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Abstract

Online social networks like Twitter and Facebook are among the most popular sites on the

Internet. Most online social networks involve some specific features, including reciprocity,

transitivity and degree heterogeneity. Such networks are so called scale-free networks and

have drawn lots of attention in research. The aim of this paper is to develop a novel method-

ology for directed network embedding within the latent space model (LSM) framework. It is

known, the link probability between two individuals may increase as the features of each

become similar, which is referred to as homophily attributes. To this end, penalized pair-spe-

cific attributes, acting as a distance measure, are introduced to provide with more powerful

interpretation and improve link prediction accuracy, named penalized homophily latent

space models (PHLSM). The proposed models also involve in-degree heterogeneity of

directed scale-free networks by embedding with the popularity scales. We also introduce

LASSO-based PHLSM to produce an accurate and sparse model for high-dimensional

covariates. We make Bayesian inference using MCMC algorithms. The finite sample perfor-

mance of the proposed models is evaluated by three benchmark simulation datasets and

two real data examples. Our methods are competitive and interpretable, they outperform

existing approaches for fitting directed networks.

Introduction

Network analysis is being increasingly prevalent in various scientific disciplines, ranging from

anthropology, sociology, social psychology, to physics, mathematics and computer science,

among others. Networks provide useful representations for non-Euclidean data and have been

employed to analyze interpersonal relationships, academic co-authorships and citations, pro-

tein interactions and traffic flows, etc. Among these research, social networks have received

excessive discussions, in which nodes typically represent individuals and edges represent social

relationships [1–3]. In more general cases, nodes can also be used to denote large social units

(for example, families, organizations, governments), objects (airports, servers, locations) or

abstract entities (concepts, texts, tasks, random variables), and thus edges indicate the certain
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relations, states, contents or features of nodes. To date, however, much attention has been paid

to model undirected networks.

The aim of this paper is to focus on the directed networks with degree heterogeneity, such

as social sharing sites (YouTube, QQzone) and microblogs (Twitter, Weibo). Formally, we

use G ¼ ðV; E;AÞ to represent an acyclic directed graph with n nodes, where V ¼ fvig
n
i¼1

,

E ¼ feijg
n
i;j¼1

respectively denotes the sets of nodes and edges, and A ¼ ða1; . . . ; anÞ 2 R
n�p is

the attribute matrix of nodes. The topology of a graph can be measured by an adjacency matrix

Y ¼ ðyijÞ 2 R
n�n

, where yij 2 {0, 1} indicates the presence or absence of an edge on each

ordered pair of nodes (vi, vj), i, j = 1, . . ., n and i 6¼ j. Edges connecting a node to itself are not

allowed, thus yii = 0 for i = 1, . . ., n. Throughout this paper, we use “vi! vj” to indicate yij = 1.

Many probabilistic models have been proposed in order to capture the topology of graphs

by adopting their local properties. The simplest one is the Erdös-Rényi Bernoulli random

graph model, in which edges are considered to be independent of each other [4]. Given two

arbitrary nodes vi and vj in a directed social network, it is more likely for vi to follow vj when vj
is following vi, or when both vi and vj are connecting to another node vk. In other words, the

conditional link probabilities P(yji = 1|yij = 1) and P(yij = 1|yik ykj = 1) are larger than the mar-

ginal link probability P(yji = 1) [5, 6]. These two properties are called link reciprocity and tran-

sitivity. Unfortunately, neither of them is considered in the Erdös-Rényi model. To involve

reciprocity, a log-linear statistical model (i.e. p1 model) is proposed [7] and the stochastic

blockmodel is introduced [8], which can also fit the block structure, or network communities

by partitioning nodes into different subgroups [9]. The stochastic blockmodel then has a rapid

development in various fields [10–12] and is still of great interest in recent research [13–16].

Despite such superiority, the stochastic blockmodels are inappropriate to accommodate the

complex dependence structure, such as transitivity, due to the pairwise independence assump-

tion. As a result, the exponential random graph model (EGRM) is proposed as a flexible and

alternative way [17–19]. Estimation methods such as the maximum pseudo-likelihood [20]

and the maximum likelihood with Markov chain Monte Carlo (MCMC) algorithms [21, 22]

are further developed, with a comprehensive comparison conducted in [23].

Another line of network research is the latent space model (LSM), which assumes that each

node of a network has a position, denoted as fzig
n
i¼1
2 Rd, in an unobserved latent space [6].

Usually, the dimension of the latent space d is small, for example, d = 2. To measure the close-

ness relationship between nodes, the latent positions are involved as latent distances kzi − zjk
(could be replaced by any distance). Then the probability of edges P(yij = 1) is modeled as a

function of these positions and node attributes. The above mentioned properties, reciprocity

and transitivity, are inherently involved in LSM due to the symmetry of pairwise distances.

Handhock et al. introduce the latent position cluster model to involve community structure

via multivariate Gaussian mixture model [24], which is further extended to allow for degree

heterogeneity by embedding with node-level random effects [25]. Sewell and Chen generalize

static model to the dynamic latent space model (DLSM) that accounts for relations drifting

over time under the framework of LSM [26]. Such dynamic networks are also studied in [27].

The LSM is widely developed in other directions as well. For instance, Austin propose the

covariate-defined latent space random effects model to predict the latent positions of new

nodes entering a fitted network [28]. Sewell and Chen develop the model to fit a weighted

edges network, which means that the edges connecting nodes are no longer binary variables

but can take multi-values [29].

Besides reciprocity and transitivity, degree heterogeneity and homophily attributes are

also of great interest in social networks. This work considers all of these properties within

the LSM framework. For large-scale social networks, it is reasonable to assume that the
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degrees of different nodes vary in a wide range. This is also referred as scale-free networks

(SFN), in which node degrees follow a power law. Such phenomenon is quite common in

online social networks [30]. For example, Facebook, Twitter, LinkedIn and Weibo are popu-

lar sites built on social networks, providing communication, storage and social applications

for hundreds of millions of users. On these social platforms, it is frequent to see few celebri-

ties capturing substantial numbers of followers, accounting for power law or power law

with exponential cutoff degrees. In directed networks, degrees contain in-degrees and out-

degrees, defined as din
j ¼

Pn
i¼1

yij and dout
i ¼

Pn
j¼1

yij respectively. The link probability should

be strongly related to the heterogeneity of node in-degrees. Taking vi and vj as ordinary

nodes and v�j as a celebrity with an extremely high din
j� , the marginal link probability P(yij� =

1) is expected to be much larger than P(yij = 1). However, it is unlikely for a celebrity to pay

close attention to its followers. Thus the conditional link probability P(yj�i = 1|yij� = 1) should

be smaller than P(yji = 1|yij = 1). On the other hand, out-degree heterogeneity only has limit

impacts in online social networks, because the number of users one can follow is usually up-

bounded (e.g. 5000 in Twitter and 2000 in Weibo), while the total number of nodes in the

network is practically countless. As a result, even node vi keeps a high dout
i , the link probabil-

ity for vi to follow vj remains around zero. Thus the heterogeneity of out-degrees can be

ignored. We call these networks semi-SFN in this paper. Such phenomenon is also discussed

in [31], where popularity scaled latent space model (PSLSM) is proposed for large-scale

directed network formulation. However, due to the employment of probit function, PSLSM

only considers a one-dimensional latent space and limits the latent positions to standard

Normal distribution, which is a quite restrictive assumption. To this end, this paper intro-

duces a novel latent space modeling procedure for directed semi-SFN, where the latent dis-

tances are scaled by popularity factors γ = (γ1, . . ., γn) to involve in-degree heterogeneity.

The logistic regression extends our proposed model to a much more generalized level. Spe-

cifically, the dimension and distribution of latent positions are theoretically unlimited, and

homophily attributes are considered emphatically in this paper.

It is well known that the link probability is related to homophily node attributes. Therefore,

pair-specific covariates, acting as a distance measure, are introduced in our model. To be men-

tioned, the classic LSM proposed by [6] also allows for covariates and has been performed in a

few research [24, 32]. To the best of our knowledge, however, we are the first to proposed a

specific formulation of covariates processing within the LSM framework. In this way, social

relationships between nodes can be better represented through latent distances, since the

effects of node attributes have been fully extracted. Additionally, to deal with the possible high

and ultrahigh dimensionality of covariates, regularization with both ridge and LASSO penal-

ties is discussed under a Bayesian framework, and thus we propose the penalized homophily

latent space model (PHLSM). The posterior estimation is performed by adopting MCMC algo-

rithms, which is particularly appropriate in this context since it allows uncertainty of model

parameters to be explored through a posterior distribution. Our experiments show that such

approach perform well in simulations and real semi-SFN examples compared to other compet-

ing models that also involve degree heterogeneity and homophily attributes.

The major contributions of this paper is as follows:

1. We propose a novel latent space model as an alternative network embedding, which com-

prehensively accommodate the significant properties of directed social networks including

reciprocity, transitivity, degree heterogeneity and homophily attributes.

2. The popularity factors are introduced as denominator scales of latent distances so as to

model the heterogeneity of node in-degrees in scale-free networks.
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3. For different dimensions of covariate spaces, the normal and laplacian priors for regression

coefficients are discussed separately as ridge and LASSO regularization within a Bayesian

framework.

4. For large-scale online social networks, we randomly sample ego-networks for real data

analysis, each of which is formed by a single hub and its followers and keeps the scale-

free characteristic. Experimental results demonstrate the superior performance of our

approach.

The rest of the paper is organized as follows. A basic description of our proposed models

together with a brief illustration in multivariate and high dimensional features are given in the

next section. Parameter estimation in Bayesian framework is introduced. Several numeric sim-

ulation examples are performed and two real network datasets are fitted. We summarize this

work with conclusions.

Penalized homophily latent space models

We consider a directed network with n nodes. Given a d-dimensional latent space, a specific

position zi 2 R
d, d� 1 is allocated to each node. We use Z ¼ ðz1; . . . ; znÞ 2 R

n�d to denote

the latent position matrix. The data to model consists of a binary adjacency matrix

Y ¼ ðyijÞ 2 R
n�n, where yij = 1 if vi follows vj, yij = 0 otherwise, and a pairwise covariate

matrix X ¼ ðx11; x12; . . . ; xnnÞ
0
2 Rn2�p is derived from a node-specific attribute matrix

A ¼ ða1; . . . ; anÞ
0
2 Rn�p

. We then propose two probabilistic models under different dimen-

sions p. Note that only binary-valued relations are focused in this paper, though the proposed

method can be extended to more complex relational data by transforming the Bernoulli prior

of ties.

PHLSM for multi-covariates

We first discuss the multivariate case, namely p� n. Assuming edges yij to be conditionally

independent, the PHLSM is defined as

Zij ¼ log oddsðyij ¼ 1jZ;X;YÞ ¼ b0 þ β0xij �
kzi � zjk

gj
; ð1Þ

where β = (β1, . . ., βp)0 is a p-dimensional vector of regression coefficients, γ = (γ1, . . ., γn)0 is a

popularity vector for n nodes. Θ = {β0, β, γ} is the collection of all parameters. Intuitively, as

kzi − zjk increasing, the link probability for both vi! vj and vj! vi will decline. Such symmet-

ric property can accommodate the reciprocity of networks. Throughout this paper, we assume

that the latent space coordinates Z are independently and identically generated from a

2-dimensional multivariate Normal distribution with mean 0 and equi-variance matrix, i.e.

zi � N2ð0; s
2I2Þ; ð2Þ

where I2 is an identity matrix. Moreover, γj 2 (0, 1) is a node-specific popularity scale. The

larger γj, the greater social popularity. Considering extreme cases, if γj! 0, the probability for

vi to follow vj remains 0; When γj! 1, we are back to LSM. In this way, the in-degree hetero-

geneity of semi-SFN can be modeled, meaning that an ordinary node tends to follow a celeb-

rity with high popularity, yet the opposite is not true. For model identification, the intercept β0

and ∑j γj is constrained to be 1.

The p-dimensional pairwise covariate vectors xij are obtained using an element-wise

operator. Specifically, for continuous attributes, the attribute matrix A is first normalized
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columnwisely and then

xij ¼ jlogðaiÞ � logðajÞj: ð3Þ

For discrete attributes,

xij ¼ minfjai � ajj; 1g: ð4Þ

It is remarkable that attributes play vital roles in our model. In some social network, the

probability of a relational tie between two individuals may increase as the characteristics of

individuals become more similar. Therefore, in this framework the relative difference between

two nodes is of interest. In details, for a continuous attribute normalized in (0, 1), an entropy-

like covariate xij is proposed in (3) to measure the relative information diversity. For a discrete

attribute, (4) defines a binary covariate xij, suggesting that whether nodes vi and vj belong to

the same category (0 for the same category and 1 otherwise). The purpose for using absolute

values of differences is to eliminate the directional factors. In case p� n, we employ ridge

regression coefficients, which equals to the Normal prior for β, i.e.

bk � Nð0; 1=t2
kÞ: ð5Þ

The feature-specific variance t2
k serves as a tuning of the L2 norm penalty within Bayesian

framework. Note that when t2
k ! 0, the ridge penalty will degenerate to a non-penalized form,

which can lead to an unbiased estimate of βk.
With the implementation of (3) and (4), model (1) has a simple interpretation:

1. For nodes vi and vj equidistant from vk, the log odds ratio of vi! vk versus vj! vk is β0(xik
− xjk), that is, the followed probability depends on the similarity of node attributes.

2. For nodes vi and vj equidistant from vk, the log odds ratio of vk! vi versus vk! vj depends

on β0(xki − xkj) and 1

gi
� 1

gj
, thus both attributes and popularity determines the following

probability.

LASSO-based PHLSM for high-dimensional covariates

With the explosion of information, numerous predictors are involved in social network analy-

sis for accurate link prediction, for instance, user preferences in recommender systems, pro-

tein connections in protein interactomes and potential communities in social networks. A

major challenge in this situation is the high-dimensional regime, where the number of avail-

able nodes is typically much smaller than the number of features. It is thus imperative to con-

sider a properly sparse model with low computational complexity.

The log likelihood for (1) is

lnðYÞ ¼ log PðyijjZijÞ ¼
X

i;j

Zijyij � logð1þ eZijÞ:

To reduce dimensionality, the maximum likelihood estimator with regularization is defined as

β̂lk ¼ argmax
β2Rp
flnðYÞ � n

Xp

k¼1

plkðbkÞg; ð6Þ

where plkð�Þ is some penalty function with tuning parameter λk� 0 to be determined for each
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βk. In terms of the ridge regression case (5), the penalty function is described as

pt2k ðbkÞ ¼ t
2
kb

2

k:

In this section we discuss high-dimensional cases, where the adaptive LASSO penalty (7) is

mainly considered due to its simplest expression and nice properties:

plkðbkÞ ¼ lk
bk

jb̂
ð0Þ

k j
m

�
�
�
�
�

�
�
�
�
�
¼ lkjbkj; ð7Þ

b̂
ð0Þ

k ¼ b̂
ffiffi
n
p
� consistent

k ð8Þ

Actually other penalties such as SCAD [33] and MCP [34] are all applicable.

This work performs Bayesian estimation. In Bayesian framework, the L1 norm penalty in

(7) was equivalent to a Laplace distribution (also referred to as the double exponential distribu-

tion) for parameter βk [35], namely

bk � Lapð0;
1

lk
Þ: ð9Þ

It is essential in regularized likelihood methods to determine the tuning parameter λk appro-

priately, which controls the trade-off between the bias and variance in resulting estimators [36,

37]. Selecting an appropriate tuning parameter becomes an important issue, both theoretically

and practically. The most common method for choosing the hyperparameter is the cross vali-

dation [38]. Unfortunately, it is difficult to be applied in LSM, since the estimated latent coor-

dinate matrix from the training sets is unfeasible for fitting the testing sets. Rather than setting

a fixed number, [39] employs hierarchical priors and assumes the tuning parameter to follow a

Gamma prior, which is the conjugate prior of exponential distributions. So a Gibbs sampling

algorithm can be implemented for Bayesian estimation, as described in the next section. In our

model, we simply extend this hierarchical approach to the adaptive LASSO. Specifically, let

f�(�) denote the probability density functions, the full conditional posterior distribution for λk
is given as

pðlkjY;X; β;Z; s
2; γÞ / fLapð0; 1

lk
ÞðbkÞ � fGðx;dÞðlkÞ

/
lk

2
expð� lkjbkjÞ

d
x

GðxÞ
l
x� 1

k expð� lkdÞ

/ fGðxþ1;dþjbkjÞ
ðlkÞ;

where ξ is the shape parameter and δ is the rate parameter of the Gamma distribution.

Estimation methodology

We employ Bayesian approach to estimate the parameters in (1) using MCMC algorithms. In

Bayesian treatment, a prior distribution π(Θ) is placed on Θ and what of interest is the poste-

rior distribution π(Θ|Y)/ π(Y|Θ)π(Θ). In this paper, Metropolis-Hastings (MH) within

Gibbs algorithm [40] is adopted for posterior sampling.
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Posterior sampling

We set the priors on the parameters as follows:

s2 � IGðn; �Þ;

t2
k � Gammaðxt; dtÞ;

lk � Gammaðxl; dlÞ;

g � DirichletnðαÞ:

Here IG denotes the inverse Gamma distribution. α = (α1, α2, . . ., αn) is a strictly positive

hyperparameter for the Dirichlet prior. For convenience of notation, all the parameters of

PHLSM are collected in Cr = {Z, β, γ, σ2, τ2, α, ν, ϕ, ξτ, δτ} and CL = {Z, β, γ, σ2, λ, α, ν, ϕ,

ξλ, δλ}.
The hyperparameters are discussed as follows. For the Inverse Gamma prior of σ2, ν and ϕ are

expected to be small. Besides we have E(σ2) = ϕ/(ν − 1) for ν> 1, which is supposed to approach

the sample variance of initial latent positions. Thus we set ν = 2 and � ¼ 1=2n
Pn

i¼1
kzð0Þi k

2
,

where zð0Þi indicates the initial value of zi. For the ridge regression version, it can be shown

VarðbkÞ ¼ 2d
2

t
=ððxt � 1Þðxt � 2ÞÞ for δτ> 0, ξτ> 2, meaning that a large ξτ as well as a small δτ

results in low variability for βk [39]. So is ξλ and δλ for the LASSO version. As a proposal, we set

δτ = 0.05, δλ = 0.1, ξτ = 4, ξλ = 8 for categorical variables and ξτ = 2, ξλ = 4 for continuous vari-

ables. Last, the Dirichlet prior for γ is set to be uninformative, thus a flat Dirichlet distribution,

given as Dirichletn(1, . . ., 1), is proposed.

Practically, the number of MCMC iterations to reach convergence can be greatly reduced

by proper initial values of the latent positions and model parameters. Details for selection of

initial values are discussed in the next subsection.

Define

pij ¼ PðyijjX;Z;YÞ ¼
expfyijðb0 þ β0xij � kzi � zjk=gjÞg

1þ expfb0 þ β0xij � kzi � zjk=gjg
;

the posterior kernels or full conditional distributions of ridge PHLSM parameters are

expressed as

pðzijY;X; β; γ; s
2; � � �Þ /

Yn

j6¼i

pijpji � fN2ð0;s
2I2Þ
ðziÞ; ð10Þ

s2jZ; n; �; � � � � IGðnþ n; �þ
1

2

Xn

i¼1

kzik
2
Þ; ð11Þ

pðbkjY;X;Z; γ; t
2
k; � � �Þ /

Yn

i¼1

Yn

j6¼i

pij � fNð0;t� 2
k Þ
ðbkÞ; ð12Þ

t2
kjbk; xt; dt; � � � � Gammaðxr þ

1

2
; dr þ

b
2

k

2
Þ; ð13Þ
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pðgjY;X;Z; β;α; � � �Þ /
Yn

j6¼i

Yn

i¼1

pij � fDirnðαÞ
ðγÞ; ð14Þ

where the notation “. . .” indicates that the parameters we do not list are independent of the

corresponding variable.

Given posterior distributions of model parameters, the MCMC algorithm can be written as

follows:

Algorithm 1: MCMC algorithm for PHLSM
0. Set initial values of Ψr.
1. For i = 1, . . ., n, draw zi via MH using a random walk proposal.
2. Draw σ2 via Gibbs sampling from its full conditional distribution
(11).
3. For k = 1, . . ., p, draw βk via MH using a Normal random walk
proposal.
4. For k = 1, . . ., p, draw t2

k via Gibbs sampling from its full condi-
tional distribution (13).
5. Draw γ via MH using a Dirichlet proposal.

Repeat steps 1–5.

As for the adaptive Lasso version (7), using a maximum pseudo likelihood approximation,

the posterior distributions for β and λ can be expressed as

pðbkjY;X;Z; γ; lk; � � �Þ /
Yn

i¼1

Yn

j6¼i

pij � fLapð0;l� 1
k Þ
ðbkÞ; ð15Þ

lkjbk; xl; dl � � � � Gammaðxl þ 1; dl þ jbkjÞ: ð16Þ

Other parameters are the same as the ridge penalty version. The MCMC algorithm is given as

Algorithm 2:

Algorithm 2: MCMC algorithm for LASSO-based PHLSM
0. Set initial values of ΨL.
1. For i = 1, . . ., n, draw zi via MH, using a Normal random walk
proposal.
2. Draw σ2 via Gibbs sampling using the posterior distribution given
in (11).
3. For k = 1, 2, . . ., p, draw βk via MH using a Laplace random walk
proposal.
4. For k = 1, 2, . . ., p, draw λk Gibbs sampling using the posterior dis-
tribution in (16).
5. Draw γ via MH using a Dirichlet proposal.

Repeat steps 1–5.

As an aside, there are two remarks for the proposed MCMC algorithms.

Remark 1. The posterior of coordinate matrix Z is not unique due to the invariance property
of distances in a two-dimensional Euclidean latent space by rotation, reflection or translation. To
deal with this, the Procrustes transformation [6] is applied in each step.

Remark 2. For Algorithm 2, we use the Dirichlet proposal introduced in [26] to draw γ. Due
to the constraint |γ|1 = 1, all components of γmust keep or remove simultaneously during each
iteration. To accelerate convergence, we set α(t) = Mγ(t−1) at t-th iteration, where M is a suffi-
ciently large positive number.
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Initialization strategies

As mentioned before, the number of iterations for MCMC to reach convergence can be dra-

matically reduced by setting appropriate initial values of the parameters Cr or CL. Below we

give some ad hoc initialization strategies.

1. The initial values of latent positions Z can be found using the classical multidimensional

scaling (MDS) method [41]. Typically, MDS method could transform an n × n symmetric

matrix of association coefficients between individuals into a unique coordinate matrix in

Euclidean space via the principal components analysis approach. In practice, we use the geode-

sic distances in the directed graph, rescaled by 1/n, as the input distance matrix. Then the out-

put coordinate matrix can be employed as the initial latent positions after centralization.

2. For σ2, a reasonable initial value should be the sample variance of zð0Þi , given as

s2ð0Þ ¼
1

2n

Xn

i¼1

kzð0Þi k
2
;

where the superscript (0) indicates the initial value.

3. We use the maximum likelihood estimation of the regression coefficients β as their initial

values. Furthermore, the initial values of t2
k and λk can be simply obtained via Gibbs sampling

with b
ð0Þ

k .

4. Typically for an edge vi! vj, we expect the value of γj to be significantly associated with

the in-degree of the end node, i.e. din
j , hence the initial value for γj is proposed as

g
ð0Þ

j ¼
1þ din

j

nþ
Pn

h¼1
din
h
:

The added 1 in the molecule is to promise a strictly positive value for g
ð0Þ

j , and the correspond-

ing n in the denominator is to ensure the summation remaining 1.

Simulation examples

For evaluation, three different benchmark directed networks datasets are considered. In each

dataset several nodes are randomly selected as popular hubs to model the heterogeneity of in-

degrees in semi-SFN. For each of them we apply the MCMC algorithm proposed in Algorithm

1 and Algorithm 2. The link sparsity and reciprocity of each adjacency matrix is measured

using empirical link probabilities given as follows,

P̂ðyij ¼ 1Þ ¼
1

nðn � 1Þ

Xn

j¼1

Xn

i¼1

yij;

P̂ðyijyji ¼ 1Þ ¼
1

nðn � 1Þ

Xn

j¼1

Xn

i¼1

yijyji;

P̂ðyji ¼ 1jyij ¼ 1Þ ¼
Xn

j¼1

Xn

i¼1

yijyji=
Xn

j¼1

Xn

i¼1

yij;

P̂ðyj� i ¼ 1jyij� ¼ 1Þ ¼
Xm

j�¼1

Xn

i¼1

yij�yj� i=
Xm

j�¼1

Xn

i¼1

yij� ;

where vj� denotes popular hubs with high in-degrees and m is the number of them. The first
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two equations can reflect the global sparsity of a network. And the last two equations reflect

the empirical reciprocity between two arbitrary nodes, or from a popular hub to another node,

respectively.

PHLSM with no covariates

In this example, we consider model (17) without attribute effects,

log oddsðyij ¼ 1jZ; γÞ ¼ 1 �
kzi � zjk

gj
: ð17Þ

The top 5 in-degrees are considered as popular hubs. We generate 20 adjacency matrices to

characterize directed social networks, each of which contains 500 nodes. For data generation,

we set σ2 = 3 × 10−4, γ� Dirichlet(α1, . . ., αn), where αi are drawn from a power-law distribu-

tion, given as

Pðai ¼ lÞ ¼
l� y

Pn
i¼1
ai
; l � 1: ð18Þ

Larger θ means more likely to produce popular nodes. Three different θ are considered in this

example for comparison, θ 2 {1.7, 2.0, 2.3}. The means and standard deviations (sd) of empiri-

cal link probabilities for all simulation networks are given in Table 1.

It is shown in Table 1 that the first two empirical probabilities are close to 0. Conversely,

the empirical reciprocity conditional probability between arbitrary nodes is much larger, while

for an edge sent by a popular hub, the conditional probability remains small.

Fig 1 also presents the latent positions scaled by node popularity, which follows a power-

law distribution (18). We can see that with θ increasing, the node popularity differences gradu-

ally decrease. For θ = 1.7, an enormous circle appears near the origin, while the other circles

seem to be relatively similar in size, much smaller than the hub. As for θ = 2.0 and 2.3, a grow-

ing number of moderate-sized circles emerge.

To investigate the power-law of in-degrees, the logarithmic in-degree distribution curves of

all simulation networks are depicted in Fig 2. As expected, the empirical logarithmic distribu-

tion curves are approximated linear, indicating that the in-degrees follow a power-law, espe-

cially when θ is relatively large. Note that here we employ the complementary cumulative

distribution function (CDF) rather than the probability density function (PDF) because it is

more robust against fluctuations resulted from finite sample sizes [42].

To examine the efficiency and accuracy of our proposed methods, we adopt Algorithm 1 to

estimate model (17) and set M = 5 × 106. Other hyperparameters and initial values are set as

described above. We iterate 15,000 times for initial burn-in and another 50,000 times for mon-

itoring. In each iteration, the Procrustes transformation is performed as described in Remark

1. Posterior means of estimates with its standard deviations over 20 simulations are shown in

Table 2. It seems that the proposed model performs better for fitting a light-tailed directed

semi-SFN.

Table 1. Mean (sd) of the empirical link probabilities for the simulation data.

θ = 1.7 θ = 2.0 θ = 2.3

P̂ðyij ¼ 1Þ 0.0131 (0.0067) 0.0162 (0.0049) 0.0164 (0.0027)

P̂ðyijyji ¼ 1Þ 0.0016 (0.0012) 0.0035 (0.0016) 0.0053 (0.0013)

P̂ðyji ¼ 1jyij ¼ 1Þ 0.1028 (0.0424) 0.2053 (0.0569) 0.3196 (0.0561)

P̂ðyj� i ¼ 1jyij� ¼ 1Þ 0.0375 (0.0115) 0.0528 (0.0122) 0.0692 (0.0168)

https://doi.org/10.1371/journal.pone.0253873.t001
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We use the following two ratios to compare between the estimates and the truth. For any

edge vi! vj, define kẑ i � ẑ jk=kzi � zjk and ĝ j=gj. For each ratio, we depict the density curves

of 20 simulation data in Figs 3 and 4. From these two figures we can observe the ratios all con-

centrate near 1, indicating the superiority of our proposed methods. Furthermore, the trace

plots of the estimated popularity and true in-degrees are presented in Fig 5, which show

Fig 1. Latent positions scaled by a power-law γ with different θ. The radius of a circle indicates the value of γi for the corresponding latent position. (a) θ = 1.7; (b) θ =

2.0; (c) θ = 2.3.

https://doi.org/10.1371/journal.pone.0253873.g001

Fig 2. Complementary CDF of in-degrees with different θ.

https://doi.org/10.1371/journal.pone.0253873.g002

Table 2. Parameter estimates for the no covariate example.

θ = 1.7 θ = 2.0 θ = 2.3

ŝ2 2.989 (0.204) 3.198 (0.264) 4.053 (0.197)

MSEðkẑ i � ẑ jkÞ 1.274 (0.398) 2.009 (1.079) 4.494 (1.225)

MSEðĝÞ 0.5037 (3.529) 0.1378 (0.939) 0.0459 (0.260)

ŝ2 is enlarged 104 times, the MSE of kẑ i � ẑ jk and ĝ are enlarged 103 times.

https://doi.org/10.1371/journal.pone.0253873.t002
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significant positive correlations. Such results empirically verify that the degree heterogeneity

and other node-specific random effects can be modeled by rescaling latent distances.

For a careful measurement, total correct rate (TCR), true positive rate (TPR), false positive

rate (FPR), and AUC (the area under ROC) are applied to evaluate prediction accuracy.

Results are reported in Table 3, which suggests our proposed method performs better with

smaller θ.

Finally, to examine the dependence of MCMC algorithm on initial values, we take θ = 2.0 as

a trial. We use uninformative priors for all the parameters. Specifically, initial values of Z and γ
are randomly selected from a standard Normal distribution and a flat Dirichlet distribution.

The mean(sd) of ŝ2 is 3.019 × 10−4(0.247 × 10−4), and the AUC value is 0.896(0.036), which is

pretty close to the results in Tables 2 and 3 with informative priors. Thus the MCMC algorithm

performs robust to the initial values, however it will take longer time to reach convergence.

Fig 3. Density curves of the quotients between estimated and true latent distances. (a) θ = 1.7; (b) θ = 2.0; (c) θ = 2.3.

https://doi.org/10.1371/journal.pone.0253873.g003

Fig 4. Density curves of the quotients between estimated and true popularity scales. (a) θ = 1.7; (b) θ = 2.0; (c) θ = 2.3.

https://doi.org/10.1371/journal.pone.0253873.g004
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PHLSM with multi-covariates

In this example, two attributes a1, a2 are considered to analyze the node attribute effects. The

model for simulation data generation is specified as

log oddsðyij ¼ 1jZ;X;YÞ ¼ 1þ b1xij;1 þ b2xij;2 �
kzi � zjk

gj
; ð19Þ

where β1 = 0.5, β2 = −1. a1 and a2 are assumed to be continuous and binary, generated from a

Normal and a Bernoulli distribution respectively, i.e. a1� N(0, 1) and a2� B(1, 0.5). Thus by

the proposed transformation (3) and (4), we obtain xij,1 and xij,2. For parameter estimation, 20

simulation datasets are generated. In each replication, we set θ = 2, σ2 = 3 × 10−4 as in example

1. Hyperparameters and initial values for implementing Algorithm 1 are set as discussed

before. Experimental results are reported in Table 4.

From Table 4, we can observe that the proposed MCMC algorithm had a good performance

in parameter estimation. The posterior means of b̂1; b̂2 and ŝ2 get very close to true values

with quite small standard deviations. In addition, the means (sd) of MSE for kẑ i � ẑ jk and ĝ j

are 9.845 × 10−5(3.111 × 10−6) and 5.165 × 10−3 (1.286 × 10−4) respectively. The means (sd) of

link prediction accuracy are TCR = 0.972(0.007), TPR = 0.845(0.020), FPR = 0.025(0.011),

AUC = 0.905(0.094). Compared with the predictive results in example 1, it is suggested that the

Fig 5. Scatter plots of the estimated popularity and true in-degrees.

https://doi.org/10.1371/journal.pone.0253873.g005

Table 3. Mean (sd) of predictive results for the no covariate example.

θ = 1.7 θ = 2.0 θ = 2.3

TCR 0.972 (0.031) 0.970 (0.016) 0.957 (0.020)

TPR 0.856 (0.086) 0.854 (0.060) 0.831 (0.051)

FPR 0.026 (0.032) 0.028 (0.016) 0.041 (0.020)

AUC 0.915 (0.037) 0.913 (0.025) 0.895 (0.020)

https://doi.org/10.1371/journal.pone.0253873.t003

Table 4. Bias (sd) of parameter estimates for the multi-covariate example.

β1(= 0.5) β2(= −1.0) σ2(= 3 × 10−4)

Bias(sd) 0.001(0.011) -0.002(0.025) 0.231 × 10−4(0.223 × 10−4)

https://doi.org/10.1371/journal.pone.0253873.t004
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proposed PHLSM can be significantly improved by adding node attributes into the original

model.

LASSO-based PHLSM with high-dimensional covariates

This example focuses on the high-dimensional covariate case. For evaluation and comparison

analysis, two groups of simulation experiments are conducted, each of which consists of 20

independent datasets with fixed sample size n = 50 and θ = 2. All the simulation data come

from model (20),

log oddsðyij ¼ 1jZ;X;YÞ ¼ 1þ β0xij �
kzi � zjk

gj
: ð20Þ

For the first group, we consider p = 40, where a5, a15, a25, a35 are significant and the other coef-

ficients are 0. The former 20 attributes are binary and generated from a Bernoulli distribution,

i.e. ak�
i:i:dBð1; 0:5Þ; k ¼ 1; . . . ; 20. The latter 20 attributes are continuous and generated from

a Normal distribution, i.e. ak�
i:i:dNð0; 1Þ; k ¼ 21; . . . ; 40. In the second group we consider a

higher-dimensional case by setting p = 150 and all attributes are produced the same way as in

the first group, that is, half of them are binary and the others are continuous, each of which

contains 7 significant attributes.

Due to the sparse as well as high dimensional setting, the proposed Algorithm 2 is applied

here for posterior estimation with 15,000 iterations for initial burn-in and 50,000 iterations for

monitoring. Hyperparameters and initial values are selected as before. As comparison, we also

employ Algorithm 1 to fit the simulation data. To investigate the performance of LASSO-

based PHLSM on variable selection, we use C to denote the number of non-zero coefficients

correctly estimated as non-zero, and IC to denote the number of zero coefficients incorrectly

estimated as non-zero. Furthermore, the proportion of the 20 simulations excluding non-zero

coefficients from the model is denoted as Under-fit, the proportion of including zero coeffi-

cients is denoted as Over-fit, and the proportion for correct coefficient selection is denoted as

Correct-fit [43]. Results are presented in Table 5. As expected, the LASSO version results in

Table 5 show considerable advantages on fitting a sparse model, especially when p is large.

Besides, when considering the prediction accuracy, both models have the similar behaviors,

between which, however, the LASSO version performs slightly worse. But actually, it is worth-

while to establish a simpler and more interpretable model via sacrificing a little prediction

accuracy.

Table 5. Results for the high-dimensional covariate example.

n = 50, p = 40 n = 50, p = 150

LASSO PHLSM ridge PHLSM LASSO PHLSM ridge PHLSM

C 3.85 4.00 12.60 14.00

IC 0.10 26.75 3.25 119.5

Under-fit 0.10 0.00 0.70 0.0

Over-fit 0.05 1.00 0.45 1.00

Correct-fit 0.85 0.00 0.15 0.00

TCR 0.925 (0.030) 0.941 (0.035) 0.952 (0.023) 0.967 (0.033)

TPR 0.908 (0.116) 0.920 (0.121) 0.948 (0.102) 0.962 (0.078)

FPR 0.067 (0.034) 0.051 (0.027) 0.047 (0.024) 0.031 (0.020)

AUC 0.920 (0.052) 0.935 (0.062) 0.951 (0.045) 0.966 (0.039)

https://doi.org/10.1371/journal.pone.0253873.t005
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Real data analysis

For model evaluation, we fit the proposed models in two real data examples. In the first exam-

ple, we mainly discuss the multi-covariate situation and employ the ridge PHLSM for node

representation and link prediction. To compare our model to the state-of-the-art methods, we

also consider DLSM, a network model which also considers degree heterogeneity within the

LSM framework. The second example focuses on the high-dimensional covariate case. Both

regularization versions are fitted to evaluate the feature screening performance of different

penalties. We also appropriately modify the proposed models by extending the Normal prior

of latent positions to a mixture Normal distribution so as to accommodate the community

structure of the network data.

Pokec data

Pokec is the biggest and most popular Twitter-type online social network in Slovakia. It has

connected more than 1.6 million users and the craze has been continuing even after the

emergence of Facebook. An in-depth understanding of Pokec is necessary to evaluate current

systems, and to understand the impact of social networks on the Internet. The dominant

users in Pokec are ordinary individuals, and there also exists some official accounts of gov-

ernments, enterprises, media, and other celebrities. It provides a platform for individuals

to extend and maintain social relationships with others sharing similar interests, and for

institutions to make announcements and put advertisements to the public. The raw data

extracted by [44] contains the profiles of 1,632,803 users and 30,622,564 directed binary rela-

tionships of the whole platform. By using yij = 1 to represent the status of user vi following

user vj, we can estimate the empirical probability P̂ðyij ¼ 1Þ ¼ 1:149 � 10� 5, thus the

directed network is extremely sparse. In addition, the maximum of out-degrees is only 8,763,

and that of in-degrees achieves 13,733. Actually, most of the hubs with huge amounts of fol-

lowers are official accounts of media or companies which conduct propaganda through the

network.

To adapt this network to the proposed PHLSM model, we draw a sample by randomly

selecting 5 popular users and establish a subnetwork using their followees. After eliminating

nodes with missing attributes, the final sample size of our subnetwork is n = 695. The logarith-

mic complementary CDF of node degrees are presented in Fig 6. The outliers in tails corre-

spond to the popular hubs selected for the sample network (two of them have the same in-

degrees). As can be observed, although both degrees are approximately power-law (ignoring

the non-linear head), the range of in-degrees is actually larger than that of out-degrees. The

absolute slope of the linear part, namely the exponent θ in (18), is steeper for out-degrees than

in-degrees. That means the tail of in-degree distribution is fatter and exists more users with

either extremely small or extremely large in-degree. Furthermore, the empirical link probabili-

ties of this subnetwork are P̂ðyij ¼ 1Þ ¼ 0:0106 and P̂ðyijyji ¼ 1Þ ¼ 0:0077, indicating the

sparsity of network. Taking vj� as celebrities, the empirical reciprocity conditional probabilities

are P̂ðyji ¼ 1jyij ¼ 1Þ ¼ 0:7293 and P̂ðyj� i ¼ 1jyij� ¼ 1Þ ¼ 0:3549. To this end, we regard the

subnetwork sample as a semi-SFN and thus employ PHLSM for node representations and link

predictions.

The full user profiles of the Pokec data contain 60 user attributes, including user id, gender,

region, all friendships public or not, completion percentage of the user file, time the user last

logged in, time the user registered, age, and other notes free fillable for users. Due to the severe

missing of the user profiles, we only take 4 attributes into our model, namely gender (binary),
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region (categorical), age (continuous), and registration time (continuous). To be specific, the

regions are categorized at state (in Slovakia) or country (out of Slovakia) level, and any sample

with zero age are identified as missing and deleted. We then propose to estimate

log oddsðyij ¼ 1jZ;X;YÞ ¼ 1þ b1genderij þ b2regionij þ b3ageij þ b4timeij �
kzi � zjk

gj
;

where yij = 1 if user vj is a friend of vi (but user vi is not necessarily to be a friend of vj), Θ = {β,

γ, σ2, τ2} is a collection of parameters. The continuous and discrete attributes are respectively

processed according to (3) and (4).

We run 100,000 iterations, including 30,000 for initial burn-in and 70,000 for monitoring.

The trace plots for parameters β and σ2 are given in Fig 7. Posterior estimates of parameters

are b̂1 ¼ 0:438; b̂2 ¼ � 0:786; b̂3 ¼ � 1:089; b̂4 ¼ � 0:169. Typically, there should exist

homophily relationships, that is, nodes sharing similar attributes are more likely to form ties.

In this experiment, results of b̂2, b̂3 and b̂4 suggest that the region, age and registration time

are homophily attributes, where the last exerts slight effects. On the other hand, the result of b̂1

indicates that the gender attribute presents heterophily characteristic, which means in an aver-

age sense users with different genders tend to be more intimate. It is reasonable for such results

since people are usually more interested in the opposite sex during social activities. Neverthe-

less, those from vicinal regions or with similar ages are more probable to share common topics

and become friends.

Our models (with and without covariates) are compared to DLSM proposed by [26]. Specif-

ically, we simplify the dynamic approach to fit a static network by ignoring the time t for each

Fig 6. Complementary CDF of node degrees for the Pokec sample network. The solid lines are fitted by scatters

excluding non-linear parts at the heads and outliers at the tails.

https://doi.org/10.1371/journal.pone.0253873.g006
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latent position, and the covariates are involved in the same way as in PHLSM, given as

log oddsðyij ¼ 1jZ;X;YÞ ¼ b1genderij þ b2regionij þ b3ageij þ b4timeij

þbinð1 �
kzi � zjk

rj
Þ þ boutð1 �

kzi � zjk

ri
Þ;

where Θ = (β, βin, βout, r) and r = (r1, . . ., rn) is a node-specific influence factor. Experimental

results are reported in Table 6. ROC curves of the three models are depicted in Fig 8. Intui-

tively, introducing the node attributes can dramatically improve prediction accuracy, such as

TPR and AUC, and our model performs better than DLSM for fitting the semi-SFN over all of

Fig 7. Trace plots for parameters fitting the Pokec subnetwork.

https://doi.org/10.1371/journal.pone.0253873.g007

Table 6. Predictive results for the Pokec subnetwork.

No covariates PHLSM DLSM

TCR 0.909 0.923 0.912

TPR 0.770 0.875 0.853

FPR 0.089 0.076 0.088

AUC 0.840 0.900 0.882

https://doi.org/10.1371/journal.pone.0253873.t006
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the four predictive indices. For inference, PHLSM iterates less than 10,000 times for the Mar-

kov chain to reach convergence, as is shown in the trace plots (see in Fig 7), while DLSM iter-

ates more than 60,000 times for convergence. The running time for estimating PHLSM using

the MCMC algorithm with 100,000 iterations is 5.48 hours in R on a 2.6 GHz processor, and

that for DLSM is 6.34 hours, due to the more parameters to estimate.

Twitter ego-network data

Almost everyone encounters hundreds or thousands of people since childhood, but the num-

ber of friends that can be keep in touch simultaneously is very limited. Anthropologist Dunbar

points out that there is an upper limit to the ability of human beings to maintain social rela-

tions, which is about 150 [45]. This upper limit is determined by the physiological characteris-

tics of primates. Recent studies have shown that the upper limit has not been breached because

of the higher communication efficiency, such as mobile phones, social networking sites (for

instance see [46]). Regarding a person (ego) and his/her friends as nodes and the friendships

between this person and his/her friends as edges, we can get an ego-centered network, or more

briefly, an ego-network. Ego-networks are very important in anthropology. They are not only

helpful for the detailed study of individual characteristics, but also can be extended to the

study of the structure and function of social networks.

In this example, we consider 3 sets of ego-network data crawled in Twitter [47], with 28, 10

and 12 users respectively. In each ego-network, the users are in a relatively close relationships

due to the small circle size, and the ego is assumed to be followed by every other users in the

circle. However, users from different ego-networks are barely connected, giving rise to a classi-

cal community structure of social networks. It is inappropriate to apply the original PHLSM

here because the egos can only be considered as hubs in their own circles, rather than global

hubs. To accommodate our model in such clustering networks, we refer to [24] and assume

the latent positions to be drawn from a mixture multivariate Normal distribution, described as

zi �
XG

g¼1

dgN2ðmg; s
2

gI2Þ; ð21Þ

where G is the number of clusters and is 3 in this example, δg is the prior probability for node

Fig 8. ROC curves for models fitting the Pokec subnetwork.

https://doi.org/10.1371/journal.pone.0253873.g008
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vi belonging to cluster g, and μg, s2
g denote the mean and variance of each cluster. The posterior

probability of clustering labels is then given as

Pðki ¼ gjZ; dg; mg ; s
2
g ; � � �Þ ¼

dg fN2ðmg ;s
2
g I2Þ
ðziÞ

PG
h¼1
dhfN2ðmh ;s

2
hI2Þ
ðziÞ

;

where ki denotes the clustering label of node vi. The prior distributions for δg, μg, and s2
g are

chosen as conjugate priors, corresponding to Dirichlet, Normal, and Inverse Gamma distribu-

tion respectively.

One more thing to be mentioned is the recognition problem, which is so called the “label

switching” problem [48], the mixture model is insensitive to the order of clustering labels,

because the likelihood of (21) is the same for all permutations of labels. In this example we

post-process the MCMC posterior samples by selecting a permutation of clustering labels to

minimize the Kullback-Leibler divergence. See [24] for more details.

The node attributes are the hashtags (#) and mentions (@) extracted from each user’s

tweets. In this experiment we totally take 112 attributes into consideration, each of which is a

binary feature, representing whether the user’s tweets include a particular hashtag or mention.

In practice, it is reasonable to conjecture that most of the features are insignificant, thus a

sparse model should be proposed via the LASSO-based PHLSM. To evaluate the feature

screening and link prediction of the proposed models, we also fit the ridge PHLSM and obtain

a full model, that is, all covariates are retained in the model. Both proposed models are modi-

fied by transforming the latent position prior to a mixture Normal distribution to accommo-

date the community structure.

To estimate PHLSM, we perform the proposed MCMC algorithms with 60,000 iterations,

still 10,000 for initial burn-in and 50,000 for monitoring. Finally 7 significant features are

selected in the sparse model, listed in Table 7. It seems that Twitter topics of greatest interest

are distracted driving, photos and ttot.

Cumulative mean plots for all regression coefficients and tuning parameters are depicted in

Fig 9. Results of link prediction are reported in Table 8. As comparison, we also fitted the latent

cluster random effects model (LCREM) proposed by [25], which incorporates the degree het-

erogeneity by adding node-specific random terms to the log odds. It can be demonstrated that

the predictive results are very similar for the two forms of PHLSM, but the sparse model only

includes 7 covariates, which is much simpler than the full version with 112 covariates. Such

results can reflect superiority of the LASSO method for feature screening. On the other hand,

LCREM shows poor performance, especially for predicting the true positive entities. ROC

curves of the three models are presented in Fig 10.

Table 7. Significant attributes selected for the Twitter data.

content type parameter estimates

#distracteddriving hashtag -0.7309

#photos hashtag 4.1559

#ttot hashtag 1.7596

@Smithsonian mention -0.0644

@klout mention 3.5662

@sesamestreet mention -0.0414

@weatherchannel mention 2.5561

https://doi.org/10.1371/journal.pone.0253873.t007
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Fig 9. Cumulative mean plots of MCMC posterior samplesfor model parameters in fitting the Twitter ego-

network. (a) Covariate regression coefficients b̂k; (b) Tuning parameters l̂k.

https://doi.org/10.1371/journal.pone.0253873.g009
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Directed graph for the fitted ego-network are reported in Fig 11. The circles are located

based on the estimated latent positions, and the directed edges denote the true relations of

users. The colors and sizes of circles denote the true user clustering labels and estimated pop-

ularity scales respectively. Specifically, most of the popular users, denoted in large sizes, con-

centrate near the center of a community, while those on borders only have few followers,

denoted in small sizes. In addition, the latent positions from different communities are sepa-

rated clearly, suggesting the importance of community detection in fitting such multi-ego-

networks.

Conclusions

This paper introduces the penalized homophily latent space models for directed social net-

works. The proposed Bayesian inferential approaches achieve superior performances in fitting

two real data examples. Typically, the proposed models accommodate typical network proper-

ties, such as reciprocity and transitivity within the LSM framework. The first major innovation

of the proposed methods is to improve extensive applicability and predictive accuracy by intro-

ducing pairwise node attributes. Besides, the popularity scales are also considered to involve

the heterogeneity of node in-degrees. The model performs well for node representation and

link prediction for semi-SFN. An alternative approach for network visualization is yielded,

which can reflect the social relationships among individuals, as well as their popularity in a

social network. For model evaluation, we compare our models with other network modeling

frameworks such as DLSM. It appears that our models, with a more concise form and less

computation costs, outperform the state-of-the-art approaches.

Table 8. Predictive results for the Twitter ego-network.

Sparse Model Full Model LCREM

TCR 0.8894 0.8894 0.9073

TPR 0.9213 0.9270 0.7921

FPR 0.1107 0.1111 0.0818

AUC 0.9053 0.9079 0.8552

https://doi.org/10.1371/journal.pone.0253873.t008

Fig 10. ROC curves for models fitting the Twitter ego-network.

https://doi.org/10.1371/journal.pone.0253873.g010
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