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Emulated retinal image capture
(ERICA) to test, train and validate
processing of retinal images

Laura K. Young'*! & Hannah E. Smithson?

High resolution retinal imaging systems, such as adaptive optics scanning laser ophthalmoscopes
(AOSLO), are increasingly being used for clinical research and fundamental studies in neuroscience.
These systems offer unprecedented spatial and temporal resolution of retinal structures in vivo.
However, a major challenge is the development of robust and automated methods for processing
and analysing these images. We present ERICA (Emulated Retinal Image CApture), a simulation tool
that generates realistic synthetic images of the human cone mosaic, mimicking images that would
be captured by an AOSLO, with specified image quality and with corresponding ground-truth data.
The simulation includes a self-organising mosaic of photoreceptors, the eye movements an observer
might make during image capture, and data capture through a real system incorporating diffraction,
residual optical aberrations and noise. The retinal photoreceptor mosaics generated by ERICA have
a similar packing geometry to human retina, as determined by expert labelling of AOSLO images

of real eyes. In the current implementation ERICA outputs convincingly realistic en face images of
the cone photoreceptor mosaic but extensions to other imaging modalities and structures are also
discussed. These images and associated ground-truth data can be used to develop, test and validate
image processing and analysis algorithms or to train and validate machine learning approaches. The
use of synthetic images has the advantage that neither access to an imaging system, nor to human
participants is necessary for development.

Cellular-resolution imaging of the human retina in vivo has revolutionised retinal research, providing access to
structures and functional processes in the retina, and it is increasingly being used in clinical research'-%. Adap-
tive optics (AO) enabled vision research not only advances our fundamental understanding of the healthy visual
system, but it also provides a route to developing valuable cellular biomarkers of disease. However, as with many
biomedical imaging techniques, one challenge is the bottleneck imposed by the processing steps that are required
to generate high quality images and extract information from them. In this paper we present a tool for testing,
training and validating retinal image processing methods. Given the cellular-resolution that can be achieved
with the use of AO, any image processing and analysis methods should operate with similar or better precision
to fully utilise this capability. Furthermore, it is important to consider how the accuracy of the processing and
analysis methods that are used impacts the output measures.

The approach taken here is to use synthetic data generated from a physically plausible model of image capture,
which offers a number of advantages. Firstly, the properties of the simulated data capture can be systematically
manipulated to investigate the effects of different image characteristics (e.g. quality) on the outcome measures,
allowing us to understand the sources of error and to define tolerance limits. The parameters of the simula-
tion (e.g. the field of view, frame rate and pixel size) can also be adjusted to simulate different instruments and
investigate differences between systems. Secondly, a major advantage of using synthetic images is that they can
be generated (and labeled) more rapidly and reliably than can human-derived images. Simulation therefore
allows the production of the very large data sets that are typically required for machine learning approaches.
Finally, synthetic data sets allow image processing and analysis methods to be developed and tested without
needing access to a physical system, to human participants, or to experienced manual image graders. This more
easily opens up the image processing challenge to the computer vision community. We first briefly summarise
the technological advances in high resolution retinal imaging, then we introduce the data capture and image
processing pipeline, including current bottlenecks, and specific use-cases.
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Background. AO retinal imaging provides unprecedented opportunities for fundamental vision research®”.
By enabling finer spatial and temporal scale measurements, AO retinal imaging also offers the potential for
closer monitoring of disease®®. At present the most commonly used AO retinal imaging system is the adaptive
optics scanning laser ophthalmoscope (AOSLO)?, with AO flood illumination used by many groups, and AO
optical coherence tomography systems being rapidly developed and used. Pioneered by Roorda et al. in 2002'°,
the AOSLO generates images by raster-scanning a point source over an area of the retina and measuring the
reflected light after focusing it through a confocal pinhole. It is this type of system that we simulate in the cur-
rent work.

When combined with functional methods, such as single-cell stimulation', blood flow measurements'? or
recording intrinsic responses of individual photoreceptors'*>', the neurophysiology of the visual system can be
studied in fine detail. Combining AO retinal imaging with psychophysical approaches provides new capabilities
for studying visual perception on a cellular scale. An example relevant to the current work is the exploitation of
the motion distortions introduced by scanning during retinal imaging (with and without AO correction). This
allows measurement of the microscopic eye movements made during fixation to understand the role that they
play in spatial vision'*-%’. Furthermore, these distortions must be removed in order to register and average mul-
tiple frames and produce a high signal-to-noise ratio image. The robust collection of good quality data from AO
retinal imaging systems, as well as robust data processing automation, is clearly important for these applications.

AOSLOdataanalysis. Thereisadrivein the field to widen the adoption of AO retinal imaging instruments®,
but there are challenges that are still to be overcome. As an example, motion estimation relies on comparison
to a reference frame, which should have minimal motion* or an additional process should remove the error
introduced by motion distortions in the reference frame?**. After motion extraction, registration and averag-
ing, single images obtained at adjacent retinal locations are often stitched together to form a larger field of view
montage. Errors in motion extraction will propagate through to later image processing and analysis steps. For
example, Cooper et al.** showed that motion distortions in AOSLO images can affect the reliability and accu-
racy of cone mosaic metrics derived from those images, and this could have clinically-relevant implications.
The image processing and data extraction steps for AOSLO images often require some manual intervention,
such as manual reference frame selection or the manual labeling of cone cells. Automated and semi-automated
approaches for reference frame selection, motion extraction and registration®** and montaging®-° have been
described. Many automated and semi-automated methods*?**!-* as well as machine learning approaches®**’
for cone localisation have been, and continue to be, explored. Assessing the accuracy of image processing and
data analysis methods requires ground-truth data, which is difficult or often impossible to obtain from real
images captured through the imaging system. Another difficulty for machine learning approaches is that large
data sets are typically required for training and validation. Even with efficiency improvements, AOSLO data
capture with human participants and the manual generation of ground-truth data is time consuming.

Accuracy estimation using ground-truth data derived from real images is possible. Motion estimation accu-
racy has previously been assessed by imaging a model eye and introducing known or independently-measured
movements®®. Methods of cone identification have also been validated against semi-automated or manually
labeled images®®, though this is limited by the accuracy of the labels. A useful alternative approach is to use
synthetic images for which ground-truth data are specified. Such an approach has been demonstrated for testing
the accuracy of motion extraction from an AOSLO using synthetic data created by resampling real images®>®.
Synthetic images have also been used to test the accuracy of cone detection algorithms***! and, recently, to train
deep learning models for image enhancement*’. These approaches have generated synthetic retinal mosaics by
randomly placing cells** or by modifying a hexagonal packing matrix*"** but stop short of simulating the full
data capture pipeline.

ERICA. We present ERICA (Emulated Retinal Image CApture), the first end-to-end simulation of AOSLO
data capture generating a realistic output, with specified ground-truth data, comparable to the stream of images
obtained from human participants. ERICA has three main stages to generate fully synthetic images with plausi-
ble spatial and temporal structure:

1. A self-organising retinal cone mosaic generated with ground-truth cone locations, reflectances, sizes and
intensity profiles.

2. A simulation of eye movements added to the raster scan to create a spatio-temporal sampling pattern.

3. Image generation that replicates data capture through an AOSLO, including diffraction, noise and residual
wavefront error.

Image processing and analysis algorithms are commonly applied to images of the photoreceptor mosaic, though
approaches applied to split detection imaging have also been described***>#¢. ERICA generates images of the
cone mosaic, but we also suggest extensions to the simulation to include rods in the mosaic, to add blood ves-
sels and to emulate non-confocal imaging. It would also be feasible to extend the model to 3D imaging, based
on cellular-resolution retinal mapping in depth and an estimate of the 3D point spread function (PSF) of the
eye and optical system.
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Figure 1. A schematic representation of the three main stages of ERICA. First, a retinal mosaic (left) is
generated using reaction-diffusion modelling and the cone positions are extracted. Each of the N cones is
defined parametrically as a Gaussian blob with parameters j1, (vertical coordinate), i1, (horizontal coordinate),
oy (vertical width), oy (horizontal width), A (reflectance), and 6 (orientation), and these are saved in the retinal
mosaic parameter array. Second, eye position data are generated and added to the scan position data to define
how the retina will be sampled. Third, frames are generated, as described in Fig. 4, incorporating eye motion,
diffraction and residual optical aberrations (the PSF) and noise. The example on the left is a diffraction limited
image with no noise or eye motion and can be used as a ground-truth frame. The example on the right includes
plausible eye motion (drift and tremor, in this case), a realistic PSF based on aberration measurements*’, and
noise based on measurements through a real system.

Methods and technical detail

ERICA is written in the Python programming language*”* and operates in three stages, outlined in detail in the
following sections and summarised in Fig. 1. Firstly, a retinal mosaic is generated using a self-organising approach
and this defines the locations of cone cells (and thus provides the ground truth for cone localisation). The retinal
mosaic is then defined parametrically (location, size, shape and reflectance of each cone) and an image of the
ground-truth retina is generated based on these parameters. The second component of the model is a simula-
tion of the natural eye movements made during fixation. These movements are superimposed on the motion
of the raster scanning system to define a spatio-temporal sampling pattern. Thirdly, for each temporal sample,
the data capture through an AOSLO is modeled, including diffraction, optical aberrations and noise. Repeating
this data capture simulation for each retinal position sampled produces a temporal sequence, analogous to the
signals from a photodetector in an AOSLO, which can be processed as a synthetic frame. These procedures are
repeated for each frame and the output is a set of images (which can be converted to a video stream, if desired)
that approximate those captured from a human participant. Here we outline the current implementation of the
three main modules, but alternative approaches and extensions to the simulation can be implemented within
the ERICA framework.

Self-organising retinal mosaic. The first stage of the simulation is to generate a realistic mosaic of cone
cells. While such a synthetic mosaic has been generated by other means***43#50 our approach is to use a self-
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Figure 2. Self-organising mosaics generated using the Gray-Scott reaction-diffusion model. Panel (a) shows the
output of a 300 x 300 element system after 20,000 time steps with coefficients: D,, = 0.14, D,, = 0.06, f = 0.035,
k = 0.065. Panel (b) shows the output of a 300 x 300 element system after 60,000 time steps with coefficients:

D, = 0.14,D, = 0.4 x 1073r 4 0.04, f = 0.035, k = 0.065, where r is the radial coordinate of the system,
resulting in D,, = 0.04 in the centre and D, = 0.12 at the furthest edge of the array. The radial variation in the
spacing of the spots arises due to the radial variation in the diffusion coefficient. It should be noted that both
models were seeded with the chemicals initially in the centre, and, in (b), the simulation has been terminated
before the chemicals have diffused to the edge of the system so as to produce a circular, rather than square,
arrangement of spots for display purposes.

organising method based on reaction-diffusion modelling to define the layout of the cone cells. This method
generates a pseudo-hexagonal arrangement of cells without gaps or overlap and does not require a regular
mosaic as a starting point. Alternatively, due to the modular nature of ERICA, the user can specify their own
mosaic of cone cells simply by passing an array of horizontal and vertical positions, allowing other methods to
be integrated.

Cone locations. Reaction-diffusion systems model a process by which two chemicals (U and V) each diffuse
and react with one another. Such systems have been used to generate complex self-organising patterns, also
known as Turing patterns®, and have been offered as an explanation for the intricate pigmentation patterns
formed in the coats of animals, such as leopards. The Gray-Scott reaction-diffusion model is one approach for
generating these self-organising patterns and corresponds to the following irreversible chemical reactions that
produce an inert product P:

U+2V — 3V (1)

V—>P (2)

The model computes the concentrations, u and v, of the two chemicals U and V at each pixel location, iteratively
over a series of time steps using the following reaction-diffusion equations®

2
%:DuVu—uvz—i—f(l—u) (3)
av 2
R 2 _ 4
o7 DVVV—{—uv f + kv (4)

where D, is the diffusion coefficient for chemical V, D, is the diffusion coefficient for chemical U, fis the rate
at which chemical U is replenished (Eq. 1) and k is the rate at which the excess chemical V is removed (Eq. 2).
To produce a pattern of spots (visible as the final concentration of V) the following parameters can be used:
D, = 0.14,D, = 0.06,f = 0.035,k = 0.065 and an example of the output is given in Fig. 2. It is difficult to predict
the pattern that will be produced for a given set of coefficients and some combinations will produce unstable
outputs®2. However, such failures are obvious in the output as lines or stripes or as a failure to produce a mosaic.
Here we provide a recipe to produce cone layouts, based on extensive testing—changing D, while keeping the
other coefficients constant will produce round ’spots;, so long as D, is at least twice as large as D,. After a stable
pattern of spots is produced, a peak detection algorithm is then applied to the array (v) corresponding to the
final time step, to identify the centres of each of the spots. Since the spots produced are well-defined and very
high (and equal) contrast, these locations are easily and accurately extracted. It should be noted that the output
of the reaction-diffusion model is only used to generate the pattern of cone locations; the widths, contrasts and
intensity profiles of the spots are not used for image generation.

In the human eye, the spacing of the cone mosaic varies as a function of retinal eccentricity. The density of
cones, p, can be approximated from histological measurements® (raw data taken from®*) and the spacing, s,
calculated as>,
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In principle, the spacing between the spots in the reaction-diffusion model can be tuned through selection
of the appropriate diffusion coeflicients, namely D, and D,.. Furthermore, defining a radial variation in these
coeflicients can produce a foveated mosaic of spots (see Fig. 2b). In theory, this radial variation could be matched
to histological data to produce a full fovea by tuning the radial profile of the diffusion coeflicient, although this
is likely to be computationally expensive. Care must be taken when selecting the diffusion coefficients, since
the outcome (and its stability) will also depend on the coeflicients fand k. The size of the system must also be
taken into account to ensure that the sampling is sufficiently high for the spacing desired. For those reasons,
it is more efficient to alter the cone spacing by simply re-scaling a well-sampled and stable cell mosaic. This is
done within ERICA by generating a retinal mosaic (see Fig. 2a) over an extended bounding box, and scaling the
resulting cone positions such that the average cone spacing (determined by nearest neighbour analysis) matches
the histological data.

Cone reflectance profiles. Photoreceptors act as optical waveguides® and the number of guided modes (e.g.
linearly polarised, LP, modes) depends on the physical properties of the cell. We consider each cone to have
an intensity profile that can be approximated by a Gaussian function. Small cone cells close to the centre of
the fovea (approximately < 3°) act as single mode waveguides, and so this Gaussian model is reasonable. At
larger eccentricities, cone cells exhibit biomodal (beyond 7°) or multimodal (beyond 10°) profiles and so the
Gaussian approximation will be a less accurate representation as the support of higher-order modes results in
more complex intensity profiles®. If simulation of such profiles is required ERICA could be modified to include
higher-order modes in addition to the fundamental (Gaussian) mode, but clearly the modal composition should
be validated against human-derived images. Furthermore, a full model of the light propagation through cone
cells, including interference effects, that predicts the reflectance profiles seen in real AOSLO images has recently
been developed by Meadway and Sincich*%. Alternative models such as these could be used alongside the ERICA
framework and incorporated via a user-written function that is passed as an input to ERICA’s sampling function,
which would then call it.

Mosaic ground-truth data. An individual retinal mosaic is specified as an array of size N x M, where N is
the number of cones in the mosaic and M is the number of parameters defining an individual cone’s Gaussian
reflectance profile. As described above, cone locations extracted from the reaction-diffusion model are scaled so
that the spacing of the cells matches histological data for a given eccentricity. The sizes of the cells are specified
as the diameter of the first (Gaussian) mode of the cell, which is calculated via the Marcuse equation®® with the
cell’s radius determined from histological data®*®. Using the retinal mosaic module within ERICA it is possible
to generate these data simply by specifying the retinal eccentricity and the cone locations are scaled accordingly.
ERICA specifies the following parameters for each cone in the mosaic: (1) the vertical coordinate, 11, (2) the
horizontal coordinate, iy, (3) the vertical width, 5, (4) the horizontal width, oy, (5) the orientation, 6, and (6)
the reflectance, A. This parameter array represents the ground truth for the make-up of the synthetic retina.
All parameters can be defined by the user but by default the positions are determined by the reaction-diffusion
module, the width is determined using the Marcuse equation with cells being circular by default (o, = o;) and
the reflectance values are randomly selected from a normal distribution based on histograms computed for real
images. For cone reflectance, based on observations of real images, we additionally impose a low spatial fre-
quency variation, and this approach has been previously described by others*'. It is also possible to specify tem-
poral variations in the light reflected back from individual cones, such as might be seen on long time scales due
to bleaching or disc shedding or on short time scales due to stimulus-evoked intrinsic changes in intensity®'. In
this case, the reflectance is taken to be that at the time point when the simulated scanned beam reaches the cone.
Using this approach it is possible to define a retinal mosaic analytically as a sum of Gaussians for N cones,

N
R(x,y) = > Ajexp|—(a(x — prei)” +2b(x — 1)) (v — iyi) + (v — 1y, D)5 (6)
i=1

where

cos®(6;)  sin®(6;)
T T )

_ —sin(20;) | —sin(26;)
T 402 40),2 ’ ®)

sin®(0;)  cos?(6;)
€= 20,? * 20},2 ’ ©)

An analytic representation of the retina allows the AOSLO data capture, combining the scan pattern and
the motion of the eye, to be replicated without introducing sampling errors. In the case where we wish to also

Scientific Reports |  (2021) 11:11225 | https://doi.org/10.1038/s41598-021-90389-y nature portfolio



www.nature.com/scientificreports/

30
< )
e (] =3
s B — £
c 10 A 2 5 101
2 3 s
7 e < g
[o] (&) [}
a 04 &= s 04
Z = @
© o
9 o
5 -10- -101
2

-20 T T T T =20 T T T
-20 -10 O 10 20 30 0 1 2 3
Horizonal position (arcmin) Time (s)
e — S S— —y — X
0 1 2 3
Time (s)
a b c

Figure 3. An example three-second eye movement trace, showing three microsaccades interspersed with
periods of drift and tremor. Panel (a) shows the change in horizontal and vertical position over time, indicated
by the colour gradient from blue (o) to yellow (t3;). Panel (b) shows the horizontal (x; green) and vertical

(y; blue) components separately. A movie showing a synthetic retina undergoing this motion is given in the
supplementary materials S1. Panel (c) shows frame 30 from Supplementary Video S3 (diffraction-limited
resolution), corresponding to the large and mainly vertical microsaccade at approximately 1 s. This is visible as a
stretch at the bottom of the frame. The scale bar represents 10 arcminutes.

replicate the effects of optical aberrations on the captured data it becomes necessary to perform additional
computations, as described in a later section.

Eye movement simulation. To introduce intra- and inter-frame motion, ERICA includes a biologically
plausible model of the eye movements made during fixation. Fixational eye movements are typically categorized
as either tremor, drift, or microsaccades®>%, each of which is incorporated into our model. The parameters defin-
ing each of these types of movement have default values, but these can be adjusted. Microsaccades are modeled
as a ballistic motion with the peak velocity proportional to the amplitude of the displacement in log space®*. The
amplitude of each microsaccade is randomly selected from a normal distribution (default: mean of 30 arcmin
and a standard deviation of 3 arcmin®). In the model, the occurrences of microsaccades are pre-determined
by randomly selecting time intervals from a normal distribution (default: mean of 1.0 seconds and a standard
deviation of 0.5 s). Between the microsaccades, eye movement data are generated by combining tremor with
drift. Tremor constitutes a high temporal frequency motion and is simulated using a random motion with a
temporal bandpass filter®’, which we model with a Gaussian profile (default: a centre frequency drawn from a
normal distribution with a mean of 65 Hz and a standard deviation of 7.5 Hz and a bandwidth drawn from a nor-
mal distribution with a mean of 25 Hz and a standard deviation of 2.5 Hz). The amplitude of tremor is typically
very small*® and we model this by selecting it from a normal distribution with a low mean (default: a mean of
0.08 arcmin and a standard deviation of 0.03 arcmin®). Drift is a low temporal frequency motion modeled by a
1/f? spectrum, over which tremor is superimposed®®. The amplitude for each period of drift is randomly selected
from a normal distribution (default: a mean of 6.5 arcmin and a standard deviation of 0.7 arcmin). Human
participants typically maintain fixation around a central point, however there has been debate over whether
microsaccades or drifts are responsible for corrective motions to bring fixation back on target®. The directions
of microsaccades in the ERICA model are constrained to ensure that the simulated fixational eye movement
maintains a locus about the centre of the synthetic retinal mosaic, simply so that blank spaces from the edge of
the mosaic are not introduced into the synthetic frames. An example eye movement trace and an image contain-
ing intra-frame motion distortion are shown in Fig. 3. The parameters outlined above can be adjusted by the user
to generate eye movements with particular characteristics and, for example, to test how well those characteristics
are recovered by a motion extraction algorithm.

Image generation. The PSF of a double-pass confocal microscope, such as the AOSLO, is defined as the
autocorrelation of the single pass PSF’-%°. However, the retina is not a uniform diffuse reflector. To replicate
the process of data capture from the retinal mosaic a series of computations must be performed as described
in Fig. 4. Briefly: (1) the input PSF should be multiplied by the synthetic retinal mosaic, giving the reflectance
profile of the illuminated patch of retina; (2) the illuminated patch should be convolved with the output PSF to
replicate reimaging it on to the pinhole; and (3) the image formed at the pinhole should be multiplied by the
transmission function defining the pinhole. The sum of this final image is the signal that would be received at
the detector at a particular moment in time. Within the image generation module of ERICA, the pupil diameter,
imaging wavelength and pinhole size can be defined by the user to match the configuration of their system.
Pupil apodization can also be applied to simulate the optical Stiles Crawford effect by specifying a Gaussian

Scientific Reports |

(2021) 11:11225 | https://doi.org/10.1038/541598-021-90389-y nature portfolio



www.nature.com/scientificreports/

Input PSF (-

Retimal i
etina ‘nqsa.lot

»

7
o
1Y)
S
=
5|
(5]

Pinhole

Output PSF Image at pinhole

Sujuuess

Image at pinhole Pinhole Image at detector

Figure 4. The steps to replicate data capture through a scanned confocal retinal imaging system, such as an
AOSLO, which are shown schematically on the right. Step (a) shows the illumination of a patch of retina by

a point source directed through the system and the eye’s optics (Input PSF), which may be degraded by the

eyes optics. This step is represented by the multiplication of the reflectance profile of the retinal patch and the
input PSE. Step (b) shows the process of re-imaging the illuminated patch of the retina through the system and
the eye’s optics (Output PSF) to the plane where the pinhole is located. This step is computed as a convolution
of the illuminated patch of retina with the output PSE noting that the wavefront is inverted in the outward
direction (this operation is equivalent to the cross-correlation of the illuminated patch with the input PSF). Step
(c) shows the transmission of the final image through the pinhole to give the image that would be seen by the
detector. This step is computed as the multiplication of the image at the pinhole by the transmission function of
the pinhole, which we consider to be 1 inside and 0 outside a uniform disc. The final step is summation of the
image formed behind the pinhole, to replicate integration by the detector (neglecting noise), giving the signal at
the current position in the scan, I(x,y). Steps (a—c) are repeated for every sample location as the beam is raster
scanned over a region of the retina. Note that while this model allows for a different input and output PSE, in
practice we assume that the input and output PSFs are the same (the PSF of the eye, which includes diffraction
effects).

pupil transmission function. It is possible to perform these computations by adding terms and operations to
Eq. (6), such as by using the extended Nijboer-Zernike approach to approximate the analytic PSF’®’!. However,
this adds complexity and that method also assumes some wavefront symmetry’. It is therefore simpler to use a
numerical approach and use the discrete Fourier transform to render images with residual aberration (which can
vary from frame-to-frame), taking care to oversample appropriately to avoid sampling artefacts. Finer sampling
resolutions produce images closer to an analytic solution but with added computational expense. To test this,
a set of retinal mosaics was generated with a range of sampling resolutions and this set was used to generate
synthethic frames with a realistic residual wavefront error (based on a publicly available data set*). A sampling
resolution at least two times higher than the desired resolution of the resulting frame should be used and the test
showed that a factor increase in sampling resolution of > 4 produces almost identical outputs, defined by the
sum squared difference from the a high (10x) sampling resolution image.

Following the steps in Fig. 4, ERICA generates a data stream similar to that which would be obtained from an
AOSLO (or any scanned confocal system, such as a standard scanning laser ophthalmoscope). A raw image frame
is then generated from the data stream using knowledge of the positions on the scanning mirrors at each time
point. To generate a motion free reference image, a data stream is generated by replicating the spatio-temporal
sampling of the raster scanning system—a sinuoidal horizontal fast scan and an approximately linear vertical
slow scan. To generate a realistic sampling pattern during fixation, eye movement would be added to the raster
scan pattern, as described above. The scan pattern used in the simulation can be defined by the user and we use
a model of the scan pattern in our AOSLO"% This is a sinusoidal fit to the fast scanner motion and a sawtooth
function for the slow scanner, which includes the flyback region. Custom specification of the scan pattern allows
the use of ERICA to investigate the effects of desinusoiding errors or instability in the scanning system. This data
stream is then typically processed using the same desinusoiding algorithm that is applied to real, human-derived
intensity data. All images presented in this paper have been desinusoided for clarity. Noise can be added to images
after following the steps in Fig. 4 and we assume that this is an additive process. By default, noise is generated by
selecting values from a normal distribution, the mean and standard deviation of which are matched to the noise
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Figure 5. Examples to show possible extensions to ERICA. Panel (a) shows the output of a reaction-diffusion
model that includes a rod mosaic (shown in green), self-organising itself between cone cells (shown in red).
Panel (b) shows simulation of the shadow caused by a retinal blood vessel overlaid on a synthetic cone mosaic
image. Panel (c) shows the approximation of a split-detection image, formed by reproducing the intensity profile
of a photoreceptor inner segment as it typically appears in such images. This is assumed to be a differential
image of a mosaic of Gaussian profiles.

characteristics of our AOSLO. This array of noise samples must be either added before desinusoiding, or must
must undergo the same desinusioding procedure before being added to the image.

Comparison to human cone mosaics. To verify that the packing geometry of the synthetic mosaics is
representative of the cone mosaic of typical human participants, we made comparisons at a set of matched retinal
eccentricities. Images were collected from seven human participants at three eccentricities (1.5°,3.0°and 6.0°) as
part of another study, which received approval from the University of Oxford Research Ethics Committee (refer-
ence: R57315/RE001). The study was conducted in accordance with the Declaration of Helsinki and informed
consent was obtained from all participants. We did not attempt imaging in the centre of the fovea as without
dilation the cone cells would not be well-resolved and the estimates of cone packing would likely be unreliable.
Cone positions were manually labeled in both the human and synthetic images by five experienced graders (one
of whom was the first author) and metric data were averaged across graders. Manual grading of the synthetic
images, rather than using the ground-truth data, ensured that apparent changes in the packing geometry caused
by weakly reflecting cones, which could be missed by a human grader, were captured for a fair comparison
to the human images. Presentations of synthetic and human images at different eccentricities were randomly
interleaved and the grader was blind to the type of image displayed on any given trial. Using synthetic images,
comparisons can also be made between the manual labels from human observers with the ground-truth cone
locations to understand how the accuracy of human observers impacts cone density measurements. This will be
presented in a future publication.

Extensions. The current implementation of ERICA simulates the cone mosaic as visualised through a scan-
ning confocal imaging system. This model is limited to a 2D representation of the retina and residual wavefront
aberrations are added based on a 2D model of the PSE. Modelling the effects of changing the axial resolution
would be possible with an extension of the simulation to perform image generation based on the 3D PSF and
with a cellular-resolution model of the retina in depth. A model of the light propagation through the cone cells,
such as that developed by Meadway and Sincich could also be incorporated into the ERICA framework. ERICA
is designed in a modular manner with example Jupyter notebooks demonstrating its use. It is anticipated that
users who wish to develop additional features will create their own functions to be called by existing functions
within ERICA (e.g. a function defining the reflectance profile of a cone cell based on ray tracing would be called
by ERICA’s sampling function) or to create modified versions of the existing inputs to ERICA (e.g. a different
method for generating cone locations would add those locations to a retinal mosaic parameter array to be read
by the sampling function).

A simpler approach to generating images of other retinal structures, either in depth or within the same retinal
layer, is to estimate the intensity profile of those structures. Examples are given in Fig. 5. Figure 5a shows that
rod cells could be added into the images. This is possible by modification of the reaction-diffusion model to
self-organise smaller spots in amongst a mosaic of larger spots. This will be presented in more detail in a future
publication. Another structure that is likely to be of interest is the retinal vasculature, particularly as it causes
shadows in the images of the photoreceptor mosaic that may affect image registration. A basic approximation, as
shown in Fig. 5, would be to introduce a darkened region, either during or after image generation. Non-confocal
imaging geometries detect multiply-scattered light returning from structures other than the photoreceptors.
Accurately replicating this process would require a ray-tracing model, which is not currently included within
ERICA. However, it is possible to generate approximate non-confocal synthetic images using an estimate of the
intensity profile of the structures observed in these images. As an example, split-detection imaging is a useful
tool for detecting photoreceptor inner segments even when the reflectance in the confocal image is low. Methods
for automatic detection of cells in these images and for montaging have been developed®**>#°. An example of
a synthetic split-detection image is given in Fig. 5¢c, which has been generated by approximating the expected
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Figure 6. Example images from a human participant collected from our AOSLO’ and synthetic images
generated for the same eccentricities—1.5° 3° and 6°. The synthetic images are generated with no noise, residual
aberration or eye motion and so have better image quality than the human images. The pupil diameter for the
simulation was set to 5 mm, which is approximately the same as the diameter of the human participant’s pupil
during image capture. The synthetic images were spatially scaled to account for the human participant’s axial
length being different to that of the model. The synthetic images presented here have been intensity-scaled
linearly and then clipped such that the number of pixels that are saturated is the same as in the human images
(approximately 10% for the detector gain that was used during imaging). The lower panels show the power
spectra of the synthetic images in red and the human images in blue. In each spectrum, the peak below 50 ¢/deg
corresponds to the modal spacing of the cones (Yellot’s ring).

intensity profile as the differential of a Gaussian distribution. The example given shows differentiation in the
horizontal direction, replicating a left-right split-detection geometry. Similarly, a model image of the retinal
pigment epithelium (RPE), is theoretically possible, such as by using the reaction-diffusion model to generate
cell locations and using an estimated dark-field RPE cell intensity profile. By updating the ground-truth retina,
ERICA allows emulation of the AOSLO image capture from such structures, including realistic eye motion,
aberrations and noise.

Results

Examples of synthetic images produced by ERICA are given in Fig. 6 and example movies showing temporal
variation in eye motion and wavefront error, based on real aberration measurements*, are additionally given
in the supplementary materials S1 (scale bar represents 10 arcminutes). The appearances of the synthetic and
human images are convincingly similar. The lower panels in Fig. 6 show the normalised power spectra of the
images in the top panels. The spacing of the cells is matched within ERICA based on the retinal eccentricity and
the axial length of the participant’s eye and so the modal spacing (the peak in the power spectrum at < 50 c¢/deg,
which corresponds to Yellott’s ring) is also matched. Therefore, the scale of the spatial frequency axis is matched
between human and synthetic images, but these spectra also show similar profiles.

Scientific Reports |

(2021) 11:12225 | https://doi.org/10.1038/541598-021-90389-y nature portfolio



www.nature.com/scientificreports/

0.2
=049 3 S 0.4
DZ 0.2 l S 0.1 s 0.2 -
0.0 T T T 0.0 T T : 0.0
1.5 3.0 6.0 1.5 3.0 6.0 1.5 3.0 6.0
Eccentricity (°) Eccentricity (°) Eccentricity (°)
¢Human  #Simulation  Y¥Random

Figure 7. Three metrics of packing regularity (eccentricities the same as in Fig. 6) are compared for human-
derived images and for synthetic images generated either using reaction-diffusion modelling or by randomly
placing cells (i.e completely irregular packing with the same number of cones). For each metric the standard
deviation is used as a measure of variability, normalised by the mean. A value of zero is equivalent to a
completely regular mosaic. Each data point represents the mean, and each error bar the standard deviation,
calculated over 27 human or 12 synthetic images. Images were manually labeled by five experienced markers
and the data plotted here represent the average across markers. The panels show the variability in (a) the number
of nearest neighbours, (b) the nearest neighbour distance and (c) the vertex angle between nearest neighbours.

We analysed the packing geometry of the synthetic and human cone mosaics using three summary statistics
(see Fig. 7): (a) the number of nearest neighbours to a cone (i.e. the number of Voronoi regions associated with an
individual cone), (b) the first nearest neighbour distance, and (c) the vertex angle between the nearest neighbour
and that neighbour’s closest common neighbour. For each image and at each eccentricity, the three parameters
were calculated for 100 randomly selected cones. The metric value for an individual image was defined as the
standard deviation of the calculated parameter, normalised by the mean (or 60° in the case of the vertex angle
measurement). This gives a measure of variance that would be zero for a perfectly regular hexagonal matrix. Data
were then averaged across images (across participants) for each eccentricity. To help interpret the scale of these
values, a cone mosaic was generated with a random packing arrangement (but the same number of cells) and
without any constraint on the minimum spacing between cells. This provides an estimate of the metric value for
a completely irregular mosaic. Fig. 7 shows a comparison between the packing regularity of synthetic and human
images. These results show that ERICA produces cone packing geometries close to those that we observe in the
human retina through our AOSLO’% 1t is notable that agreement between the human images and the simulation
is reduced at the largest eccentricity when considering the variation in nearest neighbour distance. We suggest
this is likely due to the presence of rods in the human images that are absent in the simulation, which may have
affected the manual labels”.

Discussion

Adaptive optics retinal imaging is rapidly emerging as an important tool for studying the eye**>’%. A significant
bottleneck in the wider use of these systems is the need for robust, accurate and automated image processing
and analysis methods to generate good quality images and extract reliable data. The use of a generative model for
algorithm testing is not new, but its implementation in the AO retinal imaging field has so far been limited**-+.
ERICA uses a self-organising approach that produces mosaics with similar packing geometries to human-derived
images. An advantage to using reaction-diffusion modelling is that cells naturally arrange themselves without
gaps. Self-organising approaches has been suggested previously as a model for retinal sampling®®”®, using different
methods. However, the reaction-diffusion approach does offer another advantage, as demonstrated in Fig. 5a,
since multiple interleaved mosaics can be generated that both self-avoid and avoid each other.

Previous approaches for generating synthetic images have performed image generation in a similar way to
the method we have developed. These approaches model cone cells as Gaussian intensity profiles and convolve
the retinal image with the PSF#*2. ERICA fully replicates the image generation process, as shown in Fig. 4, and
we include a step to separately specify the input and output PSFs to include, for example, differences in the input
and output pupil functions.

Beddgood and Metha developed a model to add motion distortions to simulated images using a different
approach to ours?’. They used a flood-illumination image as the ground truth and the rows of this were re-
indexed based on an eye movement trace that had been captured from a human participant. By contrast, ERICA
includes a model of biologically plausible eye motion allowing motion extraction accuracy to be characterised
relative to the specific measures of interest, such as the amplitude or velocity of microsaccades or drifts. These
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movements are introduced during a replication of the non-linear scan pattern and this can additionally be per-
formed analytically to avoid sampling artefacts. De-sinusoiding is a necessary step for processing images from an
AOSLO (and from a scanning laser ophthalmoscope without AO correction). Dependent on the voltage ramp of
the galvo, it is also possible that the slow scanner is not perfectly linear. By including a model for the scan pattern
we can test the effect that non-linearities have on motion extraction, in terms of both the remapping of spatial
information and the temporal sampling of eye motion, which ideally would be linear.

In this paper we have presented a complete end-to-end simulation of AOSLO data capture that allows genera-
tion of large data sets of retinal images with ground-truth data. The properties of these synthetic images, such as
residual wavefront error, noise and motion distortion, as well as the content (e.g. by varying retinal eccentricity
or changing cone reflectances) can be specified. ERICA has been designed to be flexible so that users can adjust
any parameters in order to replicate their own system. Any part of the simulation could be extended or modified
by interacting with the Python code, and we envisage new additions for public release would be developed via a
branch, which would then be moderated before being merged with the master branch. Images can be generated
over a user-defined field of view (noting the limitations of anisoplanatism beyond 2°) and eccentricity (noting the
lack of rod cells in the current implementation and the limitations of the single-mode Gaussian model). Finally,
we openly share ERICA with the community and make a number of synthetic data sets available. We hope that
this will be a useful contribution to the field to further the design, development and testing of reliable automated
image processing and analysis methods for adaptive optics retinal imaging.

Data availability

ERICA is available to the community via GitHub (https://github.com/LauraKateYoung/ERICA) under the GNU
GPL3 license. Example data sets are also available for use (https://data.ncl.ac.uk/authors/Laura_Young/95534
63). The reference implementation is available via Zenodo (https://doi.org/10.5281/zenodo.4767154).
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