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Abstract: The usage of wearable gadgets is growing in the cloud-based health monitoring systems.
The signal compression, computational and power efficiencies play an imperative part in this sce-
nario. In this context, we propose an efficient method for the diagnosis of cardiovascular diseases
based on electrocardiogram (ECG) signals. The method combines multirate processing, wavelet
decomposition and frequency content-based subband coefficient selection and machine learning
techniques. Multirate processing and features selection is used to reduce the amount of informa-
tion processed thus reducing the computational complexity of the proposed system relative to the
equivalent fixed-rate solutions. Frequency content-dependent subband coefficient selection enhances
the compression gain and reduces the transmission activity and computational cost of the post
cloud-based classification. We have used MIT-BIH dataset for our experiments. To avoid overfitting
and biasness, the performance of considered classifiers is studied by using five-fold cross validation
(5CV) and a novel proposed partial blind protocol. The designed method achieves more than 12-fold
computational gain while assuring an appropriate signal reconstruction. The compression gain is
13 times compared to fixed-rate counterparts and the highest classification accuracies are 97.06% and
92.08% for the 5CV and partial blind cases, respectively. Results suggest the feasibility of detecting
cardiac arrhythmias using the proposed approach.

Keywords: multirate processing; selective subband coefficients; computational complexity; compression;
classification; electrocardiogram (ECG); machine learning; mobile healthcare; wavelet decomposition

1. Introduction

The electrocardiogram (ECG) signal contains essential cardiac functionality informa-
tion [1], therefore, the disorder in heart function can be diagnosed by a precise examination
of the ECG [2]. Heart disease is life threatening in nature [3] and early diagnosis and treat-
ment may save lives. The automated diagnosis of arrhythmia is based on the morphological
patterns and frequency content of ECG [4–6].

The ECG signal may be changed by interference and physiological artifacts, which
reduces the efficacy of the automatic diagnostic. Several signal processing techniques
have been used to address these limitations, such as wavelet transform [7], adaptive-rate
filtering [8], eigenvalue decomposition [9], extended Kalman filtering [10] and Fourier
decomposition [11]. To identify attributes that can help in automated diagnosis, the
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denoised ECG signals are analysed. Tunable-Q wavelet transform (TQWT) [12], wavelet-
based kernel principle component analysis [13], orthogonal wavelet filters [14], wavelet
packet entropy (WPE) [15], discrete wavelet transform (DWT) [16], short time Fourier
transform (STFT) [17], bispectrum [18] and Hilbert transform [19] are several widely
utilized feature extraction methods.

The timely diagnosis of arrhythmia conditions enables successful treatment of heart
failure. Patients with heart attacks, therefore, need constant monitoring. Hence, wearable
ECG sensors are useful in this scenario [20,21]. Continuous recording and analysis of
the multi-channel ECG signals is necessary to attain an accurate diagnosis. However,
this results in a large amount of data that needs to be processed and analysed. Manual
monitoring of such a large amount of data is not feasible. Therefore, automated ECG signal
processing and analysis approaches have been proposed [6,7,12,14–17,22–25]. In the event
of a poorly tolerated rhythm disorder, the type of arrhythmia should be diagnosed quickly
in order to start treatment as quickly as possible [6,7,12,14]. Depending on the type of
arrhythmia, several medications may be prescribed. Some mild arrhythmia types do not
require rapid treatment. Others can be treated with medication. When the case is serious
then other approaches can be used, such as pacemakers, cardiac defibrillation, and surgery.
However, similarities between different arrhythmia types can make the identification task
challenging for the medical experts and also for the automated ECG systems. In this context,
sophisticated signal conditioning, feature extraction and classification is commonly used in
the automated ECG analysis systems. In [6] Qaisar et al. used autoregressive Burg (ARB)
for features extraction. Onward, rotation forest (RoF) is used to recognise arrhythmia
based on these extracted features. In [7] Qaisar et al. used wavelet decomposition-based
subbands statistical features extraction approach with random forest (RF) for arrhythmia
classification. In [12] Jha et al. Used TQWT for features extraction and support vector
machine (SVM) for the arrhythmia classification. In [14] Sharma et al. used DWT with fuzzy
and Renyi entropy plus the fractal dimension approach for features extraction. They used
k-nearest neighbour (KNN) for the classification purpose. In [15], Li and Zhou have used
wavelet packet entropy (WPE) for features extraction and RF for classification of arrhythmia.
In [16] Gutiérrez-Gnecchi et al. have used the DWT based approach for feature extraction
and probabilistic neural network (PNN) for classification. In [17] Huang et al. have used an
STFT-based features extraction approach with a convolutional neural network (CNN) for
classification. In [22] Sahoo et al. used DWT with temporal and morphological approaches
for features extraction. They used SVM for the classification purpose. In [23] Yildirim used
DWT for features extraction with long short term memory (LSTM) for classification. In [24]
Hou et al. achieved features extraction by using LSTM-based auto-encoder (AE) network.
The SVM is used for features extraction. In [25] Anwar et al. achieved features extraction
by using a hybrid time-frequency analysis approach. The classification is carried out by
using a artificial neural network (ANN).

The realization of cloud-connected wireless ECG wearables is constrained due to
strict limits on the volume, weight and power consumption. Hence methods with signal
compression [20,21,26] irregular sampling [6,27] and adaptive rate processing [6–8] have
been conducted in this area. The low computational complexity approaches are required
for efficient wearable ECG gadgets and cloud-based mobile healthcare solutions.

In the context of cloud-based mobile healthcare, the aim of this work is to participate
in the realization of contemporary power and computationally efficient ECG wearables.
The contribution of this paper is proposing a novel and efficient, multirate processing
based, automated arrhythmia recognition approach. Moreover, a partial blind protocol is
suggested to evaluate the classification performance of the suggested method. The system
is realized by intelligently using the multirate ECG signal processing, QRS selection, lower-
taps FIR filter-based denoising, particular wavelet decomposition scheme-based feature
extraction, frequency content-based subband coefficient selection and robust machine
learning techniques. The functioning steps are presented below.
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(i). Multirate processing is used for computationally efficient system realization.
(ii). QRS selection is used to focus on the relevant signal part while avoiding the unwanted

baseline. It also enhances the system computational effectiveness.
(iii). Each selected QRS segment is filtered by using a multirate lower-taps FIR filter.
(iv). An effective wavelet decomposition scheme is proposed for subband extraction.
(v). A frequency content-dependent subband coefficient selection is performed to attain

the dimension reduction.
(vi). The performance of KNN, ANN, SVM, RF, decision tree (DT) and bagging (BG) is studied

for the automated recognition of arrhythmia by using the forehand selected features.
(vii). To avoid over fitting and any biasness, the classification performance is evaluated by

using the 5CV and a novel partial blind testing protocol.

2. Materials and Methods

Figure 1 demonstrates the proposed structure, where the proposed ECG front-end
processing blocks, embedded in wearables, are enclosed in the blue colour ‘....’ border. A
green colour ‘—’ border encloses the cloud computing module. The blue colour signal yn is
the input from the dataset [28]. The suggested processing steps are presented by the black
and green colour signals and blocks.
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Figure 1. The proposed system block diagram.

2.1. Dataset

The proposed solution is evaluated on the MIT-BIH Arrhythmia Database (MITDB)
available on PhysioNet. The database consists of multi-channel ECG recordings with
heartbeats annotated by cardiologists [28,29].

The analogue signal is digitized by using an 11-bit analogue-to-digital converter (ADC),
with a sampling frequency of 360 Hz. An antialiasing filter with a cut-off frequency of 60
Hz is used at the input of ADC. In this analysis, based on the availability of data in the
desired format, four major forms of arrhythmias are considered. These are normal signals (N),
right bundle branch block (RBBB), atrial premature complexes (APC) and left bundle branch
block (LBBB). These are clinically important categories of arrhythmia and are frequently
used for evaluating the automated arrhythmia classification techniques [6,7,14–17,22–24]. To
prevent any biasness, instances of every examined class are collected from multiple 30-min
duration ECG records. This allows studying the proposed system performance in case of
multiple patients, belongs to both genders male and female, and avoiding any over fitting
and biasness. Class N instances are extracted for three different subjects by using the 100, 106
and 112 records and respectively belong to a male of age 69 years, a female of age 24 years
and a male of age 54 years. Class RBBB instances are derived from 118, 124 and 212 records
and respectively belong to a male of age 69 years, a male of age 77 years and a female of age
32 years. The instances for the APC class are extracted from the 209, 222 and 232 records and
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respectively belong to a male of age 62 years, a female of age 84 years and a female of age
76 years. The instances for the LBBB class are extracted from the 109, 111 and 214 records
and respectively belong to a male of age 64 years, a female of age 47 years and a male of age
53 years. For each class, 510 instances are considered and 170 instances are collected for each
intended subject. This resulted in a dataset consisting of 2040 instances.

Classifiable features of each considered ECG instance are extracted by using a specif-
ically designed wavelet-based decomposition scheme (cf. Section 2.3). It generates the
subband coefficient feature set P1. Onward frequency content-based subband coefficients
are selected for an effective dimension reduction and it produces the feature set P2. Finally,
features set P1 and P2 are used as input of the considered classifiers.

2.2. Decimation with QRS Selection and Denoising

The functioning of traditional methods for digitizing and analysing ECG signals is
time-invariant [7,8]. Due to the static temperament, selection of the worst-case system
parameterization is necessary [8]. In the case of time varying ECG signals, this results in an
inefficient and computationally-complex realization.

In this framework, the digitized signal yn is firstly divided in fix-length windows, ywn.
According to the statistics of dataset [28], the average cardiac pulse duration for different
arrhythmia is 0.9 s. Therefore, the continuous ECG signals are split in segments of 0.9 s in
length, each consisting of Nr = 324 samples. It is attained by using a rectangular window
function [30]. Onward, each ywn is subsampled with a factor of D = 2 to obtain ydn = ywDn.
Aliasing can be caused by decimation without a prior anti-aliasing filtering [30]. An appropri-
ate selection of D, however, enables caring out the decimation without preliminary filtering
(which is computationally complex). In this situation, for this study the value of D should
adhere to the condition: D ≤ FS

FNyq
= 3. Here, FS = 360 Hz, FNyq = 2. fmax and fmax = 60 Hz

is the bandwidth of yn [28]. It demonstrates that for the selected D = 2, decimation does not
induce aliasing.

A heartbeat has three basic components, namely, QRS complex, T wave and P wave
(cf. Figure 2). The QRS complex contains pertinent information about the cardiac system
functionality and is used for the identification of arrhythmia [25,31]. Therefore, the QRS
selection process is performed on ydn to extract the QRS complexes, ysn. The process is
based on the principle of detecting R peaks and selecting a segment of 60 samples around
the R peak. The choice of 60 samples per segment is made to assure a proper segmentation
of QRS. According to [28], for different arrhythmia classes the QRS complex width is
limited to 250 ms. Therefore, the selection of 60 samples, around the R peak, at a sampling
rate of 180 Hz results in a segment length of 333 ms. This assures a proper QRS complex
selection for the considered dataset.
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The online selection of QRS complexes was implemented by thresholding the ECG
signal with a threshold α. The value of α is selected equal to 50% of the average R peak
amplitudes in the considered dataset [28]. The process is depicted with the help of Figure 2.
It shows that the incoming samples series of ydn is compared with α and on the detection
of α crossing the ith R peak is located by picking the maximum sample value on the leading
edge of R pulse. If the windowed and decimated signal crosses α then the ith QRS is
segmented and processed. On other hand, it is ignored and the upcoming α crossing is
considered as the ith QRS complex. The process continues for each window.

A low-pass finite impulse response (FIR) filter based on the Parks–McClellan algorithm is
used for denoising resulting in the removal of the muscle artifacts and power line interference
from the ECG signal [8]. The outcome of denoising is the efficient decomposition of subbands
and improved feature extraction and classification. The valuable spectrum of the ECG signal
is limited to 40 Hz [6]. Hence, a low-pass linear phase FIR filter with a cut-off frequency,
FC = 40 Hz, and sampling frequency of 180 Hz is implemented offline. For correct filtering,
the sampling frequency of the incoming signal and filter must be coherent [30]. In addition,
FC should be less than half of the sampling frequency of the signal [30].

The FIR filter orders are proportional to the operating sampling frequency for the
design parameters used, such as cut-off frequency, transition-band width, and pass-band
and stop-band ripples [32]. Therefore, the previous subsampling enables the denoted signal
xn to be efficiently achieved. It is by halving the number of samples to be processed firstly,
and secondly by using roughly a half-order FIR filter compared to the counter equals that
are built to work at FS = 360 Hz for the same specifications.

xn is further subsampled with D = 2 to obtain xdn = xDn. The choice of D = 2, for
the studied case, adheres to the condition: D ≤ Fs1

FNyq
= 2.25 and, thus, does not induce

aliasing. Here, Fs1 = 180 Hz, FNyq = 2. fmax f and fmax f is the bandwidth of xn and is
equal to FC = 40 Hz. This cascading step of second-level subsampling further decreases
the computational complexity of the system by reducing the amount of information to be
processed by the decomposition and dimension reduction stages.

2.3. Wavelet Decomoposition

The multi-resolution time-frequency examination of the non-stationary signals could
result in an efficient extraction of features [12,15,16,22,23]. In this context, the Wavelet Trans-
form (WT) is commonly adopted. It could be represented mathematically by Equation (1),
here s and u correspond to the dilation and the translation parameters respectively:

Wψ
x (u, s) =

1√
S

∫ +∞

−∞
x(t)ψ ∗

(
(t− u)

s

)
dt (1)

For digital signal examination the DWT (discrete time wavelet transform) is adopted.
Using half-band digital filters with subsampling with a factor of two, the decomposition
of subbands is achieved. Thus, in the proposed system each segment xdn is decomposed
by using the Daubechies algorithm-based wavelet. This makes it possible to extract the
subband coefficients, specifically approximation, am and detail, dm, coefficients at each
level, m. This process could be formulated mathematically by using Equations (2) and (3).
A fourth level of decomposition is achieved. Thus, m ∈ {1, 2, 3, 4}. g2n−k and h2n−k are,
respectively, the half-band low-pass and high-pass filters of length M + 1. Figure 3 further
clarifies this process.

am = ∑Kg
k=1 xdn.g2n−k. (2)

dm = ∑Kg
k=1 xdn.h2n−k. (3)
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2.4. Subband Coefficient Selection

According to studies presented in [25,33], it is clear that for arrhythmia classification
the ECG band of interest is between [0; 22] Hz. Therefore, the subband coefficients from dd4,
da4, ad4 and aa4 are selected. Each considered subband is composed of eight coefficients.
Therefore, in total, 32 features were employed to represent each selected segment. Each
selected segment is considered as an instance. To confirm the effectiveness of the subband
coefficient selection the classification performance is studied on two features set. The first
feature set is composed of all subbands, d1, d2, dd4, da4, ad4 and aa4 coefficients. It results
in 62 features per instance and results in a feature set P1 = 2040 × 62 for all considered
four-class arrhythmia instances. The second feature set is composed of selected subbands,
dd4, da4, ad4 and aa4. It results in a feature set P2 = 2040 × 32 for all considered four-class
arrhythmia instances.

2.5. Classification Methods

The classification algorithms used in this study are described in the following subsec-
tions. Algorithms were implemented to predict the right class for each datasets sample.
Before classification, a min-max scaler was applied to normalize feature ranges between
0 and 1. This operation is recommended and even mandatory for some classification
methods. Please note that all pre-processing, training, and testing operations were im-
plemented using Python and well-known data science packages, such as Pandas and
Scikit-learn. Empirical results were computed using a 16GB-RAM PC disposing of an Intel®

Core™ i7-8550U Processor. Hyperparameters tuning steps were explored to select optimal
hyperparameters for each classification algorithm and to prevent overfitting issues.

2.5.1. Artificial Neural Network (ANN)

ANNs are based on the concept of biological neural networks [34]. An artificial neuron
is the basic building block for ANN. ANNs rely on three simple operations which are
multiplication, summation and activation. Hence, ANNs are a set of linked input and
output units. The learning is accomplished by adjusting the weights of each link which
results in the classification of test data. The inherent parallel nature of ANNs can be used
to speed up the classification process.

The main advantage of ANNs is that they can learn and model the non-linear and
complex relationships among inputs and outputs. However, ANNs require large amounts
of data as the number of hidden layers increases.

In this case, standard multilayer perceptron (MLP) approach is adopted. Concretely,
two hidden layers—containing each almost 50 nodes for the reduced setting, and 90 nodes
for the full setting—have shown to be the best topology for the MLP architecture.
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2.5.2. k-Nearest Neighbours (k-NN)

k-NN is a simple classification method based on assumption that similar things are
located close to each other. Hence, k-NN looks for k number of samples (also known
ask-neighbours) nearest to the predicting sample. Each neighbour gets a chance to vote
for its class. The predicting sample is assigned to the most voted class [35]. The decision
is made based on distance metric. By determining the correct number for k, the optimal
classification result can be achieved. The main disadvantage of this method is the need to
determine the value of k. Different values of k are usually tested and the k value that gives
the least classification error is selected. For the KNN in our application, k values from 3 to
7 were tested and the best performance is obtained for k = 5.

2.5.3. Decision Tree (DT)

DTs provide an effective method of decision making. It is in the form of a tree
structure decision support tool that helps to classify the possible outcomes. There are
three types of nodes in DT which are root node, leaf node and decision node. Some
characteristics of the tree are verified at the root and at each internal node. As a result,
the classification of the instances continues down to each internal node based on the
value of the characteristic determined in the test. If a leaf, a node with a single incoming
edge, is reached then the classification is decided by its class [36]. The main advantage
of DT is that it can be visualized easily and is relatively simple to interpret. The DT
algorithm can classify both numerical and categorical data while other algorithms can only
handle one type of variable. DT has promising results in terms of minimum computation
time and thus considered reliable for real-time systems [36]. The C4.5 decision tree was
proposed by Ross Quinlan [37] and its rule generation has significantly sped up the training
procedure. One of the main drawbacks of DT classification is that over-fitting may occur
for a small dataset. For decision trees in our case, default parameters of the Scikit-learn
package are adopted based on their good performance. Those parameters are: criterion
of quality of split = “gini”; max_depth = None; min_samples_split = 2; min_samples_leaf
= 1; min_weight_fraction_leaf = 0; max_leaf_nodes = None; ccp_alpha = 0 (complexity
parameter of the pruning); min_impurity_decrease = min_impurity_split = 0.

2.5.4. Support Vector Machine (SVM)

SVM is a very commonly used supervised learning technique that constructs a hyper-
plane between the two different classes and tries to maximize the distance of each class from
the hyper-plane [38]. It uses various kernel functions (i.e., linear, non-linear, polynomial,
radial basis function (RBF) and sigmoid) to maximize the margins between the hyper-
planes, which allows solving many complex problems. It has less over fitting problems
than other methods. However, the main shortcoming is that SVM needs a large amount of
time to train the model if the dataset is large. It is also difficult to choose a proper kernel
function for SVM. In our case, the SVC algorithm is used for the SVM classification. SVC
stands for C-support vector classification and represents the implementation algorithm of
SVMs in Scikit-learn and LIBSVM [39]. A poly kernel of a degree = 3 is adopted, and a
value of 10 was found to be the best C parameter of the SVC algorithm.

2.5.5. Random Forest (RF)

RF is an ensemble learning method for classification which is based on building
multiple DTs to improve the results. Each tree is based on the values of an independently
sampled random vector. and all trees in the forest employ a similar distribution. The
classification error is a function of the accuracy of distinct trees [38].

An advantage of RF classifier is that it is “over-fitting” resistant. It also has less
variance as compared to DT. However, the construction of RF is more time consuming
as compared to DT. It also requires more computational resources due to its complexity.
Hence, the classification process of RF requires more time to complete [38]. That said,
random forest is part of the ensemble methods since it combines the results of several
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classifiers or estimators. In our implementation, the best number of estimators for the
random forest was 100.

2.5.6. Bagging (BG)

Bagging (BG) is a bootstrap aggregation of several classifiers or estimators. It is
considered as an ensemble meta-estimator. Bagging grows many estimators, and each
individual estimator is considered as a weak learner. However, when multiple estimators
are combined, they are considered as strong learners. Thus, multiple classifiers are allowed
to fit the training data so that any bias, such as over-fitting, and can be dealt with by using
the ensemble of the classifiers resulting in good classification results. This method works
well with imbalanced data [38], by reducing the variance and hence overfitting. In our
case, 10 SVC estimators were chosen for the bagging method. The SVM/SVC estimator is
adopted since the high observed performance of that algorithm as further described in the
results section.

2.6. Performance Evaluation Metrics
2.6.1. Compression Ratio

It estimates the performance of the proposed system in terms of the reduction in
quantity of information which is required to be transmitted and classified. The comparison
is achieved with the classical method of transmitting acquired ECG signals to the cloud
without making any dimension reduction and features extraction. In the classical situation,
every element of the dataset Pr is encoded using 11-Bit resolution [28]. Here, Pr is the
dataset, which has to be transferred and categorized for the classical case. In the proposed
solution each element in the selected features dataset P2 is encoded using 11-Bit resolution
as well. Thus, the compression ratio in Bits, RCOMP, may be computed using Equation (4):

RCOMP =
Pr

P2
(4)

2.6.2. Computational Complexity

It allows comparing the developed system performances with the fix-rate counter
equals in terms of the count of necessary basic operations like multiplications and addi-
tions [40]. The complexity of the processing chain at the front end is analysed in depth. In
order to accomplish the classification task, the difficulty of cloud-based classification is
evaluated by examining the time delay.

For the case of fix-rate counterpart the processing principle is shown in Figure 4. In This
case, yn is also windowed in to cardiac pulses of 0.9 s in length, each consist of Nr = 324 sam-
ples. It is attained by using a rectangular window function [30]. Compared with operations
such as additions and multiplications, the processing cost of this procedure is negligible [40].
Onward, each window is denoised by employing an FIR filter, operates at FS = 360 Hz. The
computational complexity of a Kr order FIR filter, while computing an output sample, is
Kr − 1 addition operations and Kr multiplication operations [30]. Then the denoising task
complexity for Nr samples could be given by Equation (5):

CFR−FIR = (Kr − 1)× Nr︸ ︷︷ ︸
Additions

+ Kr × Nr︸ ︷︷ ︸
Multiplications

(5)

Each denoised segment could be further divided into subbands by means of the 4th
level Daubechies wavelet packet decomposition. (cf. Figure 5). Let Kwd = M + 1 be the or-
der of FIR half-band filters, adopted during the subband decomposition task. Consequently,
the derivation of computational complexity, CFR−WD, of this process could be illustrated as
indicated by Figure 5. It demonstrates that, at the first step, two Kwd order half-band filters
are denoising 2. Nr samples. The filtered signals are then decimated by a factor of two.
By collecting the first sample, zero index, and then every indexed sample, it is realized. It
decreases by a factor of two the decimated signal sampling rate. The complexity of this
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decimation task is insignificant because no multiplication, addition, or split operations are
required [30,40]. In continuity of Equation (5), it is possible to define the complexity of the
first stage of decomposition as: (Kwd − 1)× 2× Nr︸ ︷︷ ︸

Additions

+ Kwd × 2× Nr︸ ︷︷ ︸
Multiplications

. Similarly, by counting

the number of multiplications and additions at 2nd, 3rd and 4th stages of decomposition,
the total computational complexity of the adopted wavelet decomposition task could be
described by Equation (6):

CFR−WD = (Kwd − 1)× (8× Nr + 28M)︸ ︷︷ ︸
Additions

+ Kwd × (8× Nr + 28M)︸ ︷︷ ︸
Multiplications

(6)
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For the implemented system, yn is initially subsampled and then ydn is segmented
into QRS complexes. This segmentation operation on average performs 80 magnitude
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comparisons per segment. Onward this segment is denoised by means of a FIR filter,
operates at Fs1 = Fs

2 = 180 Hz. Nd = 60 is the count of samples per segment, ysn. In this
case, the filter is designed for similar design parameters, used in the conventional case,
such as cut-off frequency and transition band. Therefore, its count of coefficients is half
as compared to the one designed to operate at Fs = 360 Hz. Let the order of denoising
filter is K in this case. Then it is related to Kr as: K = 0.5× Kr. Following Equation (5), the
complexity of denoising Nd samples by the K order FIR filter can be expressed by Equation
(7). In order to keep the complexity of the proposed system coherent with the traditional
one, it is assumed that the arithmetic cost of a comparison is equal to that of an addition.
Therefore this count of comparisons is added in the count of additions in Equation (7):

CP−FIR = (K− 1)× Nd + 80︸ ︷︷ ︸
Additions

+ K× Nd︸ ︷︷ ︸
Multiplications

(7)

For the devised solution, the denoised signal, xn is further subsampled. After this
2nd step of subsampling, every denoised segment is made of N = 30 samples. If Kwd is
the order of half-band FIR filters, used during decomposition process of the subbands,
then according to Equation (7) the computational complexity of this task, CP−WD, can be
formulated mathematically by Equation (8):

CP−WD = (Kwd − 1)× (3.75× N + 8M)︸ ︷︷ ︸
Additions

+ Kwd × (3.75× N + 8M)︸ ︷︷ ︸
Multiplications

(8)

The total computational complexity, CFR−Total , for the fix-rate front-end processing
chain, per window ywn, is derived by combining the operations count which are presented
in Equations (5) and (6). CFR−Total is given by Equation (9):

CFR−Total = (Kr − 1)× Nr + (Kwd − 1)× (8× Nr + 28M)︸ ︷︷ ︸
Additions

+ Kr × Nr + Kwd × (8× Nr + 28M)︸ ︷︷ ︸
Multiplications

. (9)

The total computational complexity, CP−Total , for the proposed front-end ECG pro-
cessing chain, per segment xsn, is derived by combining the operations count which are
presented in Equations (7) and (8). CP−Total is given by Equation (10):

CP−Total = (K− 1)× Nd + 80 + (Kwd − 1)× (3.75× N + 8M)︸ ︷︷ ︸
Additions

+ K× Nd + Kwd × (3.75× N + 8M)︸ ︷︷ ︸
Multiplications

(10)

2.6.3. Reconstruction Error

It allows quantifying the effectiveness of the adopted subsampling-based compression
methodology. In this context, recalculated versions of both compressed signals, ywn and xn
are produced using the 4th order cubic spline interpolation (CSI) [30]. Let yw∼n = yd n

2
and

x∼n = xd n
2

be, respectively, the recalculated versions of ywn and xn, then the reconstruction
error is calculated using MSE (mean square error). The MSE for each considered instance is
computed using Equations (11) and (12). In this context, MSE1 and MSE2 represent the
Mean-Square-Errors for the 1st and 2nd levels of the decimations, respectively.

MSE1 =
∑Nr

n=1(ywn − yw∼n )
2

Nr
(11)

MSE2 =
∑M=Nd

n=1 (xn − x∼n )
2

Nd
. (12)

2.6.4. Classification Evaluation

In terms of hardware simplicity, compression and transmission efficiency improve-
ments, the suggested solution appears promising. In terms of accuracy, however, it can



Sensors 2021, 21, 1511 11 of 22

lag. Thus, in terms of its classification precision, the effectiveness of the entire system was
investigated. The cross-validation model has been widely used in the literature [37,38] to
prevent any bias in evaluating the classification output due to the small dataset. In this
study, two approaches of cross-validation are implemented. The first approach represents a
classic 5CV. This type of approach is largely applied in previous works since its advantages
in treating over fitting issues [6,7,22,24,41]. The second approach relies on what we call
“partial blind testing” as shown in Figure 6. In this approach, the dataset samples are split
respecting different subjects between training and testing sets. Hence, samples used in
testing are mostly extracted from subjects not included in the training set. However, some
samples from testing subjects were intentionally injected into the training set. These sam-
ples do not exceed 29% of the available testing samples and of course were discarded from
the testing set. This operation is mandatory to homogenize signals and plays a calibration
role in helping the system to adapt to new subject’s signals. Note that cross-validation is
also applied for the “partial blind testing” protocol. The cross-validation folds are thus
equal to the number of subjects used in each dataset.

Sensors 2021, 21, 1511 12 of 23 
 

 

 
Figure 6. Example of one-fold (iteration) of the partial blind testing protocol. In this fold, the train-
ing set is composed of the first two subjects’ samples (blue and green subjects) plus a limited num-
ber of samples from the testing subject (red subject). The latter small part extracted from the test-
ing subject is important for calibration purpose. 

For classification evaluation, the following assessment criteria were used to prevent 
any prejudice in the results. 
Accuracy (Acc) 

Accuracy is the number of marks that have been classified correctly. Let TP, TN, FP 
and FN, respectively, in the expected labels, denote true positives, true negatives, false 
positives and false negatives. The mathematical model for Acc is calculated using Equa-
tion (13). The measurement of Acc results in a range between zero and one, with higher 
values indicating improved efficiency. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 +  𝑇𝑁𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁 (13)

F-Measure (F1) 
The F-measure (F1) tries to balance the recall and precision values. We typically talk 

about an F-measure micro (taking into account class sizes) or macro (without taking class 
size into consideration). However, because all groups in the considered case had the same 
data size, we simply employ the F-measure. Formally, the F-measure is given by Equation 
(14), where precision = ்(்ାி) and recall = ்(்ାிே): 𝐹 = ଶ∗௦∗௦ା   (14)

When computing the F1-measure in Scikit-learn, we adopted the micro-F1 variant. 
The “micro” variant globally computes rates by counting the total true positives, total false 
positives and total false negatives. In the multilabel case, when calculating the micro-pre-
cision (TP/TP + FP), the total number of false positives corresponds actually to the total 
number of classification errors. Similarly, when calculating the micro-recall (TP/TP + FN), 
the total number of false negatives also correspond to the total number of classification 
errors. As a result, the micro-precision is found to be equal to micro-recall, equal to micro-
F1 and equal to accuracy. On that basis, we chose to omit F1-score results and present only 
accuracy rates. 
Kappa Index (Kappa) 

The kappa is a commonly used statistical method for determining the agreement be-
tween the two effects of clustering. Typically, it is considered more rigorous than simple 
precision since it takes into consideration the probability of agreement by chance. The 
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samples from the testing subject (red subject). The latter small part extracted from the testing subject
is important for calibration purpose.

For classification evaluation, the following assessment criteria were used to prevent
any prejudice in the results.
Accuracy (Acc)

Accuracy is the number of marks that have been classified correctly. Let TP, TN, FP and
FN, respectively, in the expected labels, denote true positives, true negatives, false positives
and false negatives. The mathematical model for Acc is calculated using Equation (13). The
measurement of Acc results in a range between zero and one, with higher values indicating
improved efficiency.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

F-Measure (F1)
The F-measure (F1) tries to balance the recall and precision values. We typically talk

about an F-measure micro (taking into account class sizes) or macro (without taking class
size into consideration). However, because all groups in the considered case had the
same data size, we simply employ the F-measure. Formally, the F-measure is given by
Equation (14), where precision = TP

(TP+FP) and recall = TP
(TP+FN)

:

F =
2 ∗ precision ∗ recall

precision + recall
(14)
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When computing the F1-measure in Scikit-learn, we adopted the micro-F1 variant.
The “micro” variant globally computes rates by counting the total true positives, total
false positives and total false negatives. In the multilabel case, when calculating the micro-
precision (TP/TP + FP), the total number of false positives corresponds actually to the total
number of classification errors. Similarly, when calculating the micro-recall (TP/TP + FN),
the total number of false negatives also correspond to the total number of classification
errors. As a result, the micro-precision is found to be equal to micro-recall, equal to micro-
F1 and equal to accuracy. On that basis, we chose to omit F1-score results and present only
accuracy rates.
Kappa Index (Kappa)

The kappa is a commonly used statistical method for determining the agreement
between the two effects of clustering. Typically, it is considered more rigorous than simple
precision since it takes into consideration the probability of agreement by chance. The most
common version is the kappa measure of Cohen, which is expressed mathematically by
Equation (15):

kappa = 1− 1− p0

1− pe
. (15)

where p0 is the percentage of agreement, close to precision, between the expected and real
labels, and pe is the theoretical probability of a random occurrence of such a contract as
expressed by Equation (16):

pe =
(TP + TN)(TP + FN) + (FP + TN)(FP + FN)

(TP + TN + FP + FN)2 (16)

An ideal classification corresponds to kappa = 1, and in the case the classification is
simply induced by chance then we have kappa = 0.
Receiver Operating Characteristics (ROC) curves

The receiver operating characteristics (ROC) curves reflect the efficiency of a classifier.
It’s a two-dimensional graph in which the false positive rate is plotted on the x axis and the
true positive rate is plotted on the y axis. A high area under the ROC curve, referred as
AUC, better is the ability of the model for correct classification. Hence, the AUC ranges
in value from 0 to 1. A model whose predictions are all wrong has an AUC of 0, whereas
a model whose all predictions are correct has an AUC of 1.0. The ROC line depends on
the specifications of the test dataset under investigation. By using the cross-validation
methodology, this sample dependence can be minimized [42].

3. Results

The performance of suggested method is studied for the MIT-BIH arrhythmias
Database [28]. Figure 7 displays examples of pre-windowed signals of the considered ar-
rhythmias. The incoming signal, yn is divided in 0.9-s fix-length windows. An example of
the windowed signal ywn is shown in Figure 8a. It is a portion of record number 124 and
is a cardiac impulse from the class RBBB [28]. ywn is subsampled with a factor of 2. The
subsampled signal ydn is shown in Figure 8b. By comparing Figure 8a,b it is observable
that the first stage of decimation only removes the redundant information from ywn without
introducing evident modifications in it. Onward, QRS complex is segmented from ydn to
obtain ysn. ysn is shown in Figure 8c. Furthermore, ysn is denoised by using a prior-designed
45th order FIR low-pass filter with the cut-off frequency of FC = 40 Hz. The denoising en-
hances the signal-to-noise ratio (SNR) of the intended signal which results in a better features
extraction and classification [6]. The denoised signal xn is shown in Figure 8d. Before wavelet
decomposition, xn is further subsampled with a factor of 2 to obtain xdn, which is shown in
Figure 8e. This second stage of decimation further removes redundancy from xn and allows
achieving the wavelet decomposition operation with reduced computational complexity [7].
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Figure 8. Different front-end processing stages on a RBBB heartbeat, where the y-axis is the nor-
malized amplitude and x-axis is the time in seconds (a) an example of the windowed signal 𝑦𝑤; 
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The reconstruction errors for both subsampling based compression stages are com-
puted by using Equations (11) and (12). In this study four ECG classes are considered, each
with 510 segments or instances. Mean reconstruction errors obtained for 510 instances of
each class are summarized in Table 1. It shows that the average MSE1 for all classes is
32.514 × 10−6 V2 and the average MSE2 for all classes is 1.256 × 10−6 V2.
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Table 1. Mean reconstruction errors.

Class MSE1
×(10−6) V2

MSE2
×(10−6) V2

For All Classes
MSE1

×(10−6)V2

For All Classes
MSE2
×(10−6)V2

N 6.837 2.173

32.514 1.256
RBBB 82.765 1.832
APC 25.691 0.202
LBBB 14.762 0.816

After the second level of subsampling, each segment, xdn, is decomposed into sub-
bands by using a 4th level proposed wavelet decomposition scheme. Fourth-order half-
band FIR analysis filters are employed in this framework. This allows extracting the
pertinent features from xdn. Examples of subband coefficients, obtained by applying the
proposed wavelet decomposition scheme for the aforementioned cardiac impulse from the
class RBBB, are shown in Figure 9.
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Figure 9. Example of subband coefficients of a RBBB QRS complex segment, where the y-axis is the
normalized amplitude and x-axis is the number of coefficients. (a) shows coefficients of the subband
d1, (b) shows coefficients of the subband d2, (c) shows coefficients of the subband dd4, (d) shows
coefficients of the subband da4, (e) shows coefficients of the subband ad4, and (f) shows coefficients
of the subband aa4.

The online subsampling results in signal denoising, decomposition and dimension
reduction with a reduced computational cost when compared with the fix-rate coun-
terparts [12,14–17,22,23]. In fix-rate counterparts the x(t) is acquired and processed at
FS = 360 Hz. In this case, ywn is denoised by using a prior-designed 91st-order FIR
low-pass filter with cut-off frequencies of FC = 40 Hz. For each window, it renders
Nr = 324 samples for a given time-length of 0.9-s. Each denoised segment is decomposed
into subbands by using a 4th-order half-band FIR analysis filters based4th level wavelet
packet decomposition.

Computational effectiveness of the suggested processing chain over the fix-rate coun-
terpart is computed by using Equations (9) and (10). Compared to the fix-rate counterparts,
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it brings the 12.2-fold 12.4-fold reduction, respectively, in terms of count of additions and
multiplications of the suggested solution.

From Figure 1, it is evident that the proposed system operates at multirates. It is
attained by effectively incorporating two cascaded stages of decimation in the system.
Each stage introduces a subsampling with a factor of 2. Additionally, QRS complex
segmentation allows focusing on the concerned cardiac pulse portion. After suggested
wavelet decomposition scheme we obtained 62 features per instance and results in a feature
set P1 = 2040 × 62 for all considered four-class arrhythmia instances. After subband
features selection module, the selected features set P2 = 2040 × 32 is obtained. In the
traditional fix-rate counterpart without subbands selection, the 4th level wavelet packet
decomposition results 416 subband coefficients per instance. Therefore, it results in a
feature set of Pr = 2040 × 416 dimension. By using Equation (4), the compression gain of
the suggested method is computed. It brings the 13-fold diminishing in the volume of
information to be transmitted and processed by the post cloud server-based application
compared to the fix-rate classical counterparts.

To demonstrate the benefit of proposed dimension reduction approach, the classifica-
tion results obtained for the case of features set P2 are compared with ones obtained for
the features set P1. Six classifiers are applied to our datasets settings using the 5CV and the
partial blind testing protocol (partial blind). These classifiers are based on ANN, KNN, DT,
SVM, RF and BAG. All results are detailed in the following tables.

Tables 2–4 present all evaluation metrics showing high-performance rates for all
proposed classifiers. For the 5-fold cross validation protocol, the best accuracy rate was
97.35% obtained by the RF classifier for P1. The confusion matrix of that result is presented
in Table 5. Similarly, the RF classifier obtained the best Kappa rate (96.47%) and the best
AUC rate (99.86%).

Table 2. Accuracy of different classifiers for arrhythmia classification in the two proposed protocols.

Accuracy

Protocol 5CV Partial Blind

Classifier/Dataset P1 P2 P1 P2

ANN 96.62 (±0.81) 95.83 (±1.18) 91.60 (±3.14) 92.08 (±2.30)
KNN 96.37 (±0.57) 96.27 (±0.42) 91.32 (±2.35) 90.07 (±2.15)

DT 95.34 (±0.79) 93.92 (±0.95) 87.08 (±4.34) 85.00 (±4.09)
SVM 96.76 (±0.84) 97.06 (±0.89) 91.67 (±1.48) 90.62 (±2.67)
RF 97.35 (±0.72) 96.91 (±0.50) 92.99 (±1.39) 91.60 (±0.20)

BAG 96.96 (±0.92) 96.52 (±1.32) 90.00 (±3.58) 90.35 (±1.75)

Table 3. Kappa results of different classifiers for arrhythmia classification in the two proposed protocols.

Kappa

Protocol 5CV Partial Blind

Classifier/Dataset P1 P2 P1 P2

ANN 95.48 (±1.08) 94.43 (±1.58) 88.80 (±4.18) 89.44 (±3.07)
KNN 95.16 (±0.76) 95.03 (±0.56) 88.43 (±3.13) 86.76 (±2.87)

DT 93.78 (±1.05) 91.89 (±1.27) 82.78 (±5.79) 80.00 (±5.46)
SVM 95.68 (±1.12) 96.07 (±1.19) 88.89 (±1.98) 87.50 (±3.56)
RF 96.47 (±0.96) 95.88 (±0.68) 90.65 (±1.85) 88.80 (±0.26)

BAG 95.94 (±1.24) 95.35 (±1.76) 86.67 (±4.78) 87.13 (±2.33)
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Table 4. AUC results of different classifiers for arrhythmia classification in the two proposed protocols.

AUC

Protocol 5CV Partial Blind

Classifier/Dataset P1 P2 P1 P2

ANN 99.67 (±0.15) 99.50 (±0.19) 98.83 (±0.66) 97.90 (±0.47)
KNN 99.37 (±0.22) 99.21 (±0.37) 98.30 (±0.47) 97.78 (±0.66)

DT 96.90 (±0.55) 95.99 (±0.60) 91.39 (±2.90) 90.00 (±2.73)
SVM 99.55 (±0.23) 99.49 (±0.26) 98.88 (±0.35) 97.62 (±0.58)
RF 99.86 (±0.08) 99.77 (±0.10) 99.51 (±0.24) 98.84 (±0.17)

BAG 99.79 (±0.09) 99.69 (±0.16) 99.15 (±0.55) 98.33 (±0.29)

Table 5. Confusion matrix for the RF classifier applied to the P1 dataset within the 5CV protocol
(Accuracy = 97.35%).

RF (P1−5CV)
Predicted

N RBBB APC LBBB

Actual

N 498 1 4 7

RBBB 3 501 0 6

APC 24 1 481 4

LBBB 3 0 1 506

Comparing the two datasets results (P1 and P2), the full setting (P1) shows to give
slightly higher performances almost for all classifiers and metrics. For instance, for P2, the
best accuracy rate was 97.06% obtained by the SVM classifier. The corresponding confusion
matrix is shown in Table 6. The best kappa rate was 96.07% obtained by SVM, and the best
AUC rate was 99.77% obtained by RF. These observed slight differences between the two
settings results consolidate the robustness of the proposed dimension reduction approach.

Table 6. Confusion matrix for the SVM classifier applied to the P2 dataset withinthe 5CV protocol
(Accuracy = 97.06%).

SVM (P2−5CV)
Predicted

N RBBB APC LBBB

Actual

N 494 1 10 5

RBBB 2 504 0 4

APC 22 3 482 3

LBBB 5 2 3 500

Moreover, for the 5CV protocol, besides RF and SVM which seem to be respectively
the best classifiers, the BAG method has led also to quite interesting rates. For instance, for
the full setting, the BAG classifier results were 96.96%, 95.94% and 99.79%, respectively
for accuracy, kappa and AUC rates.

For the partial blind, the best accuracy rate was 92.99% obtained by the RF classifier
for P1. The confusion matrix of that result is presented in Table 7. Furthermore, the RF
classifier obtained the best Kappa rate (90.65%) and the best AUC rate (99.51%).



Sensors 2021, 21, 1511 17 of 22

Table 7. Confusion matrix for the RF classifier applied to the P1 dataset within the partial blind
testing protocol (accuracy = 92.99%).

RF (P1−Partial Blind)
Predicted

N RBBB APC LBBB

Actual

N 333 3 21 3

RBBB 9 332 14 5

APC 26 1 327 6

LBBB 1 0 12 347

Similarly to the 5CV protocol, when comparing the two datasets results (P1 and P2)
within the partial blind, the full setting (P1) presents slightly better performances and
demonstrates the efficiency of the feature reduction approach. For instance, for P2, the best
accuracy rate was 92.08% obtained by the ANN classifier. The corresponding confusion
matrix is shown in Table 8. The best Kappa rate was 89.44% obtained by ANN and the best
AUC rate was 98.84% obtained by RF. Overall, besides RF and ANN classifiers, the SVM
and the BAG classifiers have also shown high performances for all evaluation metrics in
the Partial Blind.

Table 8. Confusion matrix for the ANN classifier applied to the P2 dataset within the partial blind
testing protocol (accuracy = 92.08%).

ANN (P2−Partial Blind)
Predicted

N RBBB APC LBBB

Actual

N 315 4 40 1

RBBB 7 338 10 5

APC 28 0 328 4

LBBB 1 9 5 345

Considering the two different protocols, although the 5CV protocol shows to secure
higher rates (92.08% vs. 97.06% for accuracy, 89.44% vs. 96.07% for kappa and 98.84% vs.
99.77% for AUC), the partial blind still gives high-performance results and presents a solid
approach for implementing efficient arrhythmia classification systems.

Moreover, confusion matrices shown in Tables 5–8 further emphasize the effectiveness
of our models for all classes and both protocols. However, among all classes, the APC
class in particular seems to have higher false negative predictions. For P1-5CV and P2-
5CV, among the 510 APC instances 24 and 22 were respectively predicted as normal (N).
However, no particular issue is observed when predicting the N class for the P1-5CV case.
For the P2-5CV case, among the 510 Normal (N) instances10 were respectively predicted
as APC. For P1-partial blind and P2-partial blind, among the 360 APC instances 26 and 28
were respectively predicted as normal (N), and reciprocally 21 and 40 from the 360 normal
samples, were respectively predicted as APC. This confusion between these two particular
classes suggests investigating further feature extraction methods in future work in order to
get new features having more discriminated representation especially for these two classes.

To summarize, considering the two different protocols, although the 5CV protocol
shows to secure higher rates (97.35% (±0.72) vs. 92.99% (±1.39) for P1 and 97.06% (±0.89)
vs. 92.08% (±2.30) for P2), the partial blind still gives high-performance results and present
a solid approach for implementing efficient arrhythmia classification systems. In addition,
as expected, higher standard deviations were observed for the Partial Blind testing protocol,
especially for the accuracy metric. This is explained by the intrinsic nature of the used
protocol in preparing training and testing data. In fact, in the 5CV protocol, data were
randomly divided resulting in very close and homogenous splits. In the partial blind, splits
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were structured based on different subjects resulting in sparser and more heterogeneous
splits, which affected the variance of the classification results.

More generally, the decrease of performance observed for the proposed, partial blind,
protocol can be explained by two facts. On the first hand, for the classic cross validation
protocol, patients’ samples were pseudo-randomly distributed between training and testing
sets, which makes the system less sensitive to underfitting issues. On the other hand, for the
partial blind, considering a testing patient, just a few samples of its instants were included in
the training process, which makes the system more sensitive to overfitting issues.

Therefore, between classic cross-validation and a total blind testing protocol, the
“partial blind” represents a good compromise in terms of efficiency and generalization.
Concretely, the “Partial Blind” can be implemented in a real-world application with a
minor intervention of medical experts. Actually, when the system is configured for a
new patient, the cardiologist should manually label few samples in order to calibrate the
machine for that new patient. This operation is required only once especially during the
first examination of the patient and onward system can operate autonomously.

From the above discussion and for all studied cases, we can conclude that RF, SVM,
BAG, and ANN classifiers show to be the best arrhythmia classification methods. Overall, the
presented evaluation metrics demonstrate the effectiveness of multirate processing and feature
extraction processes as well as the relevance of our classification protocols and approaches.

4. Discussion

The developed solution’s attractive features are evident from the results described in
Section 3. It is realized by intelligently achieving the multirate processing of ECG signals,
effective decomposition of subbands and the selection of attributes based on frequency
content. Online decimation prevents the processing of unwanted data points and enables
denoising of the signal with a lower order filter compared to the one adopted for fix-rate
counterparts. According to Zhang et al. [43], the sub-bands derived by any level of wavelet
decomposition could be considered functions of the incoming signal sampling frequency.
Fs2 = FS1

2 = 90 Hz presents the denoised and decimated segment, xdn, frequency contents
in a better fashion than FS. Therefore, compared to the fix-rate counterparts [12,14–17,22,23],
it offers better performance in terms of subband focus and computational complexity while
performing the subbands decomposition. All in all, the planned front-end processing chain
achieves more than 12-fold benefit in additions and multiplications compared to the fix-rate
counterparts in the studied case.

The error caused by the adopted subsampling processes is measured in terms of
RMSD. It is obvious from Table 1 that the compression based on subsampling causes only
slight alterations in the original signal and does not create any major loss of information.

In the traditional case, the standard 4th level decomposition based on the wavelet
packet reproduces 416 subband coefficients. In our case, its dimensionality is decreased
to 32 coefficients after selected subband coefficients are extracted. Indeed the selection of
features offers many benefits. Firstly, it enhances the bandwidth usage efficiency, compres-
sion ratio and transmission activity. In the considered case it resulted in RCOMP = 13-fold
for each instance. Compared to traditional fix-rate equivalents, this aptitudes the same
decreasing factor in data transmission operation, power consumption and bandwidth
utilization. In addition, the processing of 13-fold lower amount of data on the cloud side
promises a comparable advantage in terms of resource utilization during the classification
task. In addition, minor variations were found as compared to the different settings (i.e.,
complete features set P1 andreduced features set P2), consolidating the robustness of the
proposed feature selection method. For most of the intended classifiers, such as SVM, RF,
ANN and BAG, the attained classification accuracy is more than or at least equal to 95.83%
for the 5CV case and 90.35% for the partial blind. The highest attained accuracies for the
case of P2 dataset are, respectively, 0.29% and 0.91% less than the highest attained accuracy
for the case of P1 dataset for 5CV and Partial Blind cases. It confirms the effectiveness of
proposed frequency content based subbands coefficients selection. It not only permits the
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post classifiers to attain a high accuracy but also promises a significant reduction in the
latency and computational load of classification process because it has to deal with a lower
dimension features set P2 in place of P1.

The suggested methodology is novel, and it is not straightforward to compare it with
current state-of-the-art methods since most of the experiments are focused on a fix-rate concept
of processing. In addition, diverse classification and ECG signal processing techniques are
used. However, a comparison between key previous studies using the same ECG dataset is
presented. The highest accuracies of classification for all considered studies are summarized
and compared in Table 9. It assures that, compared to previous equals, the suggested solution
secures an equivalent or better classification performance [12,14–17,22,23].

Table 9. Comparison with state-of-the-art methods.

Study Features Extraction Classification Method No. of Classes Accuracy (%)

[12] Tunable Q-wavelet
Transform (TQWT)

SVM
(36% training-64% testing split,

without blind testing)
8 99.27

[14]
DWT + Fuzzy and Renyi

Entropy + Fractal
Dimension

KNN
(CV) 5 98.1

[15] Wavelet Packet Entropy
(WPE)

RF
(Inter-Patient Scheme with CV) 5 94.61

[16] Discrete Wavelet
Transform (DWT)

Probabilistic Neural Network
(PNN)

(50% training-50% testing split,
without blind testing)

8 92.75

[17] Short Time Fourier
Transform (STFT)

Convolutional Neural Network
(CNN)

(80%training-20%testing split,
without blind testing)

5 99.0

[22] DWT + Temporal +
Morphological

SVM
(CV) 4 98.4

[23] DWT
Long Short Term Memory (LSTM)
(60% training-20% validation-20%
testing split, without blind testing)

5 99.4

[24]
LSTM-based

auto-encoder (AE)
network

SVM
(CV) 5 99.45

[25] DWT + RR Interval +
Teager Energy Operator

ANN
(CV) 5 99.75

This Study

Specific Wavelet
Decomposition Scheme +
Content based subbands

selection, [P2]

ANN
(Partial Blind) 4 92.09

Specific Wavelet
Decomposition Scheme +
Content based subbands

selection, [P2]

SVM
(5CV) 4 97.06

In carrying out the signal denoising and subband decomposition, the main benefit
of the proposed method over the previous fix-rate ones is to eliminate the unnecessary
samples and operations [12,14–17,22,23]. Compared to previous research, it secures real-
time compression and computational performance. In addition, the selection of content
dependent subbands promises an efficient data transfer with decreased post classification
complexity and latency. In addition, relative to the previous state of the art solutions,
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the suggested method secures comparable or greater classification accuracy. Due to the
computing efficiency and lower size of transmitted data while achieving high arrhythmia
classification accuracy, it is particularly beneficial for the realization of low-power ECG
wearable gadgets with cloud-assisted diagnosis.

5. Conclusions

In this paper a novel multirate processing chain is proposed for computationally effi-
cient arrhythmia classification. The proposed method avoids the processing of redundant
information while allowing the reconstruction of the signal with adequate precision. Hence
the computational complexity of the proposed solution is less than the fix-rate methods and
achieves more than 12-fold overall gain in additions and multiplications for the proposed
front-end processing chain. The proposed framework also benefits from the content-based
selection of subbands and has achieved a 13-fold compression gain over the traditional
methods. Results have shown that the dimension reduction method is also beneficial for
the post cloud-based classification module. It promises to augment its computational
effectiveness without significantly compromising the accuracy. For the studied cases, the
highest classification accuracy of more than 97% is achieved, which is equivalent, and in
some cases better, than the existing contemporary solutions. The major advantage of this
approach is its compression and computational benefits. Hence, the proposed multirate
processing chain can be incorporated in cloud-based mobile healthcare applications. A
future task is to enlarge the range of each tested hyperparameter while searching for the
best configuration of considered classifiers. Hopefully, it will improve the performance of
classification. Another axis to explore is the possibility of incorporating the deep learning
algorithms in the suggested approach.
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