading Chinese cabbage DH lines.

Starch and sucrose play important roles in flowering (Turnbull, 2011; Cho et al., 2018). Previous reports revealed that trehalose-6-phosphate acts as a signal molecule for flowering initiation in different plant species, including *Arabidopsis thaliana* (Sheen, 2014), grape (Caspari et al., 1998), and citrus (Shalom et al., 2014). Besides, Micallef et al. (1995) found that an increased level of endogenous sucrose promotes flowering in tomato. Wahl et al. (2013) reported that *TREHALOSE-6-PHOSPHATE SYNTHASE 1* (*TPS1*) is required for the regulation of flowering time in *A. thaliana*. In the present study, *alpha,alpha-trehalose-phosphate synthase 5* (BraA03g047730) was upregulated in both late-bolting heading Chinese cabbage lines compared with early-bolting flowering Chinese cabbage lines (**Figure 9**).

Razi et al. (2008) demonstrated that *BoFLC* alleles segregate independently from flowering time alleles in *Brassica oleracea*. However, Yuan et al. (2009) reported that variation in *BrFLC*1

is linked to flowering time in B. rapa. Moreover, Xie et al. (2015) performed a QTL analysis and showed that Br2 is the key determinant of BrFLC2 and a candidate flowering time locus in B. rapa. A transposon insertion in the coding sequence of BrFT2 located on a QTL on chromosome A07 (region Br5) causes late flowering (Zhang et al., 2015). Therefore, we further analyzed the flowering time-related genes, especially FLC and FT, based on FPKM expression values. Unigenes, such as FLK (BraA03g031700) and FLD (BraA03g034300), showed higher expression levels in both late-bolting lines than in earlybolting lines, while FLT (BraA02g016700) showed the opposite pattern (Supplementary Table 11). With regard to FT genes, the expression levels of three unigenes encoding proteins related to flowering time control, such as FCA (BraA01g020520), FY (BraA02g004930), and FPA (BraA09g036880), were higher in both late-bolting lines than in early-bolting lines (Supplementary Table 11). Nonetheless, none of these unigenes were differentially expressed between early- and late-bolting lines.

In late-bolting Chinese cabbage, 98 and 89 unigenes related to plant hormone and signal transduction were upregulated in Y410-1 vs. CX14-1 and SY2004 vs. CX14-1, respectively (**Figure 8** and **Supplementary Table 9**). Among these, 19 and 12 unigenes showed log₂ fold change values of > 5.0 in Y410-1 vs. CX14-1 and SY2004 vs. CX14-1, respectively; while six unigenes, including *BraA02g009130* (indole-3-acetic acid-induced protein ARG7), *BraA09g058230* (Auxin-responsive protein SAUR41), *BraA07g032960* (serine/threonine-protein kinase BSK11), *BraA07g032960* (auxin-induced protein 15A), *BraA08g012630* (abscisic acid receptor PYR1), and *BraA01g009450* (abscisic acid receptor PYR1), were common in both late-bolting heading Chinese cabbage lines (Y410-1 and SY2004). These unigenes are candidates for earl-bolting and late-bolting traits in these DH Chinese cabbage lines and could be useful for the

REFERENCES

- Amasino, R. M. (2005). Vernalization and flowering time. Curr. Opin. Biotech. 16, 154–158. doi: 10.1016/J.COPBIO.2005.02.004
- Andersen, C. H., Jensen, C. S., and Petersen, K. (2004). Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. *Trends Plant Sci.* 9, 105–107. doi: 10.1016/J.TPLANTS.2004.01.002
- Andres, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., García-Martínez, J. L., et al. (2014). SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the *Arabidopsis* shoot apex to regulate the floral transition Fernando Andrés. *Proc. Natl. Acad. Sci. U.S.A.* 111, E2760–E2769. doi: 10.1073/ pnas.1409567111
- Berardini, T. Z., Mundodi, S., Reiser, L., Huala, E., Garcia-Hernandez, M., Zhang, P., et al. (2004). Functional annotation of the *Arabidopsis* genome using controlled vocabularies. *Plant Physiol.* 135, 745–755. doi: 10.1104/pp.104. 040071
- Bernier, G. (1988). The control of floral evocation and morphogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39, 175–219. doi: 10.1146/annurev.pp.39.060188. 001135
- Bong, Y. S., Shin, W. J., Gautam, M. K., Jeong, Y. J., Lee, A. R., Jang, C. S., et al. (2012). Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses. *Food Chem.* 135, 2666–2674. doi: 10.1016/J.FOODCHEM.2012.07.045
- Caspari, H. W., Lang, A., and Alspach, P. (1998). Effects of girdling and leaf removal on fruit set and vegetative growth in grape. Am. J. Enol. Viti. 49, 359–366.

development of molecular markers for the detection of early- and late-bolting cultivars.

DATA AVAILABILITY STATEMENT

Data is available at NCBI SRA accession: PRJNA605481.

AUTHOR CONTRIBUTIONS

XZ and YY conceived and designed the experiments. YZ, SY, and ZW performed the experiments. HS, LL, LN, and MH-U-R prepared the figures and tables. XW and MR drafted the work or revised it critically for important content. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (31801874), the Programs for Science and Technology Development of Henan Province (212102110124 and 212102110126), the Modern Agro-Industry Technology Research System (CARS-23-G-16), and the Zhongyuan Scholar Program (202101510003).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene. 2021.590830/full#supplementary-material

- Chandler, J., and Dean, C. (1994). Factors influencing the vernalization response and flowering time of late flowering mutants of *Arabidopsis thaliana* (L.) Heynh. *J. Exp. Bot.* 45, 1279–1288. doi: 10.1093/jxb/45.9.1279
- Cheng, F., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., et al. (2011). BRAD, the genetics and genomics database for *Brassica* plants. *BMC Plant Biol*. 11:136. doi: 10.1186/1471-2229-11-136
- Cheng, F., Sun, R., Hou, X., Zheng, H., Zhang, F., Zhang, Y., et al. (2016). Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in *Brassica rapa* and *Brassica oleracea*. *Nat. Genet.* 48, 1218–1224. doi: 10.1038/ng.3634
- Cheng, F., Wu, J., and Wang, X. (2014). Genome triplication drove the diversification of *Brassica* plants. *Hort. Res.* 1:14024. doi: 10.1038/hortres. 2014.24
- Cho, L. H., Pasriga, R., Yoon, J., Jeon, J. S., and An, G. (2018). Roles of sugars in controlling flowering time. *J. Plant Biol.* 61, 121–130. doi: 10.1007/s12374-018-0081-z
- Choi, K., Kim, J., Hwang, H. J., Kim, S., Park, C., Kim, S. Y., et al. (2011). The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in *Arabidopsis*, by recruiting chromatin modification factors. *Plant Cell* 23, 289–303. doi: 10.1105/tpc.110.075911
- Dahanayake, S. R., and Galwey, N. W. (1999). Effects of Interactions between lowtemperature treatments, gibberellin (GA3), and photoperiod on flowering and stem height of spring rape (*Brassica napus* var. annua). Ann. Bot. 84, 321–327. doi: 10.1006/ANBO.1999.0920
- Domagalska, M. A., Schomburg, F. M., Amasino, R. M., Vierstra, R. D., Nagy, F., and Davis, S. J. (2007). Attenuation of brassinosteroid signaling enhances FLC

expression and delays flowering. *Development* 134, 2841–2850. doi: 10.1242/ dev.02866

- Duan, W., Song, X., Liu, T., Huang, Z., Ren, J., Hou, X., et al. (2015). Genome-wide analysis of the MADS-box gene family in *Brassica rapa* (Chinese cabbage). *Mol. Genet. Genom.* 290, 239–255. doi: 10.1007/s00438-014-0912-7
- Eddy, S. R. (1998). Profile hidden markov models. Bioinformatics 14, 755-763.
- Fornara, F., de Montaigu, A., and Coupland, G. (2010). Snapshot: control of flowering in Arabidopsis. Cell 141, 550–550. doi: 10.1016/j.cell.2010.04.024
- Fu, W., Huang, S., Gao, Y., Zhang, M., Qu, G., Wang, N., et al. (2020). Role of BrSDG8 on bolting in Chinese cabbage (*Brassica rapa*). Theor. Appl. Genet. 133, 2937–2948. doi: 10.1007/s00122-020-03647-4
- Gendall, A. R., Levy, Y. Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in *Arabidopsis. Cell* 107, 525–535.
- Greenup, A., Peacock, W. J., Dennis, E. S., and Trevaskis, B. (2009). Molecular biology of seasonal flowering-responses in *Arabidopsis* and cereals. *Ann. Bot.* 103, 1165–1172. doi: 10.1093/aob/mcp063
- Hoo, S. C., and Howe, G. A. (2009). A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIMdomain protein JAZ10 in *Arabidopsis. Plant Cell* 21, 131–145. doi: 10.1105/tpc. 108.064097
- Huang, S., Hou, L., Fu, W., Liu, Z., Li, C., Li, X., et al. (2020). An insertion mutation in Bra032169 encoding a histone methyltransferase is responsible for early bolting in chinese cabbage (*Brassica rapa* L. ssp. *pekinensis*). Front. Plant Sci. 11:547. doi: 10.3389/fpls.2020.00547
- Huang, X., Lei, Y., Guan, H., Hao, Y., Liu, H., Sun, G., et al. (2017). Transcriptomic analysis of the regulation of stalk development in flowering Chinese cabbage (*Brassica campestris*) by RNA sequencing. *Sci. Rep.* 7:15517. doi: 10.1038/ s41598-017-15699-6
- Jacobsen, S. E., Binkowski, K. A., and Olszewski, N. E. (1996). SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in *Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.* 93, 9292–9296. doi: 10.1073/pnas.93. 17.9292
- Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural variation in *Arabidopsis* flowering time. *Science* 290, 344–347.
- Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2008). KEGG for linking genomes to life and the environment. *Nucleic Acids Res.* 36, D480–D484. doi: 10.1093/nar/gkm882
- Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering the genome. *Nucleic Acids Res.* 32, 277–280. doi: 10.1093/nar/gkh063
- Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. *Science* 286, 1960–1962. doi: 10.1126/science.286.5446.1960
- Langridge, J. (1957). Effect of day-length and gibberellic acid on the flowering of *Arabidopsis. Nature* 180, 36–37. doi: 10.1038/180036a0
- Lee, M. K., Chun, J. H., Byeon, D. H., Chung, S. O., Park, S. U., Park, S., et al. (2014). Variations in glucosinolates in 62 varieties of Chinese cabbage (*Brassica rapa L. ssp. pekinensis*) and their antioxidant activity. *LWT Food Sci. Technol.* 58, 93–101. doi: 10.1016/J.LWT.2014.03.001
- Li, R., Wang, M., Wang, Y., Schuman, M. C., Weinhold, A., Schäfer, M., et al. (2017). Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. *Proc. Natl. Acad. Sci. U.S.A.* 114, E7205–E7214. doi: 10.1073/pnas.1703463114
- Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2-\Delta\Delta$ CT method. *Methods* 25, 402–408. doi: 10.1006/meth.2001.1262
- Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., et al. (2010). Functional annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. *Genome Res.* 20, 1238–1249. doi: 10.1101/gr.106120.110
- Manchali, S., Chidambara Murthy, K. N., and Patil, B. S. (2012). Crucial facts about the health benefits of popular cruciferous vegetables. J. Funct. Foods 4, 94–106. doi: 10.1016/J.JFF.2011.08.004
- Mao, X., Cai, T., Olyarchuk, J. G., and Wei, L. (2005). Automated genome annotation and pathway identification using KEGG Orthology (KO) as a controlled vocabulary. *Bioinformatics* 21, 3787–3793. doi: 10.1093/bioinformatics/bti430

- Martínez-Zapater, J., Coupland, G., Dean, C., and Koornneef, M. (1994). Transition to flowering in *Arabidopsis. Cold Spring Harb. Monogr. Arch.* 27, 403–433.
- Matsoukas, I. G. (2014). Interplay between sugar and hormone signaling pathways modulates floral signal transduction. *Front. Genet.* 5:218. doi: 10.3389/fgene. 2014.00218
- Miao, X., and Luo, Q. (2013). Genome-wide transcriptome analysis between small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing, *Reproduction* 145, 587–596. doi: 10.1530/REP-12-0507
- Micallef, B. J., Haskins, K. A., Vanderveer, P. J., Roh, K. S., Shewmaker, C. K., and Sharkey, T. D. (1995). Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. *Planta* 196, 327–334. doi: 10.1007/BF00201392
- Michaels, S. D., and Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. *Plant Cell* 11, 949–956.
- Moon, J., Suh, S. S., Lee, H., Choi, K. R., Hong, C. B., Paek, N. C., et al. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613–623. doi: 10.1046/j.1365-313X.2003. 01833.x
- Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* 5, 621–628. doi: 10.1038/nmeth.1226
- Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., and Murphy, G. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. *Genes Devel.* 11, 3194–3205. doi: 10.1101/gad. 11.23.3194
- Peng, J., and Harberd, N. P. (1993). Derivative alleles of the Arabidopsis gibberellininsensitive (gai) mutation confer a wild type phenotype. *Plant Cell* 5, 351–360. doi: 10.1105/tpc.5.3.351
- Quiroz-Figueroa, F., Rodríguez-Acosta, A., Salazar-Blas, A., Hernández-Domínguez, E., Campos, M. E., Kitahata, N., et al. (2010). Accumulation of high levels of ABA regulates the pleiotropic response of the nhr1 Arabidopsis mutant. J. Plant Biol. 53, 32–44. doi: 10.1007/s12374-009-9083-1
- Razi, H., Howell, E. C., Newbury, H. J., and Kearsey, M. J. (2008). Does sequence polymorphism of FLC paralogues underlie flowering time QTL in *Brassica* oleracea? Theor. Appl. Genet. 116, 179–192. doi: 10.1007/s00122-007-0657-3
- Rood, S. B., Mandel, R., and Pharis, R. P. (1989). Endogenous gibberellins and shoot growth and development in *Brassica napus*. *Plant Physiol*. 89, 269–273. doi: 10.1104/PP.89.1.269
- Samach, A., Onouchi, H., Gold, S. E., Ditta, G. S., Schwarz-Sommer, Z., Yanofsky, M. F., et al. (2000). Distinct roles of CONSTANS target genes in the reproductive development of *Arabidopsis. Science* 288, 1613–1616.
- Schiessl, S. V., Huettel, B., Kuehn, D., Reinhardt, R., and Snowdon, R. J. (2017). Flowering time gene variation in *Brassica* species shows evolutionary principles. *Front. Plant Sci.* 8:1742. doi: 10.3389/fpls.2017.01742
- Shalom, L., Samuels, S., Zur, N., Shlizerman, L., Doron-Faigenboim, A., Blumwald, E., et al. (2014). Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds. *J. Exp. Bot.* 65, 3029–3044. doi: 10.1093/jxb/eru148
- Sheen, J. (2014). Master regulators in plant glucose signaling networks. J. Plant Biol. 57, 67–79. doi: 10.1007/s12374-014-0902-7
- Sheldon, C. C., Burn, J. E., Perez, P. P., Metzger, J., Edwards, J. A., Peacock, W. J., et al. (1999). The FLF MADS box gene: a repressor of flowering in *Arabidopsis* regulated by vernalization and methylation. *Plant Cell* 11, 445–458. doi: 10.1105/tpc.11.3.445
- Shu, J., Liu, Y., Zhang, L., Li, Z., Fang, Z., Yang, L., et al. (2018). QTL-seq for rapid identification of candidate genes for flowering time in broccoli× cabbage. *Theor. Appl. Genet.* 131, 917–928. doi: 10.1007/s00122-017-3047-5
- Silverstone, A. L., Tseng, T. S., Swain, S. M., Dill, A., Sun, Y. J., Olszewski, N. E., et al. (2007). Functional analysis of spindly in gibberellin signaling in *Arabidopsis*. *Plant Physiol*. 143, 987–1000. doi: 10.1104/pp.106.091025
- Simpson, G. G., and Dean, C. (2002). Arabidopsis, the rosetta stone of flowering time? Science 296, 285–289. doi: 10.1126/science.296.5566.285
- Song, X., Duan, W., Huang, Z., Liu, G., Wu, P., Liu, T., et al. (2015). Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary patterns of CO-like genes in the plant kingdom. *Sci. Rep.* 5:14631. doi: 10.1038/srep14631

- Song, Y. H., Ito, S., and Imaizumi, T. (2013). Flowering time regulation: photoperiod and temperature sensing in leaves. *Trends Plant Sci.* 18, 575–583. doi: 10.1016/J.TPLANTS.2013.05.003
- Srikanth, A., and Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cell. Mol. Life Sci. 68, 2013–2037. doi: 10.1007/s00018-011-0673-y
- Su, T., Wang, W., Li, P., Zhang, B., Li, P., Xin, X., et al. (2018). A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (*Brassica rapa* ssp. *pekinensis*) selection. *Mol. Plant* 11, 1360–1376. doi: 10.1016/j.molp. 2018.08.006
- Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and control of flowering in *Arabidopsis. Nature* 410, 1116–1120. doi: 10.1038/ 35074138
- Sun, T. P., and Kamiya, Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase a of gibberellin biosynthesis. *Plant Cell* 6, 1509–1518. doi: 10.1105/TPC.6.10.1509
- Sung, S., and Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164. doi: 10.1038/ nature02195
- Turnbull, C. (2011). Long-distance regulation of flowering time. J. Exp. Bot. 62, 4399–4413. doi: 10.1093/jxb/err191
- Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., et al. (2013). Regulation of flowering by trehalose-6-phosphate signaling in *Arabidopsis thaliana*. *Science* 339, 704–707. doi: 10.1126/science.1230406
- Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. *Bioinformatics* 26, 136–138. doi: 10.1093/bioinformatics/btp612
- Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., and Wu, Y. (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in *Arabidopsis. J. Exp. Bot.* 64, 675–684. doi: 10.1093/jxb/ers361
- Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics Nat. Rev. Genet. 10, 57–63. doi: 10.1038/nrg2484
- Wei, Z., Yuan, T., Tarkowská, D., Kim, J., Nam, H. G., Novák, O., et al. (2017). Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. *Plant Physiol.* 174, 1260–1273. doi: 10.1104/pp.16. 01778
- Wilson, R. N., Heckman, J. W., and Somerville, C. R. (1992). Gibberellin is required for flowering in *Arabidopsis thaliana* under short days. *Plant Physiol.* 100, 403–408.
- Wu, J., Yuan, Y. X., Zhang, X. W., Zhao, J., Song, X., Li, Y., et al. (2008). Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (*Brassica rapa L. ssp. pekinensis*). *Plant Soil* 310, 25–40. doi: 10.1007/s11104-008-9625-1
- Xie, Q., Lou, P., Hermand, V., Aman, R., Park, H. J., Yun, D. J., et al. (2015). Allelic polymorphism of GIGANTEA is responsible for naturally occurring variations in circadian period in *Brassica rapa. Proc. Natl. Acad. Sci. U.S.A.* 112, 3829–3834. doi: 10.1073/pnas.1421803112

- Xu, L., Hu, K., Zhang, Z., Guan, C., Chen, S., Hua, W., et al. (2015). A genome-wide association study revealed the genetic architecture of flowering time in rapeseed (*Brassica napus* L.). *DNA Res.* 23:dsv035. doi: 10.1093/dnares/dsv035
- Yang, X., Yu, Y. J., Zhang, F. L., Zou, Z. R., Zhao, X. Y., Zhang, D. S., et al. (2007). Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of *Brassica rapa*. J. Int. Plant Biol. 49, 664–671. doi: 10.1111/j.1744-7909.2007.00447.x
- Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biol.* 11:R14. doi: 10.1186/gb-2010-11-2-r14
- Yu, H., Ito, T., Zhao, Y., Peng, J., Kumar, P., and Meyerowitz, E. M. (2004). Floral homeotic genes are targets of gibberellin signaling in flower development. *Proc. Natl. Acad. Sci. U.S.A.* 101, 7827–7832. doi: 10.1073/pnas.040237 7101
- Yuan, Y. X., Wu, J., Sun, R. F., Zhang, X. W., Xu, D. H., Bonnema, G., et al. (2009). A naturally occurring splice site mutation in the *Brassica rapa* FLC1 gene is associated with variation in flowering time. *J. Exp. Bot.* 60, 1299–1308. doi: 10.1093/jxb/erp010
- Zanewich, K. P., Rood, S. B., and Williams, P. H. (1990). Growth and development of *Brassica* genotypes differing in endogenous gibberellin content I. Leaf and reproductive development. *Physiol. Plant* 79, 673–678. doi: 10.1111/j.1399-3054.1990.tb00043.x
- Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al. (2015). Transcriptional mechanism of the jasmonate receptor COI1-mediated delay of flowering time in *Arabidopsis. Plant Cell* 27, 2814–2828. doi: 10.1105/tpc.15. 00619
- Zhang, X., Meng, L., Liu, B., Hu, Y., Cheng, F., Liang, J., et al. (2015). A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in *Brassica rapa*. *Plant Sci.* 241, 211–220. doi: 10.1016/J.PLANTSCI.2015. 10.007
- Zhao, J., Wang, X., Deng, B., Lou, P., Wu, J., Sun, R., et al. (2005). Genetic relationships within *Brassica rapa* as inferred from AFLP fingerprints. *Theor. Appl. Genet.* 110, 1301–1314.
- Zhu, J. Y., Sae-Seaw, J., and Wang, Z. Y. (2013). Brassinosteroid signaling. Development 140, 1615–1620. doi: 10.1242/dev.060590

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wei, Rahim, Zhao, Yang, Wang, Su, Li, Niu, Harun-Ur-Rashid, Yuan and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.