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Obesity is associated with a low-grade, chronic inflammation
that promotes the development of a variety of diseases, most
notably type 2 diabetes. A number of cell types of the innate
and adaptive immune systems have been implicated in this
process. Recent studies have focused on the role of natural
killer T (NKT) cells, a subset of T lymphocytes that react with
lipids, in the development of obesity-associated diseases.
These studies have shown that invariant NKT (iNKT) cells, a
population of NKT cells expressing a semi-invariant T cell
receptor, become rapidly activated in response to lipid excess,
and that these cells influence the capacity of other leukocytes
to produce cytokines during the progression of obesity. The
role of NKT cells in obesity-associated inflammation and
insulin resistance has been investigated using NKT cell-
deficient animals, adoptive transfer of NKT cells and an iNKT
cell agonist. While divergent results have been obtained, it is
now clear that NKT cells can modulate the inflammatory milieu
in obesity, suggesting that these cells could be targeted for
therapeutic intervention in obesity-associated diseases.

Introduction

Approximately 30% of the adult population in the United States
is obese, and this obesity epidemic has also spread to children.
Obesity is associated with susceptibility to a variety of diseases,
including type 2 diabetes, non-alcoholic fatty liver disease,
cardiovascular disease, airway disease and cancer, resulting in
reduced life expectancy. A common denominator that links these
maladies to obesity is inflammation (for a review, see refs. 1–5).
Inflammation represents the response of the host to pathogenic
insults or tissue injury. Obesity is associated with a chronic low-
grade inflammation, now referred to as “metainflammation,” in
metabolically active tissues such as adipose, liver and muscle, as
well as pancreas and brain. While the signals that initiate these
inflammatory processes remain unclear, emerging evidence
suggests that nutrients and the modifications they cause in

adipose tissue during situations of nutritional overload can
activate immune sensors. Activation of immune sensors such as
the Toll-like receptors (TLRs) in obese tissues results in the
induction of inflammatory kinases and transcription factors,
followed by production of pro-inflammatory cytokines. In turn,
these cytokines may interfere with insulin signaling pathways in a
variety of cell types, resulting in insulin resistance, which might
ultimately progress to type 2 diabetes.

A variety of cell types of the innate and adaptive immune
systems have been implicated in regulating the inflammatory
process during obesity (for a review, see refs. 1–5). Much research
has focused on macrophages, which can adopt a pro-inflammatory
M1 or an anti-inflammatory M2 phenotype and, thus, contribute
either positively or negatively to the inflammatory process during
obesity. Other innate cell types such as neutrophils and mast cells
have been implicated in promoting inflammation and insulin
resistance during obesity, whereas eosinophils and myeloid-
derived suppressor cells have been suggested to play a suppressive
role. Cells of the adaptive immune response are also involved,
with B cells, CD8+ T lymphocytes and T helper type 1 (Th1)-
polarized CD4+ T cells playing a pathogenic role, and
CD4+CD25+ regulatory T cells playing a suppressive role.
Recent studies have focused on another regulatory T cell subset,
natural killer T (NKT) cells, in the development of obesity-
associated inflammation and diseases.

Natural Killer T Cells

NKT cells are a group of T lymphocytes that react with lipid
antigens bound with the antigen-presenting molecule CD1d,
which is expressed by hematopoietic cells, such as macrophages,
dendritic cells and B cells, as well as by other cell types such as
hepatocytes (for a review, see refs. 6–11). NKT cells also express
several surface markers such as NK1.1 that are characteristic of the
natural killer (NK) cell lineage, which belongs to the innate arm of
the immune system. Two subpopulations of NKT cells have been
identified that differ in their lipid antigen-specificity and
functions.12 Type 1 or invariant NKT (iNKT) cells express T cell
receptors (TCRs) with an invariant a chain (Va14-Ja18 in mice
and Va24-Ja18 in humans), whereas Type 2 or variant NKT
(vNKT) cells express more diverse TCRs. Hence, both of these cell
types are absent in CD1d-deficient mice, whereas Ja18-deficient
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mice only lack iNKT cells. iNKT cells are also distinguished
from vNKT cells by their reactivity with a-galactosylceramide
(a-GalCer), a glycosphingolipid derived from bacteria associated
with a marine sponge.13 Consequently, iNKT cells can be identified
most reliably by staining with a-GalCer-loaded recombinant CD1d
molecules (i.e., CD1d/a-GalCer-tetramers or -dimers).12 iNKT cells
also react with lipid antigens derived from several pathogenic
bacteria (e.g., Borrelia burgdorferi, Helicobacter pylori and
Streptoccoccus spp) and with endogenous lipids such as isoglobo-
trihexosylceramide (iGb3) and β-glucosylceramide (β-GluCer).11

The antigen-specificity of vNKT cells is less clear, although many of
these cells can react with the β-linked glycolipid sulfatide. NKT cells
can contribute to a variety of diseases, including infections, cancer,
autoimmunity, transplant rejection, airway disease and other
inflammatory conditions. Although most of these studies have
focused on iNKT cells, vNKT cells can contribute to some of these
maladies as well, often exhibiting opposing effects to iNKT cells.14

Because of their reactivity with lipids, their capacity to produce a
variety of both pro- and anti-inflammatory cytokines, and their
abundance in metabolically active organs, recent studies have
investigated the role of NKT cells in the development of obesity-
related inflammation and insulin resistance.

Functional Status of NKT Cells in Metabolically Active
Organs During Obesity

NKT cells are abundant in the liver15 and white adipose tissue,16

two organs that play a critical role in the development of
metainflammation. Several earlier studies, mostly employing
surrogate markers for NKT cells, reported that hepatic NKT
cells in mice on a high-fat diet (HFD), or in leptin-deficient ob/ob
mice on a normal chow diet, gradually decline in numbers.17-20

This finding was subsequently confirmed for iNKT cells, using a-
GalCer/CD1d-tetramers to specifically identify this NKT cell
subset in liver of wild-type C57BL/6 mice fed with a HFD, and in
ob/ob or leptin receptor-deficient db/db mice fed with a normal
chow diet.21,22 Similar results were obtained for adipose tissue,22

although only a partial loss of iNKT cells was observed in some
studies.21 Furthermore, it was found that within several days on a
HFD, iNKT cells showed evidence of activation,21,23 as demon-
strated by early but transient expansion of this cell population,
and increased expression of the activation marker ICOS
(inducible costimulatory molecule) on these cells, concomitant
with a reduction in the expression of the NK cell marker NK1.1.
These alterations in iNKT cells, particularly in the white adipose
tissue, occurred before significant increases in macrophages and
CD8+ T cells, two cell types that play a pathogenic role in the
development of obesity-associated inflammation and insulin
resistance, were observed.21 These findings therefore suggested
that iNKT cells are one of the first cell types that become
activated in response to nutrient lipid excess.

Several research groups analyzed the functional properties of
iNKT cells in obesity.21,22,24,25 Although iNKT cells in adipose
tissue were able to produce a variety of pro- and anti-
inflammatory cytokines, divergent results were obtained regarding
the profile of cytokines produced by iNKT cells during the

progression of obesity. Some research groups reported that iNKT
cells from adipose tissue, as compared with iNKT cells from
spleen and liver, exhibit a Th2-biased cytokine profile.22,24

Another group of investigators further reported that the cytokine
profile of iNKT cells becomes progressively biased toward Th2
cytokine production in obese mice.25 However, another study
reported that iNKT cells gradually acquire increased capacity to
secrete both pro- and anti-inflammatory cytokines during the
progression of obesity.21 In turn, these alterations in iNKT cells,
regardless of their nature, correlated with the increased pro-
inflammatory environment in liver and white adipose tissue.

Collectively, these findings suggested that iNKT cells are one of
the first cell types that become activated in response to lipid
excess, and that their chronic stimulation gradually modifies their
functional properties, which contributes to the overall cytokine
environment in metabolically active organs.

Although it is clear that iNKT cells become activated in
response to lipid excess, mechanisms involved remain unknown.
Based on studies that have investigated the response of iNKT cells
to various microorganisms that lack cognate iNKT cell antigens
(for a review, see refs. 10 and 11), we favor the idea that nutrient
lipids can activate immune sensors on antigen-presenting cells,
resulting in cytokine secretion and alterations in the endogenous
lipid pool that is available for binding with CD1d molecules
(Fig. 1). Additional studies will be needed to investigate this and
other possible mechanisms by which NKT cells become activated
during situations of nutrient excess.

Figure 1. Proposed role of NKT cells in obesity-associated inflammation
and metabolic diseases. In this model, nutrient lipids activate immune
sensors expressed on antigen-presenting cells (APCs), inducing these
cells to produce cytokines such as IL-12, and to induce the synthesis of
NKT cell antigens. The pro-inflammatory cytokines subsequently
synergize with the CD1d-bound lipid antigens to activate NKT cells. In
turn, the NKT cells produce cytokines such as IL-4, IL-10, interferon-c
(IFN-c) and tumor necrosis factor-a (TNF-a) and contribute to the overall
inflammatory milieu, which influences the development of insulin
resistance and other metabolic maladies.
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Role of NKT Cells in Metainflammation
and Obesity-Associated Insulin Resistance

Earlier studies using adoptive transfer of NK1.1-expressing
T cells suggested a suppressive role of NKT cells in the

generation of obesity-associated insulin resistance (Table 1).20,26

However, a subsequent study argued for a pathogenic role of
NKT cells in this process, using β2-microglobulin-deficient
mice,27 which lack not only NKT cells but also other T cell
subsets such as CD8+ T cells that play a pathogenic role in

Table 1. Effect of NKT cells on insulin resistance reported in different studies

Study* Mice† Diet4 Manipulation1 Effect on insulin resistance||

Elinav et al.20 ob/ob chow Transfer of B6 NK1.1+CD3+ cells, then 12 d rest amelioration

Margalit et al.32 ob/ob chow b-GluCer, chronic (daily) amelioration

Ma et al.26 B6 HFD Transfer of B6 NK1.1+TCR+ cells, then 4 d rest amelioration

Ohmura et al.27 b2m KO HFD - amelioration

B6 HFD a-GalCer, single, then 8 d rest exacerbation

ob/ob chow a-GalCer, single, then 8 d rest no effect

Mantell et al.28 CD1d KO HFD - no effect

Kotas et al.29 CD1d KO HFD - mild exacerbation

Ja18 KO HFD - no effect

CD1d KO chow - no effect

Satoh et al.30 CD1d KO HFD - amelioration

Ja18 KO HFD - no effect

CD1d KO HFD Transfer of Ja18 KO HMNC, then 14 week HFD exacerbation

CD1d KO LFD - no effect

Ja18 KO LFD - no effect

B6 HFD a-GalCer, chronic, then 1 wk rest exacerbation

Wu et al.21 CD1d KO HFD - amelioration

Ja18 KO HFD - amelioration

db/db;CD1d KO chow - amelioration

db/db;Ja18 KO chow - amelioration

B6 HFD a-GalCer, chronic, then 2 week rest exacerbation

Ji et al.31 CD1d KO HFD - no effect

B6 HFD a-GalCer, day 0 and 2, then 2 d rest amelioration

Ji et al.23 CD1d KO HFD, 4 d - exacerbation

Schipper et al.24 CD1d KO HFD - mild exacerbation

Ja18 KO HFD - mild exacerbation

CD1d KO LFD - exacerbation

Ja18 KO LFD - exacerbation

B6 LFD NK1.1+ cell depletion exacerbation

B6 LFD a-GalCer, single, then 3 d rest no effect

Lynch et al.22 CD1d KO HFD - exacerbation

Ja18 KO HFD - exacerbation

CD1d KO LFD - exacerbation

Ja18 KO LFD - exacerbation

Ja18 KO HFD transfer of B6 hepatic iNKT cells, then 4 d rest amelioration

B6 HFD a-GalCer, single, then 4 d rest amelioration

*Individual studies are listed in chronological order of publication date. †All mice employed were on a C57BL/6 (B6) background. 4Although diets are listed here
as high-fat diet (HFD) and low-fat diet (LFD), these differed in their fat content and source, as well as other nutritional components. 1For details about the
different manipulations, including dosing and timing of treatments, please see the original studies. ||The effects listed are as compared with control mice, which
are either wild-type, db/db, untreated or treated with PBS, vehicle or isotype antibody. Diverse measurements of insulin resistance or glucose intolerance have
been employed in these studies and only the main outcomes, as reported by the authors of the original studies, are listed. Abbreviations: -, none; a-GalCer, a-
galactosylceramide; b-GluCer, b-glucosylceramide; b2m, b2-microglobulin; HMNC, hepatic mononuclear cells; KO, knockout; TCR, T cell receptor.
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obesity-associated inflammation. To investigate the role of NKT
cells in the development of obesity-associated diseases more
directly, several research groups employed models of selective
NKT cell-deficiency. This included CD1d-deficient mice, which
lack both iNKT and vNKT cells, and Ja18-deficient mice, which
only lack iNKT cells. These studies were performed with both
diet-induced and genetic models of obesity. While most studies
showed that NKT cell-deficiency only has minor effects on the
development of obesity, food uptake, energy expenditure and
blood lipid levels,21,24,28-31 one group of investigators found that
NKT cell-deficient animals gained more weight than their wild-
type controls when fed either a high-fat or low-fat diet.22 Widely
divergent results have been obtained for the effects of NKT cell-
deficiency on the development of obesity-associated fatty liver
and insulin resistance (Table 1). Some of these studies found a
pathogenic role of NKT cells,21,30 whereas others found no
significant role24,28,29,31 or evidence for disease amelioration.22,23

One study further suggested that NKT cells played a protective
role in the development of insulin resistance in lean animals.24 In
most of these studies, similar results were obtained for CD1d-
and Ja18-deficient mice, pointing toward iNKT cells as the main
contributors. However, in one study, reduced insulin resistance
was observed in CD1d-deficient but not Ja18-deficient mice, as
compared with wild-type animals,30 suggesting that vNKT cells
might contribute to obesity-associated disease as well.

To complement these studies with a gain-of-function approach,
several groups treated mice with the iNKT cell-specific agonist a-
GalCer during the development of diet-induced obesity (Table 1).
Again, divergent results were obtained, with studies reporting disease
exacerbation,21,27,30 no effect24,27 or disease amelioration.22,31 Yet
another study reported that β-GluCer ameliorated insulin-resistance
in ob/ob mice, possibly by antagonizing iNKT cell functions.32

When investigated, mechanistic studies revealed that the effects
of NKT cells on obesity-associated disease correlated with
alterations in macrophage accumulation, macrophage polarization
and levels of pro-inflammatory cytokines in liver and white adipose
tissue, and in the size of adipocytes and levels of the adipokines
leptin and adiponectin in white adipose tissue.21-24,27,30,31

Although precise reasons remain unclear, a variety of factors might
explain these divergent effects of NKT cells and their subsets on
obesity-associated inflammation and disease. Possible contributing

factors include differences in the genetic backgrounds of the animals
employed, diet compositions, feeding durations, experimental
procedures such as the protocol for a-GalCer treatment, as well as
the endogenous microbiota that are present in the animal facilities
where the mice were housed. With respect to the latter possibility, it
is interesting to note that NKT cells can influence microbial
colonization in the gut33 and, conversely, that the normal microbiota
can impact NKT cell numbers and functions.34-36 In this context, it
has been suggested that NKT cells can contribute to the protective
effects of probiotics on obesity-associated inflammation and glucose
intolerance.26

Concluding Remarks

The studies discussed here have provided strong evidence that
NKT cells are one of the first cell types that become activated in
response to nutritional lipid excess. These cells can contribute to
the low-grade inflammation that is associated with obesity and
influence the development of metabolic diseases (Fig. 1; Table 1).
Outstanding questions in this field include the mechanisms that
activate NKT cells during lipid excess and the effects of the
endogenous microbiota on the functional status of NKT cells that
impacts their role in the development of metainflammation and
metabolic diseases. Collectively, these studies place NKT cells
within the complex network that links nutrient excess to
inflammation in obesity. These findings also suggest NKT cells
as potential therapeutic targets for obesity-associated disorders.
NKT cells could be targeted by lipid antigens, TCR antagonists,
blocking or activating CD1d antibodies or NKT cell-depleting
antibodies.
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