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Abstract High-voltage-activated calcium (CaV1/CaV2) channels translate action potentials
into Ca2+ influx in excitable cells to control essential biological processes that include; muscle
contraction, synaptic transmission, hormone secretion and activity-dependent regulation of
gene expression. Modulation of CaV1/CaV2 channel activity is a powerful mechanism to regulate
physiology, and there are a host of intracellular signalling molecules that tune different aspects of
CaV channel trafficking and gating for this purpose. Beyond normal physiological regulation, the
diverse CaV channel modulatory mechanisms may potentially be co-opted or interfered with for
therapeutic benefits. CaV1/CaV2 channels are potently inhibited by a four-member sub-family
of Ras-like GTPases known as RGK (Rad, Rem, Rem2, Gem/Kir) proteins. Understanding the
mechanisms by which RGK proteins inhibit CaV1/CaV2 channels has led to the development
of novel genetically encoded CaV channel blockers with unique properties; including, chemo-
and optogenetic control of channel activity, and blocking channels either on the basis of their
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subcellular localization or by targeting an auxiliary subunit. These genetically encoded CaV

channel inhibitors have outstanding utility as enabling research tools and potential therapeutics.
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Abstract figure legend RGK proteins are small Ras-like GTPases that potently inhibit voltage-gated calcium (CaV)
channels by binding their auxiliary b subunits. Mechanistic insights into how RGK proteins inhibit CaV channels has
been exploited to develop novel genetically-encoded CaV channel inhibitors that can be acutely activated by small
molecules or light, or produce constitutive inhibition via targeted ubiquitination using CaVb-binding nanobodies.
Advantages of such genetically-encoded CaV channel inhibitors include their ability to be selectively targeted to specific
tissue, cell types, sub-cellular localization, and distinct CaV channel macromolecular complexes.

Voltage-gated calcium channels: basic structure,
function and regulation

Ca2+ is a universal second messenger that regulates
numerous biological functions in virtually all cells
(Berridge et al. 2000). Cytoplasmic Ca2+ in cells is kept
low (100 nM) but rises in response to diverse stimuli
(to �1 μM) to initiate functional responses through
the action of a variety of Ca2+-dependent proteins. The
source of signalling Ca2+ is from either intracellular
stores or the extracellular milieu. There are a variety of
integral membrane proteins on the plasma membranes
of diverse cell types that permit the entry of Ca2+ in
response to specific stimuli. Amongst these are the family
of voltage-dependent Ca2+ channels (VDCCs) which
gate Ca2+ entry into cells in response to changes in
membrane potential. VDCCs are sub-divided into two
categories based on the threshold voltage for activation
– low-voltage-activated (LVA) and high-voltage-activated
(HVA) Ca2+ channels, respectively. There are three distinct
LVA (CaV3.1 – CaV3.3) and seven HVA (CaV1.1 –
CaV1.4; CaV2.1 – CaV2.3) (Catterall, 2011; Zamponi et al.
2015). VDCCs play many essential roles in the biology
of excitable cells. As examples, Ca2+ influx through
VDCCs: contributes to pacemaking in many cell types
including the sino-atrial node of the heart and sub-
stantia nigra (CaV3; CaV1.3) (Guzman et al. 2010; Mesirca
et al. 2015); regulates neuronal excitability by coupling
to Ca2+-activated K+ channels (CaV1.2; CaV2.1; CaV2.2)
(Marrion & Tavalin, 1998; Womack et al. 2004); controls
the heartbeat by coupling electrical excitation to muscle
contraction in cardiomyocytes (CaV1.2) (Bers, 2002);
enables communication among neurons by triggering
presynaptic neurotransmitter release (CaV2.1-CaV2.3)
(Sudhof, 2012); promotes the release of hormones, e.g.
insulin, adrenaline (epinephrine), essential for metabolic
and physiological homeostasis (CaV1.2, CaV1.3, CaV2)
(Braun et al. 2008); and engenders long-term changes in
cellular function by regulating gene expression (CaV1.2,
CaV1.3) (Wheeler et al. 2012).

Functional HVA Ca2+ channels in vivo are
multi-subunit complexes comprising distinct
pore-forming α1 subunits (α1A – CaV2.1; α1B – CaV2.2; α1C

– CaV1.2; α1D – CaV1.3; α1E – CaV2.3; α1F – CaV1.4; and
α1S – CaV1.1) assembled with calmodulin and auxiliary
β (CaVβ1 – CaVβ4), α2δ (α2δ-1 – α2δ-3), and γ subunits
(Zamponi et al. 2015). In heterologous expression
studies, co-expression with CaVβ is necessary for efficient
α1-subunit trafficking to the plasma membrane (Buraei
& Yang, 2010). Consistent with an essential in vivo role,
β1-null mice die at birth due to asphyxiation (Gregg
et al. 1996) and β2 knock-out is embryonic lethal due to
cardiac defects (Weissgerber et al. 2006). Nevertheless,
recent in vivo data in adult cardiomyocytes indicate an
exception to the absolute necessity for CaVβ to enable
trafficking of α1C to the surface membrane of adult heart
cells. Cardiac-specific excision of CaVβ2, the dominant
CaVβ isoform in heart, reduced CaVβ2 protein by 96%
while decreasing CaV1.2 current amplitude by only
26% (Meissner et al. 2011). Further, a transgenic mouse
expressing a dihydropyridine-resistant α1C mutant that
does not bind CaVβ displayed ample DHP-resistant
CaV1.2 current, indicating a robust CaVβ-independent
trafficking to the sarcolemma (Yang et al. 2019). It
remains to be determined whether and to what extent
CaVβ-independent trafficking happens in other cell types
and other CaV1/CaV2 isoforms at different developmental
stages. Beyond their impact on CaV1/CaV2 trafficking,
CaVβ isoforms alter multiple channel gating properties
– shift the voltage dependence of channel activation to
the left, increase single channel open probability, impart
distinctive rates of inactivation, and endow different
steady-state inactivation profiles (Buraei & Yang, 2010).
α2δ subunits promote surface trafficking and can alter
biophysical properties of particular CaV1/CaV2 channels
(Dolphin, 2012). γ subunits are associated with CaV1.1
channels (Kang & Campbell, 2003; Wu et al. 2016); their
association with other CaV1/CaV2 channels in vivo is
unclear. Multiple CaM binding sites have been described
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at different locations in distinct CaV1/CaV2 channels (Van
Petegem et al. 2005; Dick et al. 2008; Mori et al. 2008;
Ben-Johny & Yue, 2014). CaM binds to the C-terminus
of most CaV1/CaV2 channels in a fairly conserved region
containing an IQ motif (Erickson et al. 2001; Kim
et al. 2004, 2008, 2010; Mori et al. 2008). Binding of
apoCaM to this region has been shown to enhance the
open probability, Po, of CaV1.3 channels (Adams et al.
2014). Cryo electron microscopy structures of CaV1.1
and CaV3.1 channels have yielded invaluable insights
into CaV channel structure, three-dimensional assembly
and modulation by ligands (Wu et al. 2016; Zhao et al.
2019a,b).

An important feature of HVA CaV channels is that their
activity is not static but is dynamically regulated both
by stably associated proteins as well as transiently inter-
acting signalling molecules. Typically, these regulatory
mechanisms have profound physiological importance;
their dysregulation can cause pathology, and they can
be co-opted or interfered with for therapy. Examples of
these regulatory mechanisms include: Ca2+-dependent
inactivation of CaV1.2 channels mediated by preassociated
CaM, a negative feedback mechanism which when
disrupted leads to prolonged cardiac action potentials and
life-threatening cardiac arrhythmias (Peterson et al. 1999;
Zuhlke et al. 1999; Alseikhan et al. 2002); protein kinase
A mediated up-regulation of cardiac CaV1.2, essential for
the physiologically critical fight-or-flight response (Kamp
& Hell, 2000); voltage-dependent inhibition of CaV2
channels by Gβγ subunits (Dolphin, 2003), a mechanism
for tuning synaptic strength that is important for the
analgesic effects of opiates.

RGK GTPase inhibition of CaV channels: discovery and
mechanisms

The seminal report of the functional interaction between
RGK proteins and CaV1/CaV2 channels was in 2001 – a
yeast two-hybrid screen of MIN6 cells using CaVβ3 as bait
fished out Gem/Kir as an interacting protein (Beguin et al.
2001). Co-expressing Gem with recombinant CaV1.3 or
CaV1.2 in Xenopus oocytes resulted in a marked inhibition
of calcium channel current. Gem was initially discovered
as a mitogen-induced gene in human T cells (Maguire
et al. 1994) and belongs to a sub-family of Ras-like
monomeric G-proteins with three other members: Rad
(Ras associated with diabetes), originally discovered as
a protein over-expressed in skeletal muscle of diabetic
patients (Reynet & Kahn, 1993); Rem, first identified using
a degenerate cloning strategy based on homology to Gem
and Rad (Finlin & Andres, 1997); and Rem 2, cloned from
a rat brain cDNA library (Finlin et al. 2000). Subsequent
to the original report of Gem inhibition of CaV1.2 and
CaV1.3, it was shown that this phenomenon also extended

to Rad and Rem, which both potently inhibited CaV1.2
channels (Finlin et al. 2003), and Rem 2 (Chen et al.
2005; Finlin et al. 2005). Over-expressing any RGK protein
markedly suppresses endogenous CaV1/CaV2 channels
in native cells including cardiac myocytes, neurons and
skeletal muscle (Murata et al. 2004; Chen et al. 2005;
Bannister et al. 2008; Wang et al. 2010; Xu et al. 2010;
Puckerin et al. 2018). A recent elegant study revealed that
endogenous Rad in cardiomyocytes constitutively exerts
a gating brake on a fraction of CaV1.2 channels. This
inhibition is relieved by protein kinase A phosphorylation
of Rad, and is the long sought-after mechanism by which
β-adrenergic agonists increase cardiac CaV1.2 to enhance
inotropy during the fight-or-flight response (Liu et al.
2020).

How do RGK proteins inhibit CaV1/CaV2 channels?
The answer to this seemingly simple question turned out
to be surprisingly complex. The whole-cell current (I) is
related to microscopic channel properties by the relation
I = FA × N × i × Po; where FA is the fraction of activatable
channels, N is the total number of channels, i is the unitary
current amplitude, and Po is the open probability. In
principle, RGK proteins could inhibit I by reducing any
of the four parameters or a combination of them. We
found that Rem inhibits CaV1.2 channels reconstituted
in HEK293 cells in at least three distinct ways (Fig. 1)
(Yang et al. 2010). First, in this system, Rem reduced
CaV1.2 surface density (N) by 65%, an effect that was
reversed by co-expressing dominant negative dynamin.
The second mechanism involved a reduction in channel
Po, which occurred without an impact on CaV1.2 voltage
sensor movement, suggesting an impairment in coupling
between voltage sensors and opening of the channel
pore. This mechanism specifically required simultaneous
association of Rem with the plasma membrane (mediated
by a polybasic distal C-terminus) and CaVβ in the channel
complex (via the guanine nucleotide binding domain).
Finally, a third mechanism entailed a reduction in CaV1.2
maximal gating charge (Qmax) that was not accounted
for by a change in channel surface density, suggesting an
immobilization of one or more voltage sensors. This third
mechanism required GTP bound to Rem and would have
the practical effect of diminishing both FA and Po. While
these three mechanisms of Rem inhibition of CaV1.2 can
be observed in HEK293 cells, their relative prevalence may
differ in other cell types. For example, over-expression
of Rem in cardiac myocytes markedly depresses CaV1.2
whole-cell current without an apparent change in channel
surface density as indicated by immunofluorescence, and
the acute rescue of near-maximal current with BAYK 8644
(Xu et al. 2010).

From a macroscopic perspective all four RGKs
profoundly inhibit all CaV1/CaV2 channels when
over-expressed. Nevertheless, underneath this apparent
uniformity, there are important distinctions in the
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mechanisms of inhibition that extend to both the different
RGKs as well as to individual channel types (Yang &
Colecraft, 2013). Rem2 was found to inhibit CaV1.2
channels in mouse insulinoma MIN6 cells (Finlin et al.
2005) and also CaV2.2 channels in tsA201 cells without
reducing the number of channels at the cell surface
(Chen et al. 2005). By reconstituting channels with either
wild type CaVβ or a mutant CaVβ that loses binding
to RGK proteins, we found that Rem and Rad could
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Figure 1. Rem inhibition of reconstituted CaV1.2 channels
A, exemplar family of whole-cell Ba2+ currents from recombinant
CaV1.2 channels (α1C + β2a) reconstituted in HEK293 cells either
without (left) or with (right) co-expression of Rem. B, population I-V
curves from CaV1.2 channels in the absence (�) or presence ( ) of
co-expressed Rem. C, schematic diagram showing three distinct
mechanisms (I-III) utilized by Rem to inhibit recombinant CaV1.2
channels. In mechanism I, co-expressed Rem results in a decrease in
the number of channels at the cell surface (N) due to enhanced
CaV1.2 endocytosis. Mechanism II involves a reduction in the open
probability (Po) of channels residing on the plasma membrane
without impacting on voltage sensor movement as measured by
total gating charge (Qmax). This mechanism requires Rem
simultaneously binding to the CaVβ subunit (using the guanine
nucleotide binding domain) and the plasma membrane (via the
polybasic distal C-terminus). Mechanism III involves an impaired
movement of the voltage sensor movement of surface channels as
measured by a decreased Qmax (observed even when N is completely
rescued by co-expressing dominant negative dynamin). Mechanism
III is blocked by a mutation (T94N) that favours GDP over GTP
binding to Rem, suggesting it requires GTP-bound Rem.

inhibit CaV1.2 and CaV2.2 (but not the other CaV1/CaV2
channel types) using either β-binding-dependent or
β-binding-independent mechanisms (Yang et al. 2012;
Puckerin et al. 2016, 2018). In the particular case of
Rem inhibition of CaV1.2, the β-binding-independent
mechanism of inhibition is mediated by an inter-
action of the Rem distal C-terminus with the α1C

N-terminus region just upstream of the first trans-
membrane spanning segment of the channel (Yang et al.
2012). By contrast, Gem and Rem2 utilize solely a
β-binding-dependent mechanism to inhibit CaV1/CaV2
channels. Overall, insights into the mechanisms and
physical determinants of RGK inhibition of CaV1/CaV2
channels has proven invaluable to the broad objective
of drawing inspiration from these proteins as prototype
molecules to design next-generation genetically encoded
CaV channel inhibitors as research tools and potential
therapeutics.

RGK-inspired genetically encoded CaV channel
inhibitors

Blocking CaV1/CaV2 channels with small molecules or
toxins is a prevailing or prospective therapeutic strategy
for many serious diseases including hypertension, chronic
pain, cardiac arrhythmias, Parkinson’s disease and stroke
(Zamponi et al. 2015; Zamponi, 2016). While convenient,
small molecule CaV channel blockers have limitations,
some of which may be circumvented by genetically
encoded inhibitors (Xu & Colecraft, 2009). First, they
lack tissue specificity since small molecules are typically
widely distributed in the body after administration, and
distinct VDCCs are present across many different tissues,
organs and cell types. Second, VDCCs show an immense
molecular and functional diversity stemming from their
organization into distinct macromolecular complexes, and
sub-cellular localizations that are poorly discriminated by
small molecules. These two gap areas could potentially
be filled by novel genetically encoded CaV channel
inhibitors designed to target molecularly distinct VDCC
macromolecular complexes in a tissue- or cell-specific
manner. While RGK proteins themselves are potent VDCC
inhibitors, their usefulness as research tools or therapeutics
is limited by several factors: (1) they are non-selective, as
they indiscriminately inhibit all CaV1/CaV2 channel types;
(2) they are constitutive inhibitors, thus providing poor
temporal and spatial control of channel block; and (3) they
are non-specific as they interact with and regulate other
proteins such as enzymes and the cytoskeleton in cells
(Yang & Colecraft, 2013). Over the last few years, using
RGK proteins themselves as inspiration, we and others
have explored different ways to engineer new genetically
encoded CaV channel inhibitors that improve on various
aspects of functional CaV channel block that are lacking
in wild-type RGK proteins.
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Our finding that Rem specifically inhibits CaV1.2 using
both a β-binding-dependent and α1C-binding-dependent
mechanism but used only a β-binding-dependent
mechanism to block other CaV1/CaV2 channel types
suggested a simple method to create a CaV1.2-selective
genetically encoded CaV channel inhibitor – introduce
mutations in Rem that weaken its interaction with
CaVβ without altering the tertiary structure of the
protein. Indeed, such mutations (Rem[R200A/L227A])
were identified by an extensive mutagenesis study
(Beguin et al. 2007). Consistent with the hypothesis,
Rem[R200A/L227A] selectively inhibited CaV1.2, but not
other CaV1/CaV2 channels, reconstituted in HEK293 cells
(Puckerin et al. 2018). The ability of Rem[R200A/L227A]
to discriminate between CaV1.2 and CaV1.3 was especially
notable given the difficulty of identifying small molecules
that can effectively distinguish between these two
L-type channel subtypes (Zamponi et al. 2015). Using
a similar logic, we found that Rad[R208A/L235A]
selectively blocked CaV1.2 and CaV2.2, consistent with
the finding that Rad inhibits these two channels using
both β-binding-dependent and β-binding-independent
mechanisms (Puckerin et al. 2018). Importantly, both
Rem[R200A/L227A] and Rad[R208A/L235A] strongly
inhibited CaV1.2 channels in cardiomyocytes, indicating
that the β-binding-independent mechanism of inhibition
is operational in this native environment. Similarly,
the two proteins inhibited HVA CaV channel currents
in dorsal root ganglion (DRG) neurons to different
extents, reflecting their varying selectivity for CaV1.2
and CaV1.2/CaV2.2 channels, respectively (Puckerin et al.
2018).

Rem associates with the plasma membrane via
the 32-residue distal C-terminus (DCT) using hydro-
phobic and electrostatic interactions. Deletion of the
DCT abolishes both Rem membrane targeting and
inhibition of CaV1/CaV2 channels (Finlin et al. 2003;
Yang et al. 2007). The requirement for Rem binding
to the plasma membrane for CaV channel inhibition
has been exploited to engineer Rem derivatives that
enable chemo- and optogenetic control of channel
inhibition, and also subcellular specificity (Fig. 2). We
replaced Rem DCT with the C1 domain from protein
kinase γ, creating Rem1-265-C1PKCγ which when expressed
in cells was primarily distributed in the cytosol but
could be rapidly recruited to the plasma membrane
with a small molecule, phorbol-12,13-dibuytrate (PdBu).
The PdBu-induced recruitment of Rem1-265-C1PKCγ

caused a concomitant rapid inhibition of CaV1/CaV2
channel currents (Fig. 2B) (Yang et al. 2007, 2013).
The generality of this chemogenetic regulation was
demonstrated by development of a FK506-binding protein
(FKBP)-tagged Rem265 version that could be recruited
to the membrane to inhibit CaV1/CaV2 channels using
rapamycin-mediated heterodimerization in cells that
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Figure 2. Replacing Rem distal C-terminus for novel
spatio-temporal control of CaV channel inhibition
A, Rem structure consists of a guanine nucleotide binding domain
(G-domain) flanked by N- and C-termini. The Rem distal C-terminus
(DCT), comprising the last 32 residues of the protein, is a polybasic
peptide that mediates binding to the plasma membrane and is
necessary for CaV channel inhibition. B, replacing Rem DCT with C1
domain from protein kinase C γ (C1PKCγ ) enables acute recruitment
of the engineered Rem to the plasma membrane with a small
molecule phorbol ester, PdBu. Co-expressed CaV1/CaV2 channels are
inhibited concomitantly with Rem265-C1PKCγ association with the
plasma membrane. This chemogenetic configuration provides acute
temporal control over CaV channel inhibition that is slowly reversible.
C, optogenetic control of Rem inhibition of CaV channels was
achieved using the photodimerizer pair, iLID (LOV2-ssrA) and sspB.
The Rem DCT was replaced with sspB via varying linkers (creating
optoRGK) while iLID was constitutively anchored to the plasma
membrane. Exposure of cells to blue light (470 nm) enabled acute
recruitment of optoRGK to the plasma membrane and inhibition of
CaV1.2 channels. Both plasma membrane association of optoRGK
and CaV1.2 channel inhibition were reversed in the dark. D,
replacing Rem DCT with a caveolae-targeting peptide enabled
selective inhibition of caveolae-targeted CaV1.2 channels in
cardiomyocytes while sparing dyadic CaV1.2 channels that mediate
cardiac excitation-contraction coupling.
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also expressed constitutively membrane-targeted FRB (a
fragment of mTOR) (Crabtree & Schreiber, 1996; Inoue
et al. 2005; Yang et al. 2007). Similarly, a 490 nm
blue light-mediated heterodimerization strategy was
utilized to develop optogenetic control of Rem inhibition
(Fig. 2C). The approach is based on a light-induced
protein-protein interaction created by inserting a bacterial
peptide, ssrA, into a naturally occurring photoswitch,
light-oxygen-voltage 2 (LOV2) domain from Avena sativa
(Guntas et al. 2015). In the dark, SsrA is sterically
obstructed from interacting with a binding partner, sspB.
With blue light, this steric inhibition is relieved, allowing
SsrA to bind SspB. Extensive bioengineering of LOV2-SsrA
yielded an improved light inducible dimer (iLID) in
which the affinity of the photoswitch for SspB changes
> 50-fold with light illumination (Guntas et al. 2015).
Ma et al. (2018) replaced Rem DCT with SspB (creating
optoRGK) and anchored iLID constitutively to the plasma
membrane using Lyn11, a plasma membrane-tethering
peptide from the tyrosine protein kinase, Lyn. Exposure
of cells to blue light led to rapid recruitment of optoRGK
to the plasma membrane and resulted in CaV channel
inhibition that was quickly reversed in the dark (Ma et al.
2018) (Fig. 2C). Finally, as a demonstration of inhibiting
CaV channels with subcellular specificity, replacing the
Rem C-terminus with a caveolin-targeting peptide enabled
selective inhibition of caveolae-localized CaV1.2 in cardiac
myocytes, without significantly affecting non-caveolae
CaV1.2 channels responsible for excitation-contraction
coupling (Fig. 2D) (Makarewich et al. 2012).

The next conceptual advance came from further
consideration of why Rem inhibition of CaV1.2 Po had the
dual requirement for CaVβ binding and plasma membrane
association? We hypothesized that Rem binding to the
plasma membrane ‘pulled’ on the I-II loop via the
associated CaVβ subunit and induced a conformation
of the channel with a low Po. This hypothesis led to
a testable prediction that we could potentially evoke a
similar low-Po channel conformational state by directly
attaching a membrane-targeting module to auxiliary
CaVβ subunits, thereby bypassing the need for an
RGK altogether (Yang et al. 2013). To accomplish this,
we fused the C1PKCγ onto the C-terminus of CaVβ3

(generating β3-C1PKCγ) which enabled a PdBu-induced
association of β3 with the plasma membrane (Yang et al.
2013). Channels reconstituted with β3-C1PKCγ yielded
robust baseline whole-cell currents that were inhibited by
exposure to PdBu. The kinetics and extent of inhibition
could be tuned by serial truncations of the disordered
β3 C-terminus (shortening the β3 C-terminus sped up
the onset and deepened the extent of inhibition) (Yang
et al. 2013). While this result was in accord with the
stated hypothesis, it was, nevertheless surprising, because
β2a and β2e subunits are naturally membrane-associated
via their N-termini (Chien et al. 1998; Takahashi et al.

2003). β2a is palmitoylated, while the N-terminus of
β2e forms a helix that associates with the plasma
membrane using electrostatic and hydrophobic inter-
actions (Miranda-Laferte et al. 2014). However, neither β2a

nor β2e constitutively inhibit channels (rather, they both
slow down voltage-dependent inactivation of CaV1/CaV2
channels) (Takahashi et al. 2003). An apparent explanation
for this discrepancy arose from the finding that placing
the C1PKCγ module on the β3 N-terminus yielded a
construct that did not effectively inhibit CaV channels
in response to PdBu, indicating that the phenomenon
is sensitive to the polarity of the membrane-targeting
module on CaVβ (Yang et al. 2013). This suggests a
geometric constraint to this mode of inhibition. Based on
these results, we probed whether other cytosolic proteins
that bound other intracellular loops of CaV channels
could be transformed into CaV1/CaV2 inhibitors simply by
introducing a membrane binding module to them. Indeed,
we found that 14-3-3, a protein previously reported
to bind to CaV2.2 C-terminus (Li et al. 2006), could
be turned into either a PdBu-inducible or constitutive
inhibitor by attaching C1PKCγ or a palmitoylated peptide,
respectively (Yang et al. 2013). Unexpectedly, we found
that 14-3-3-C1PKCγ also effectively inhibited CaV1.2
and CaV2.1 channels in a phorbol ester-dependent
manner, revealing that these other channels also inter-
acted with 14-3-3. We termed this general mechanism
ChIMP, an acronym for ‘channel inactivation by
membrane-tethering an associated protein’ (Yang et al.
2013). Beyond CaV1/CaV2 channels, ChIMP may also
be used either as an investigational tool or method
to develop genetically encoded modulators for other
ion channels. In this regard, we exploited ChIMP to
reveal that calmodulin is preassociated with TMEM16A
and TMEM16B Ca2+-activated chloride channels and
mediates Ca2+-dependent sensitization of activation as
well as Ca2+-dependent inactivation of particular splice
variants (Yang et al. 2014).

Deployment of genetically encoded CaV channel
inhibitors derived from endogenous proteins (such
as Rem1-265-C1PKCγ , β3-C1PKCγ , and 14-3-3-C1PKCγ) in
vivo could potentially have unwanted effects owing to
over-expression of these modified natural proteins. As
such, we sought to develop genetically encoded CaV

channel inhibitors that would have limited off-target
effects relative to their inhibition of HVA CaV channels.
Given the importance of CaVβ-binding in RGK-mediated
CaV1/CaV2 inhibition, we first isolated nanobodies
targeted to auxiliary CaVβ subunits. We immunized
a llama with purified β1 and β3 subunits, isolated
lymphocytes, amplified nanobodies by PCR, and cloned
into a phagemid vector to generate a VHHS phage library.
Several nanobody binders to β1 were isolated using phage
display and an ELISA assay. One of these nanobodies,
termed nb.F3, bound all four CaVβ isoforms when
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expressed in cells (Morgenstern et al. 2019), which was
not surprising given the high homology among these
auxiliary subunits in their conserved src homology 3 (SH3)
and guanylate kinase (GK) domains (Chen et al. 2004;
Opatowsky et al. 2004; Van Petegem et al. 2004). Purified
nb.F3 bound CaVβ with high affinity (�12 nM) and
1:1 stoichiometry as assessed by isothermal calorimetry.
When expressed with reconstituted CaV2.2 and CaV1.2
channels in HEK293 cells, nb.F3 appeared functionally
inert, as it had no impact on channel trafficking to the
plasma membrane or on whole-cell currents. Therefore,
nb.F3 provided an ideal CaVβ-targeting module that could
potentially be modified to generate a genetically encoded
CaV channel inhibitor exploiting the mechanisms we had
identified for RGK proteins. We first sought to mimic

the impact of RGKs on decreasing the channel surface
density by fusing the catalytic HECT domain of the
ubiquitin ligase, Nedd4L, onto nb.F3. The rationale for
this approach is that in many ion channels and membrane
proteins, ubiquitination typically reduces surface density
and, often, enhances protein degradation as well (Abriel
& Staub, 2005; Jespersen et al. 2007; MacGurn et al. 2012;
Kanner et al. 2017). In heterologous cells, nb.F3-Nedd4L
decreased the surface density of reconstituted CaV2.2
and CaV1.2 channels without enhancing the degradation
of the pore-forming α1B and α1C subunits, respectively
(Fig. 3A and B) (Morgenstern et al. 2019). Whole-cell patch
clamp experiments demonstrated that nb.F3-Nedd4L
essentially eliminated reconstituted CaV1.2, CaV1.3 and
CaV2.1-CaV2.3 channel currents (Fig. 3C). Therefore,
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Figure 3. Mimicking RGK-mediated CaV inhibition mechanisms with an engineered CaVβ-targeted
nanobody
A, schematic diagram of experimental paradigm. Recombinant CaV2.2 (α1B) with an extracellular
bungarotoxin-binding site (BBS) epitope is co-expressed CaVβ without (control) or with a CaVβ-targeting
nanobody (nb.F3) fused to catalytic HECT domain of the E3 ubiquitin ligase, NEDD4L. Surface channels are
measured by exposing non-permeabilized transfected cells to Alexa 647-conjugated bungarotoxin. B, histograms
of surface BBS-α1B assessed by flow cytometry in cells expressing no nanobody (top), nb.F3-NEDD4L (middle), or
nb.F3-NEDD4L∗, a catalytically dead variant (bottom). Results show a substantial decline in surface density when
the channel is co-expressed with nb.F3-NEDD4L. C, exemplar (top) and population I-V curves (bottom) in cells
expressing α1B + β1b alone (�) or with either nb.F3-NEDD4L ( ) or nb.F3-NEDD4L∗ ( ) co-expression. D, schematic
diagram of experimental paradigm. HEK293 cells are co-transfected with recombinant CaV2.2 (α1B + β3) and
nb.F3-C1PKCγ . E and F, exemplar currents and diary plot showing rapid and deep PdBu-induced inhibition of
CaV2.2 currents in cells expressing α1B + β3 + nb.F3-C1PKCγ .
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we named nb.F3-Nedd4L as CaV-aβlator, reflecting
it’s exceptional efficacy to inhibit HVA CaV channels
by targeting auxiliary CaVβ subunits. CaV-ablator also
proved effective in eliminating endogenous CaV1/CaV2
channels in pancreatic β-cells, dorsal root ganglion
(DRG) neurons and cardiac myocytes (Morgenstern et al.
2019). Examination of how CaV-ablator eliminated CaV1.2
currents in ventricular cardiomyocytes indicated that
pore-forming α1C subunits were re-directed from dyadic
junctions to intracellular compartments, specifically Rab
7-positive late endosomes (Morgenstern et al. 2019).

We have also explored whether we could also use
nb.F3 to create a small-molecule-inducible genetically
encoded CaV channel inhibitor that exploited the
ChIMP mechanism. We generated nb.F3- C1PKCγ and
co-expressed it with recombinant CaV1.2 channels.
Exposure of cells to phorbol ester resulted in a rapid decline
in current that was not observed in control cells lacking
nb.F3-C1PKCγ , indicating that nb.F3 permits inducible
inhibition of CaV1/CaV2 channels via the ChIMP method
(Fig. 3D–F).

Conclusion

In summary, this review highlights work focused on
understanding the mechanisms by which RGK proteins
potently inhibit CaV1- and CaV2-family channels and
exploiting mechanistic insights to create novel genetically
encoded CaV channel inhibitors. This work has led
to the development of intracellular acting genetically
encoded CaV channel inhibitors that can be controlled
by either small molecules or light, and that have the
capacity to block CaV1.2 channels in cardiac myocytes
with subcellular specificity. Genetically encoded CaV

channel inhibitors have potential utility as therapeutics
for indications such as chronic pain, with the advantage
that their expression can be restricted to target tissues
or cell types of interest, thereby circumventing off-target
effects. The viability of such gene therapy approaches has
been advanced by continually improved development of
viral and non-viral gene delivery methods in vivo. For such
potential therapeutic applications, it would be important
to develop variants whose potency can be controlled
either through dosage or with a small molecule. The
nanobody-based approach offers opportunities to design
novel genetically encoded CaV channel inhibitors that
can eliminate or modulate CaV channel complexes on
the basis of identity of the associated β subunit isoform.
This would be a key enabling tool to probe the potential
role of auxiliary β subunits in organizing distinct CaV

channels into distinct signalling complexes that permit
functional diversification of Ca2+ influx via CaV channels
in individual cells. Finally, some of the approaches
described here may be generalizable to develop genetically
encoded inhibitors or modulators for other ion channels

and membrane proteins. Indeed, we have previously
shown that the nanobody-based targeted ubiquitination
approach can be used to inhibit KCNQ1 channels by
eliminating them from the cell surface (Kanner et al. 2017).
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