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Immune checkpoint inhibitor (ICI) treatment could bring long-lasting clinical benefits to 
patients with metastatic cancer. However, only a small proportion of patients respond 
to PD-1/PD-L1 blockade, so predictive biomarkers are needed. Here, based on DNA 
methylation profiles and the objective response rates (ORRs) of PD-1/PD-L1 inhibition 
therapy, we identified 269 CpG sites and developed an initial CpG-based model by 
Lasso to predict ORRs. Notably, as measured by the area under the receiver operating 
characteristic curve (AUC), our model can produce better performance (AUC = 0.92) than 
both a model based on tumor mutational burden (TMB) (AUC = 0.77) and a previously 
reported TMB model (AUC = 0.71). In addition, most CpGs also have additional synergies 
with TMB, which can achieve a higher prediction accuracy when joined with TMB. 
Furthermore, we identified CpGs that are associated with TMB at the individual level. 
DNA methylation modules defined by protein networks, Kyoto Encylopedia of Genes and 
Genomes (KEGG) pathways, and ligand-receptor gene pairs are also associated with 
ORRs. This method suggested novel immuno-oncology targets that might be beneficial 
when combined with PD-1/PD-L1 blockade. Thus, DNA methylation studies might hold 
great potential for individualized PD1/PD-L1 blockade or combinatory therapy.

Keywords: PD-1/PD-L1 inhibition therapy, objective response rate, DNA methylation, biomarkers, Lasso model

INTRODUCTION

Cancer immunotherapies have increasingly become a promising treatment strategy in the past few 
years. These therapies are designed to help the immune system identify and destroy cancer cells by 
targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and its ligand (PD-
L1) (Mahoney et al., 2015). PD-1 is expressed on the surface of activated T lymphocyte cells, and its 
major role is to inhibit T cell activation by binding to the PD-L1 ligand on cancer cells, leading to 
immune suppression (Medina and Adams, 2016). A number of immune checkpoint-modulating drugs 
that target PD-1/PD-L1 have shown remarkable clinical benefits in multiple cancers. For instance, 
nivolumab and pembrolizumab, the first two monoclonal antibodies approved by the US Food and 
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Drug Administration (FDA) (Prasad and Kaestner, 2017), have 
already been registered for treatment of malignant melanoma 
(MM), advanced non-small-cell lung cancer (NSCLC), urothelial 
cancer, renal cell cancer, and head and neck squamous cell cancer 
(HNSCC) (Motzer et al., 2015; Robert et al., 2015; Reck et al., 2016; 
Bellmunt et al., 2017; Forster and Devlin, 2018). These drugs act 
by influencing the interaction between PD-1 and PD-L1, whose 
unobstructed interaction will downregulate T cells, causing cancer 
cells to evade immune surveillance (Prasad and Kaestner, 2017).

Compared with conventional therapy, inhibitors of PD-1 or 
PD-L1 can induce long-lasting responses in patients with metastatic 
cancer, but only one fourth to one third of patients have objective 
responses to immune checkpoint blockade therapy (Schachter et al., 
2016). Additionally, these treatments are costly and might have some 
associated toxicities (Schmidt, 2017). Therefore, it is important to 
accurately identify the applicable population. Currently, emerging 
primary biomarkers used in response to immunotherapy are PD-1/
PD-L1 protein expression, microsatellite instability (MSI), and 
tumor mutational burden (TMB) (Topalian et al., 2016; Chalmers 
et al., 2017; Chang et al., 2017). However, obvious limitations exist 
among these biomarkers due to low efficacy, antibody discrepancy, 
sampling bias, and strict requirements for cancer tissue. Achieving 
accurate forecasts and guiding clinical treatment remain critical 
challenges (Johnson et al., 2016).

The abnormal epigenomic landscape is one of the hallmarks of 
tumor initiation and progression (Esteller, 2008; Tsai and Baylin, 
2011). In particular, aberrant patterns of DNA methylation 
can alter chromatin structure and gene transcription without 
altering the DNA sequence (Bird, 2007); these patterns have 
been extensively studied. In mammals, DNA methylation is 
almost exclusively found in CpG dinucleotides (CpGs). Recent 
work has revealed that DNA methylation affects tumorigenesis 
by regulating the tumor microenvironment (Xiao et al., 2016; 
Zhang et al., 2017). There are a multitude of DNA methylation 
biomarkers for the prognosis, diagnosis, and response to 
treatment in several types of cancer (Rodriguez-Paredes and 
Esteller, 2011). Based on the above evidence, we hypothesize 
that DNA methylation signatures could act as reliable immune 
checkpoint blockade biomarkers.

Ideally, abundant tumor molecule profiles along with patient 
objective response rates of immune inhibitors can be used to train 
reliable multiple biomarkers. However, in reality, only a small 
number of samples have both types of data. Alternatively, the tumor 
profiles are probably not the same ones whose response rates are 
assessed. For example, the research of Yarchoan et al. (2017) assessed 
the relationship between the tumor mutational burden and the 
objective response rate of PD-1/PD-L1 inhibition by pooling the 
response data from the published studies and the tumor mutational 
burden for each tumor type, which was provided by Foundation 
Medicine (Chalmers et al., 2017), and their analysis was that the 
sequenced tumor specimens may be different from those whose 
clinical responses were evaluated (Yarchoan et al., 2017). Similar 
to their method, we collected a large amount of DNA methylation 
profiles from 18 cancer types in The Cancer Genome Atlas (TCGA, 
https://tcga-data.ncbi.nih.gov/tcga/) and corresponding objective 
response rates from the largest published studies. We calculated the 
correlations between CpG probes and response rates in the 18 cancer 

types and then used CpG probes that were significantly correlated 
with response rates to construct a model for predicting the objective 
response rate by the Lasso regression method. We proposed that, 
compared with the model of predicting the response rate with TMB, 
the method with the CpG signatures was more accurate. Next, we 
utilized multimethod detection to verify the reliability of the DNA 
methylation signatures as surrogate biomarkers to predict the 
objective response rate of PD-1/PD-L1 inhibition.

MATERIALS AND METHODS

Data Availability
The objective response rate (ORR) data for PD-1/PD-L1 
inhibitors were obtained from the study of Yarchoan et al. (2017), 
and the data sets of the samples of each cancer were retrieved 
from TCGA (https://tcga-data.ncbi.nih.gov/tcga/). Each data 
set contained DNA methylation profiles obtained by Illumina 
450K methylation assays. According to the research of Yarchoan 
et al. (2017) and the cancer types of TCGA, 18 cancer types have 
validated both ORRs and 450K methylation array data. In this 
study, these 18 cancer data sets were analyzed (Table 1).

TABLE 1 | Objective response rates (ORRs) collection of 18 cancer types.

Tumor types Abbreviation ORR (literature)

Adrenocortical carcinoma ACC 0.06 (Le Tourneau et al., 2017)
Bladder urothelial carcinoma BLCA 0.182 (Rosenberg et al., 2016; 

Apolo et al., 2017; Bellmunt 
et al., 2017; Powles et al., 2017; 
Sharma et al., 2017)

Breast invasive carcinoma BRCA 0.052 (Dirix et al., 2018)
Cervical squamous cell 
carcinoma and
endocervical 
adenocarcinoma

CESC 0.208 (Hollebecque et al., 2017)

Esophageal carcinoma ESCA 0.112 (Chung et al., 2016; Fuchs 
et al., 2017)

Glioblastoma multiforme GBM 0.08 (Reardon et al., 2017a; 
Reardon et al., 2017b)

Head and neck squamous 
cell carcinoma 

HNSC 0.16 (Ferris et al., 2016; Bauml 
et al., 2017)

Kidney renal clear cell 
carcinoma

KIRC 0.25 (Motzer et al., 2015)

Liver hepatocellular 
carcinoma

LIHC 0.2 (El-Khoueiry et al., 2017; 
Wainberg et al., 2017)

Lung adenocarcinoma LUAD 0.19 (Borghaei et al., 2015)
Lung squamous cell 
carcinoma

LUSC 0.2 (Brahmer et al., 2015)

Mesothelioma MESO 0.167 (Scherpereel et al., 2017)
Ovarian serous 
cystadenocarcinoma

OV 0.097 (Brahmer et al., 2012; 
Hamanishi et al., 2015; Disis 
et al., 2016)

Pancreatic adenocarcinoma PAAD 0 (Brahmer et al., 2012)
Sarcoma SARC 0.11 (Dangelo et al., 2017; Tawbi 

et al., 2017)
Skin cutaneous melanoma SKCM 0.387 (Larkin et al., 2015; Robert 

et al., 2015)
Uterine corpus endometrial 
carcinoma

UCEC 0.13 (Fleming et al., 2017)

Uveal melanoma UVM 0.036 (Algazi et al., 2016)
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For independent verification to assess the robustness of our 
model, we collected the 450K methylation array data of NSCLC 
from the NCBI Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE39279, 
which includes 444 patient samples.

To calculate the TMB of the 18 cancer types, 18 Mutation 
Annotation Format (MAF) files processed by MuSE (Fan et al., 
2016) were downloaded from the GDC data portal (https://
portal.gdc.cancer.gov/repository). The MAF files contained the 
somatic mutations of TCGA cohorts.

Three hundred twenty-four annotated KEGG pathways 
comprising 7,448 genes (Entrez Gene IDs) were retrieved from Kyoto 
Encylopedia of Genes and Genomes (KEGG) pathway database 
(https://www.genome.jp/kegg-bin/get_htext?hsa00001+3101). 
These data were used for pathway analysis.

A human protein-protein interaction (PPI) network was 
derived from the STRING database (STRING, http://www.
string-db.org). The default score threshold of interactions is 
typically 400 (Franceschini et al., 2013). Therefore, interactions 
with scores lower than 400 were discarded. These PPIs were used 
to construct subnetworks for a given gene.

Identification of CpG Probes Associated 
With ORR
We used the β values reported by the 450K Illumina platform 
for each probe as the methylation level measurement for 
the targeted CpG site. The range of the β value is from 0 
(no methylation) to 1 (100% methylation). A higher β value 
indicates a higher DNA methylation level. Each CpG value in 
a cancer type was represented by the mean β values in the 
tumor samples; then, the Spearman’s rank correlation test 
was used to quantify the association strength between the 
methylation level of the CpGs and the ORRs of the 18 cancer 
types. Since Bonferroni adjustment for multiple comparisons 
of the ~480,000 CpGs is too conservative, especially with the 
small sample size (18 cancer types) in our research, we used 
a less stringent threshold of P value ≤0.001 and an absolute 
value [Spearman’s rank correlation coefficient (Spearman’s 
rho)] = 0.7 to obtain reliable ORR-associated CpG signatures. 
The annotation of each CpG, such as CpG’s position in the 
genome and its corresponding gene, was derived from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL13534).

Defining Methylation Levels of Functional 
Modules Based on Entropy
At a wide range of genomic positions, the CpG signals do not 
conform to a normal distribution but are distributed in a nearly 
bimodal distribution. Thus, too much information would be lost 
when simply averaging the β values.

In information theory, concept entropy is the average rate 
at which information is produced by a stochastic source of 
data. When the data source has a lower probability value (i.e., 
when a low-probability event occurs), the event carries more 
“information” (“surprisal”) than when the source data have a 
higher probability value. The amount of information conveyed by 

each event defined in this way becomes a random variable whose 
expected value represents the information entropy. Generally, 
entropy refers to disorder or uncertainty. Here, we capture the 
methylation levels of various functional modules based on 
Shannon’s entropy, which is described as follows:

 H p lnpi i
i 1

n

= −
=

∑( )  

In this equation, pi is the β value of each CpG probe and n 
is the number of CpG probes within the functional modules 
(protein network, KEGG pathway, and ligand-receptor gene 
pairs). Likewise, we used the Spearman correlation test to 
quantify the strength of associations between each functional 
unit and the ORRs of 18 cancer types.

Construction of the CpG-Based Lasso 
Regression Model
To predict the objection response rate of PD-1/PD-L1 inhibition 
with reliable CpG signatures for clinical applications, additional 
selection and model construction are necessary. The Lasso 
algorithm is used to perform the variable selection procedure 
by estimating linear regression coefficients by L1-constrained 
least squares. It minimizes the sum of squared residuals, which is 
affected by the sum of the absolute values of the coefficients being 
less than the constant. Because of this constraint, Lasso regression 
tends to produce some coefficients that are precisely 0. Finally, a 
robust and interpretable model can be given. The original linear 
regression model can be written as follows:

 y x x xp p= + + + + +αα ββ ββ ββ ∈∈1 1 2 2   

The Lasso estimates for the constant term (α) and the 
regression coefficient (β) are as follows:

 αα ββ αα ββ ββ
====

 , ( ) , | |( ) = − − ∑∑argmin y x s ti i j ij
2

j 1

p

i 1

n

j. . ≤≤∑ λλ
==j 1

p

 

Here, y represents the ORR values of 18 cancers, x represents 
the β values of CpG probes that are significantly associated with 
ORR, and λ is a nonnegative adjustment parameter that controls 
the amount of shrinkage. The determination of λ can be estimated 
using the cross-validated (CV) method proposed by Efron and 
Tibshirani in 1997 (Efron and Tibshirani, 1997). In this study, 
the Lasso function in MATLAB was used to fit the equation, and 
the CV was set to 10.

Tumor Mutational Burden (TMB) 
Calculations
TMB is a measure of the number of somatic protein-coding 
base substitutions and insertion/deletion mutations occurring 
in a tumor specimen. To calculate the TMB, the total number 
of mutations counted is divided by the size of the genome 
examined. Here, we used 38Mb as the estimate of the exome 
size. The somatic mutations were counted from the MAF files of 
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TCGA, and the tumor mutational burden for each patient was 
estimated as follows:

 TMB n=
38  

In this equation, n is the total number of missense mutations 
of a patient.

The median TMB for each cancer type can then be estimated 
as follows:

 Median TMB N==
38  

In this equation, N is the median number of coding somatic 
missense mutations in a cancer type.

Next, in line with Yarchoan et al.’s work, a new linear 
correlation formula that evaluates the relationship between the 
TMB and ORR was constructed as follows:

 ORR = 0.0768* In(X)+0.1313  

Here, X is the median TMB of each cancer type.

Synergy Index Calculations
A synergy index (S) was calculated to determine the presence 
of the interactions of the β values of each ORR-associated CpG 
probe and TMB. The synergy index is equal to 1 (S = 1) in the 
absence of a synergistic interaction; in such a case, the joint 
effect of two predictive variables is equal to the sum of their 
independent effects (i.e., it is additive). A synergy index greater 
than 1 (S > 1) suggests the presence of a synergistic interaction; 
the observed joint effect is greater than that expected from the 
sum of the independent effects of the component variables (i.e., 
it is synergistic). Conversely, a synergy index less than 1 (S < 1) 
suggests an “antagonistic” effect or a negative interaction. Here, 
the synergy index was calculated via a logistic regression model.

RESULTS

Identifying CpGs Associated With the 
Objective Response Rate (ORR) of PD-1/
PD-L1 Inhibition Therapy
Based on Yarchoan et al.’s extensive literature searches, we 
obtained 18 cancer types for which validated ORRs and the 450K 
methylation array data are both available. From Table 1, we can 
observe that most ORRs of cancer types are less than 0.2.

We first performed Spearman’s rank correlation test to 
identify CpGs whose methylation level was associated with the 
ORRs of anti-PD-1/anti-PD-L1 therapy. We collected current 
global immuno-oncology targets as the gold standard to assess 
our result by the Kolmogorov–Smirnov (KS) test (Tang et al., 
2018). The targets that were more enriched in high Spearman 
rank correlation coefficient (Spearman’s rho) ORR-associated 
genes exhibited a smaller P value (derived from the KS test), 
which indicated that our result was reliable (P value = 0.0249). 
At the threshold of an absolute value (Spearman’s rho) ≥0.7 and 

a P value ≤0.001, we identified 269 genome-wide significant 
CpGs corresponding to 191 genes (Table 2 and Supplementary 
Table S1). Then, we investigated the number of CpGs enriched 
in these 191 genes. The more enriched, the more likely they can 
be considered marker genes of anti-PD-1/anti-PD-L1 therapy. 
We annotated the functions of the top enriched genes from the 
UniProt database (https://www.UniProt.org/) and the literature 
(Table 3). For example, HLA-E [human leukocyte antigen (HLA) 
class I histocompatibility antigen, alpha chain E] is the most 
enriched gene in our results, and some studies have indicated that 
HLA class I antigen expression can be utilized in select patients 
who may benefit from anti-PD-1/PD-L1-based immunotherapy 
(Sabbatino et al., 2016; Chowell et al., 2018). Therefore, we 
have reasons to infer that other enriched genes could also be 
considered potential markers for anti-PD-1/PD-L1 therapy.

We next examined the functional enrichment of these 191 
genes using KEGG pathway analysis via cluster Profiler of R (Yu 
et  al., 2012). Notably, we found that most of these genes were 
related to immunological KEGG pathways, such as antigen 
processing and presentation, natural killer (NK) cell-mediated 
cytotoxicity, and autoimmune thyroid disease (Supplementary 
Table S2). A recent study showed that the capacity of antigen 
presentation influences responses to checkpoint immunotherapy 
(Kvistborg and Yewdell, 2018), and tumor immunity is mediated 
mainly by NK cells (Ferrari de Andrade et al., 2018). Furthermore, 
we detected the signature genes that belong to multiple relevant 
immunological pathways. From Figure 1, we can clearly observe 
that HLA class I antigens are related to all these pathways, which 
highlights their importance in immunotherapy.

Construction of the CpG-Based ORR 
Prediction Model by Lasso
To predict the objection response rate of PD-1/PD-L1 inhibition 
with reliable signatures for clinical applications, we used 269 
CpGs that were obtained in the above section as initial variables to 
construct a model to predict ORR values by the Lasso algorithm.

First, we considered whether our CpG-based Lasso regression 
model method was generalized and practicable for predicting the 
ORRs of 18 cancer types. Therefore, we adopted a “leave-one-out 
cross validation” method to assess the feasibility of our model. 
Leave-one-out cross validation has been shown to give an almost 
unbiased estimator of the generalization properties of statistical 
models. Briefly, 17 cancer type-related data sets were used as 
training data sets for constructing the model, and the remaining 
data set was used as an independent data set. Then, we repeated 
this process 18 times to obtain the predicted ORRs of 18 cancer 
types. The Spearman’s rank correlation coefficient between the 
predicted and real ORRs was 0.75 (P value = 0.00029). This result 
indicated that our CpG-based Lasso regression model can be 
used to predict the ORRs of the 18 cancer types.

After the Lasso method was confirmed as being generalized and 
practicable, we used 269 CpGs and the ORR values of 18 cancer 
types to construct a prediction model by the Lasso algorithm. We 
chose the regression result when the mean square error (MSE) 
was minimum (MSE = 0.0042); there were eight CpG probe 
variables left: cg03749154, cg16051114 (DHCR24), cg04144714 
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(LYST, MIR1537), cg20395773 (ZBTB38), cg17484237 (HAVCR2), 
cg15006881 (GDF6), cg24644201 (CREB3L1), and cg13038847. 
The CpG-based prediction model is as follows:

y 0.793 0.526 xORR cg cg== −− −− ×××× x 03749154 160511140 0269. −−−−

×× ++ ×× −− ××

0 711

0 263 0 0008604144714 20395773

.

. .x x xcg cg ccg17484237

15006881 246442010 012 1 058−− ×× ++ ××. .x xcg cg −−−−

××

0 0603

13038847

.

xcg

To assess the performance of the CpG-based prediction model 
for the 18 cancer types, we calculated the difference between 
predicted ORR values and true ones. As shown in Figure 2, 
except for PAAD, SKCM, and KIRC, the difference for other 
cancer types was very small. Moreover, to assess the robustness 
of our prediction model, we evaluated its performance in an 
independent sample of NSCLC from the GEO database. The 
ORR value of this independent data set was predicted to be 
0.245, which was close to the real value of 0.2. This result further 
demonstrated that our model was accurate and robust.

The CpG-Based Model Performs Better 
than the TMB-Based Model in ORR 
Prediction
In a study by Yarchoan et al., researchers evaluated the relationship 
between the TMB and the ORR. A linear correlation formula was 
constructed that can be used to make hypotheses with respect to 
the ORR rate in tumor types for which anti-PD-1/PD-L1 therapy 
has not been explored. Here, we compared the performance of our 
CpG-based model and our TMB-based model with respect to 18 
cancer types.

First, we adopted the root-mean-square error (RMSE), the 
mean absolute error (MAE), and Spearman correlations to 
compare the performance of the above two prediction models. 
As shown in Table 4, compared with the TMB model, the CpG-
based model predicted ORR more accurately. Moreover, ROC 
curves were plotted to assess the sensitivities and specificities of 
these two models. As shown in Figure 3A, for the 18 cancer types, 
our model performs better than the TMB model in both sensitivity 
and specificity when 0.2 is used as a cutoff. The average area under 
the ROC curve (AUC) of the CpG-based model was 0.92, which 
was greater than the AUC of the TMB model, which was 0.71. 
For each cancer type, the performance evaluation criteria for the 
two models are compared to the actual ORR value of the cancer. 
The smaller the difference, the better the model effect. Except for 
CESC, HNSC, LUAD, and UVM, CpG-based model performs 
better than the TMB-based model in 14 cancer types. For the other 
four types of cancer, although CpG-based model is less powerful, 
our prediction is very close to the actual ORRs (Supplementary 
Table S3).

To maintain data consistency between methylation and 
TMB, we recalculated the TMB of 18 cancer types from 
TCGA and constructed another linear correlation formula 
according to the results of Yarchoan et al.’s study. Then, we 
compared the performance of these two models as above 
(Table 4). As shown in Figure 3B, the AUC of our model was 
0.92, which was greater than the AUC of the TMB model, 
which was 0.77. For each cancer type, except for ACC, BRCA, 
and UVM, CpG-based model performs better than the TMB 
(TCGA)-based model in 15 cancer types (Supplementary 
Table S3). This  result further demonstrated that our CpG-
based model was more accurate than the TMB-based model 
in ORR prediction.

TABLE 2 | List of the top 10 ORR-associated CpGs.

CpG Gene symbol Chromosome Genomic coordinate Spearman’s rho P value

cg02358190 MAST4 5 66187002 −0.92514 3.91E−08
cg04033580 C22orf45; UPB1 22 24891666 −0.8539 6.53E−06
cg13459303 TMEM176B; TMEM176A 7 1.5E+08 −0.82912 2.11E−05
cg24644201 CREB3L1 11 46299066 0.822922 2.74E−05
cg25626312 CREB3L1 11 46299204 0.81776 3.39E−05
cg03885527 PLIN2 9 19125654 −0.81363 4.00E−05
cg05690644 GDF6 8 97158015 −0.81053 4.52E−05
cg23393637 14 95513095 −0.81053 4.52E−05
cg26981651 RNF5; RNF5P1 6 32147670 −0.81053 4.52E−05

These are the top 10 ORR-associated CpGs, and the 269 ORR-associated CpGs corresponding to 191 genes are provided in Supplementary Table S1.

TABLE 3 | Top enriched genes and function.

Gene symbol CpGs count Function

HLA-E 6 HLA-E has a very specialized role in cell 
recognition
by natural killer cells (NK cells)

PLEC 4 Interlinks intermediate filaments with 
microtubules and
microfilaments and anchors intermediate 
filaments to
desmosomes or hemidesmosomes

HIVEP3 4 Plays a role of transcription factor;
binds to recognition signal sequences for 
somatic recombination of immunoglobulin 
and T-cell receptor gene segments

FOXD2- AS1 4 lncRNA FOXD2-AS1 promotes NSCLC 
progression through
Wnt/β-catenin signaling (Rong et al., 2017)

FOXD2 4 Probable transcription factor involved in 
embryogenesis
and somatogenesis

CREB3L1 4 Transcription factor involved in unfolded 
protein response (UPR)

NSCLC, non-small-cell lung cancer.
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Combining CpGs and TMB in ORR 
Prediction
TMB and DNA methylation describe different aspects of 
immunotherapy work against cancer. TMB reflects the mutation 
signatures in cancer, while DNA methylation affects the tumor 
microenvironment (TME), which plays an important role in 

supporting cancer progression and tumor immunity (Zhang 
et al., 2017; Sanmamed and Chen, 2018). Therefore, after 
confirming that the methylation level of a few CpGs performs 
better at ORR prediction than TMB, we tried to combine these 
two types of information by computing the synergy index (S) 
between each ORR-related CpG and TMB.

A synergistic index greater than 1 (S > 1) suggests the 
presence of a synergistic interaction between TMB and ORR-
associated CpGs, so combining TMB information could 
enhance the predictive ability of these CpGs. Furthermore, we 
investigated the top 10 CpGs that, in conjunction with TMB, 
have a synergistic effect (Table 5). Notably, TNFSF10 and 
HIVEP3, which were identified as being strongly correlated 
withPD-1/PD-L1 inhibition therapy in the previous section 
[rho (TNFSF10) = −0.75; rho (HIVEP3) = 0.75], also displayed 
strong synergy with TMB. This result indicated that these CpGs 
could also be applied jointly with TMB to achieve a higher 
prediction performance.

FIGURE 1 | Enriched immunological pathway and genes. The words in wine represent the Kyoto Encylopedia of Genes and Genomes (KEGG) pathway, and the 
purple circles represent objective response rate (ORR)-associated genes enriched in the KEGG pathway. The HLA class I antigens (HLA-B, HLA-C, HLA-E, HLA-G, 
and HLA-F) are related to all these pathways.

FIGURE 2 | Differences between the predicted ORRs and true ORRs of 18 
cancer types. Except for PAAD, SKCM, and KIRC, most of the ORRs of the 
cancer types could be predicted fairly robustly.

TABLE 4 | Comparison of model performance.

Assessment index CpG-based
model

TMB-based 
model

TMB 
(TCGA)-based

model 

MAE 0.03 0.05 0.05
RMSE 0.04 0.07 0.06
Spearman correlation 0.93 0.58 0.69

TMB, tumor mutational burden; TCGA, The Cancer Genome Atlas; mean absolute 
error; RMSE, root-mean-square error.
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The Methylation Level of CpGs 
Is Associated With TMB at the 
Individual Level
The above work involved mainly identifying CpG signatures 
of ORRs; these signatures are meaningful and could be used 
to construct a model to predict ORRs at the cancer type level. 
However, for clinical applications, we are more concerned about 
whether these signatures could also work for individuals. Since 
TMB has become a relatively mature biomarker of sensitivity to 
immune check points in individuals, we identified these 269 CpG 
signatures whose methylation levels were associated with TMB 
at the individual level. Most of these CpGs were significantly 
associated with TMB with an FDR = 0.0001 (Supplementary 
Table S4). Moreover, we investigated the top associated CpGs 
and found that specimens with relatively high methylation 
levels of these CpGs are more likely to have relatively high TMB 
(Figure 4). These CpG signatures could also become biomarkers 
of PD-1/PD-L1 inhibition therapy for individual patients.

Identification of DNA Methylation 
Modules Related to ORRs
A challenge of epigenetic studies is that DNA methylation 
changes can occur at a wide range of genomic positions, and their 
relationship between each single site and phenotype is not direct. 
A statistic to summarize the effects of environmental stimuli 
on gene regulation and the use of this feature to predict future 
medical events are highly desired. Here, we proposed a method 
to determine DNA methylation levels based on the entropy 
concept at different system levels, including protein networks, 
KEGG pathways, and ligand-receptor gene pairs, to represent 
coregulation units between two interactive cell types.

At the protein network level, we found 787 subnetworks 
that were significantly associated with ORRs at a P value <0.05 
threshold (Supplementary Table S5). Then, we focused on the 
subnetwork that contained PD-1 (PDCD1) and PD-L1 (CD274) 
(Figure 5A). This subnetwork is mainly involved in two pathways: 
antigen processing and presentation (Figure 5B) and cell adhesion 
molecules (Figure 5C). β2-Microglobulin (B2M) is a component 
of the HLA class I complex and functions in immunosurveillance. 
Carolina et al. reported that mutations in B2M could impair the 
correct formation of the HLA-I complex, which subsequently 
affects the response to anti-PD-1/anti-PD-L1 therapies (Pereira 
et al., 2017). Here, based on entropy to quantify the level of DNA 
methylation in a subnetwork, we obtained a similar observation. 
Except for PD-1/PD-L1, we should also pay more attention to the 
other subnetwork genes that may inspire new immunotherapies.

At the KEGG pathway level, 37 KEGG pathways were 
significantly associated with ORRs at a P value <0.05 threshold. 
Among them, several KEGG pathways were related to immune 
processes (Supplementary Table S6), such as the B cell receptor 
signaling pathway, the T cell receptor signaling pathway, natural killer 

TABLE 5 | List of the top 10 synergy sites.

CpG Gene symbol Synergy index

cg09248054 AGRN 37.17457358
cg22572614 TNFSF10 25.020374
cg23485436 KDM4B 24.3314227
cg25607920 HIVEP3 11.65557467
cg23902361 VAMP5 11.25511323
cg14116139 5.878589192
cg08405073 CCDC159 5.626048429
cg08405073 TMEM205 5.626048429
cg14615152 CSMD2 5.612506908
cg25577670 SVIL 5.466948003

FIGURE 3 | (A) Performance comparison of the CpG-based model and tumor mutational burden (TMB)-based model. The area under the receiver operating 
characteristic curve (AUC) scores of the CpG-based model and TMB-based model were 0.92 and 0.71, respectively, which indicated that our model had better 
performance. (B) Performance comparison of the CpG-based model and TMB-based model using The Cancer Genome Atlas (TCGA) samples. The AUC scores of 
the CpG-based model and TMB (TCGA)-based model were 0.92 and 0.77, respectively, which indicated that our model had better performance.
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FIGURE 5 | ORR-associated subnetwork map of KEGG pathways. (A) PDCD1 and its interacting genes in protein-protein interaction (PPI). (B) The pathway of 
antigen processing and presentation. (C) The pathway of cell adhesion molecules (CAMs); the golden yellow color represents the genes in the subnetwork of PDCD1.

FIGURE 4 | Plot of mutation burden in specimens with hypermethylation and specimens with hypermethylation of top TMB-associated CpGs (n (specimens) = 5,104).
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cell-mediated cytotoxicity, and autoimmune thyroid disease. These 
results were consistent with the previously enriched pathway by 269 
CpGs. Moreover, although other KEGG pathways are not directly 
related to immunotherapy, they are also meaningful. For instance, 
riboflavin metabolism is strongly significantly associated with 
ORRs; previous research has shown that metabolites of vitamin B 
represent a class of antigens that are represented by MHC class I-like 
molecules (MR1s) for mucosal-associated invariant T (MAIT) cell 
immunosurveillance (Kjernielsen et al., 2012). Therefore, our results 
may provide new insights into PD-1/PD-L1 inhibition therapy.

Unlike the PPI network, which depicts the intracellular network, 
ligand-receptor mediated cell-to-cell communication across multiple 
cell types and tissues could inspire new immunotherapy techniques 
(Ramilowski et al., 2015). Ligands, receptors, and their interactions 
were retrieved from the CellPhoneDB (https://www.cellphonedb.
org/) database. Including PD-1 and PDCD1, 103 ligand-receptor 
pairs were significantly associated with ORRs at a P value ≤0.05 
threshold (Supplementary Table S7). The ligand-receptors of CD44 
and HGF was the most significantly associated with ORR. Thus, we 
observed the cell-to-cell networks of CD44-HGF (Figure 6). We 
noted that CD44-HGF was expressed in monocytes at notable levels 
[≥10 Transcripts Per Kilobase Million (TPM)]. Although there is 

still no evidence that CD44-HGF affects the response to anti-PD-1/
anti-PD-L1 therapies, a recent study identified types of immune cells 
known as classical monocytes (CD14+CD16–HLA-DRhi) in the 
peripheral blood as potential biomarkers for responses to anti-PD-1 
immune checkpoint therapy in metastatic melanoma (Goswami 
et al., 2018).

From the above analyses, based on the entropy concept, we 
identified various functional modules associated with ORRs 
from the protein network, KEGG pathways, and ligand-receptor 
gene pairs. Some of these modules have been reported by other 
research groups, which confirmed the reliability of the DNA 
methylation signatures as surrogate biomarkers to predict the 
objective response rate of PD-1/PD-L1 inhibition.

DISCUSSION

Compared with conventional therapies, immune check point 
inhibitor treatments represented by PD-1/PD-L1 have shown 
remarkable clinical benefits (Yarchoan et al., 2017), but predictive 
biomarkers are needed. In this study, using DNA methylation 
profiles and the objective response rates (ORR) of 18 cancer 
types, we successfully identified 269 CpG signatures related to 

FIGURE 6 | CD44-HGF signaling network interface. In this network, both CD44 and hepatocyte growth factor (HGF) were expressed in monocytes (≥10 TPM). The 
interface is available at http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/.
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ORRs and developed an initial CpG-based objective response 
rate (ORR) prediction model by Lasso. We showed that these 269 
CpG signatures (corresponding to 191 genes) can be considered 
potential immuno-oncology targets. Furthermore, the CpG-
based ORR prediction model performed better than the TMB-
based model. In the independent test of NSCLC data, our model 
also made accurate predictions. Moreover, we also identified 
CpGs that are associated with TMB at the individual level.

To further investigate the relationship between methylation 
and phenotype (i.e., ORR), we introduced a new method based 
on the entropy concept and identified various functional modules 
associated with ORR, from protein networks to KEGG pathways 
and ligand-receptor gene pairs, which may provide new insights 
into PD-1/PD-L1 inhibition therapy.

One limitation of our analysis is that the sequenced tumor 
samples were probably not the same for those whose ORRs were 
assessed, which would introduce deviation in our result. Matched 
clinical and genetic (i.e., DNA methylation profiles) data would 
help us develop a more robust and reliable model. The independent 
verification by bisulfite pyrosequencing of several most significant 
CpGs/genes can better demonstrate the accuracy of our conclusion. 
However, in the present study, we mainly focused on investigating 
the correlation between CpG methylation in genome and response 
to PD-1 or PD-L1 therapy and predicting ORR of cancer based 
on methylation level of several CpG sites in the patients. Based on 
statistical analysis and the evidence from the literature, it should be 
sufficient to draw a conclusion that such DNA methylation studies 
hold great potential for individualized PD1/PD-L1 blockade or 
combinatory therapy. Furthermore, CpG sites could also be applied 
jointly with other types of biomarkers, for instance, TMB, to achieve 
increased prediction performance to help oncologists select patients 
who are more likely to benefit from PD-1/PD-L1 inhibition therapy.
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