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Abstract: Variability in plasma carotenoids may be attributable to several factors including genetic
variants and lipid profile. Until now, the impact of DNA methylation on this variability has not
been widely studied. Weighted gene correlation network analysis (WGCNA) is a systems biology
method used for finding gene clusters (modules) with highly correlated methylation levels and for
relating them to phenotypic traits. The objective of the present study was to examine the role of DNA
methylation in the relationship between plasma total carotenoid concentrations and lipid profile
using WGCNA in 48 healthy subjects. Genome-wide DNA methylation levels of 20,687 out of 472,245
CpG sites in blood leukocytes were associated with total carotenoid concentrations. Using WGCNA,
nine co-methylation modules were identified. A total of 2734 hub genes (17 unique top hub genes)
were potentially related to lipid profile. This study provides evidence for the potential implications
of gene co-methylation in the relationship between plasma carotenoids and lipid profile. Further
studies and validation of the hub genes are needed.
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1. Introduction

Cardiometabolic (CM) diseases comprise conditions ranging from insulin resistance and metabolic
syndrome to cardiovascular disease and type-2 diabetes [1]. Healthy eating, including the consumption
of fruits and vegetables, is associated with a favorable CM health [2]. Carotenoids, which are reliable
biomarkers of fruit and vegetable intakes, are composed of hundreds of fat-soluble pigments [3].
However, six main carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, and
zeaxanthin) represent over 95% of total circulating carotenoids in human [4,5]. Variability among
individuals in circulating carotenoids may be due to several factors, including age, sex, body
weight, genetics, and lipid profile [3]. Lower circulating carotenoid concentrations are associated
with lower plasma total cholesterol (TC), LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C)
concentrations [6]. Moreover, α- and β-carotene correlated with HDL-C and triglyceride (TG)
concentrations [7], while β-crytoxanthin and zeaxanthin correlated with TG concentrations in a
previous study by our group [8]. Thus, several studies have observed associations between circulating
carotenoids and plasma lipid concentrations, which are both transported by lipoproteins [9].

Genetic variants have been shown to influence circulating carotenoid concentrations by causing
differences in the absorption, assimilation, distribution, metabolism, and excretion of carotenoids [10–15].

Nutrients 2019, 11, 1265; doi:10.3390/nu11061265 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0001-5734-3811
https://orcid.org/0000-0002-4443-5378
https://orcid.org/0000-0002-7017-5848
http://www.mdpi.com/2072-6643/11/6/1265?type=check_update&version=1
http://dx.doi.org/10.3390/nu11061265
http://www.mdpi.com/journal/nutrients


Nutrients 2019, 11, 1265 2 of 14

Carotenoids and their derivatives (e.g., retinoid) have also been shown to modulate gene expression
via several transcriptional systems [16]. However, very few studies have documented the relationship
between carotenoids and DNA methylation, at least from a genome-wide viewpoint. In cell studies,
lycopene had modest to null effects on DNA methylation of GSTP1, which is involved in prostate and
breast cancers [17,18]. Moreover, a study of 165 overweight and obese subjects revealed an association
between DNA methylation of HERV-w and TNFαin blood leukocytes and dietary intakes of β-carotene
and carotenoids [19]. Interestingly, the reported protective effects of high fruit and vegetable intake on
age-related diseases (coronary heart disease, stroke, type-2 diabetes) may be mediated by the association
between blood carotenoids levels and extrinsic epigenetic age acceleration, which is a measure of
epigenetic age [20]. Thus, circulating carotenoids and dietary intakes of carotenoids seem to impact
DNA methylation. Moreover, there is more and more evidence that DNA methylation plays a role in the
regulation of blood lipid levels and lipid metabolism-linked phenotypes and diseases [21]. No previous
study has considered the involvement of genome-wide DNA methylation levels in the association
between plasma carotenoids and lipid profile. Weighted gene correlation network analysis (WGCNA) is
a widely used systems biology approach designed for high dimensional data (i.e. gene expression, DNA
methylation, metabolites etc.) [22]. It allows finding gene clusters (modules) with highly correlated
DNA methylation levels, relating these modules to phenotypic traits, and identifying key hub genes
within modules that are related to phenotypic traits [22].

The objective of the present study was to examine the role of DNA methylation in the relationship
between plasma carotenoid concentrations and lipid profile using WGCNA in 48 healthy subjects.
First, cytosine-phosphate-guanine (CpG) sites whose DNA methylation levels are associated with
carotenoid concentrations were identified using linear regressions. Second, WGCNA was used to
identify specific modules and key hub genes related to lipid profile traits. The hypotheses were that
genome-wide DNA methylation levels in blood leukocytes are associated with plasma total carotenoid
concentrations and that clusters of genes associated with carotenoids are also correlated to lipid profile
traits. Our results highlighted the potential implication of gene co-methylation in the relationship
between plasma carotenoids and lipid profile.

2. Materials and Methods

2.1. Patients and Design

The GENERATION Study aimed at evaluating familial resemblances in omics (DNA methylation [23]
and gene expression [24]) and metabolic (metabolites [25] and carotenoids [8]) profiles in healthy families.
The GENERATION Study comprises a total of 48 French-Canadian subjects from 16 families of Quebec
City (Canada). Families composed of 16 mothers, six fathers, and 26 children lived under the same roof.
Families comprised at least the mother and one child (8–18 years old). Parents had to be the biological
parents of their child (or children), non-smokers, with body mass index (BMI) ranging between 18 and
35 kg/m2, and free of any metabolic conditions requiring treatment (Synthroid® (levothyroxine) and
oral contraceptive were tolerated). Children also had to be non-smokers, in good general health and not
using psycho-stimulators (Ritalin® (methylphenidate), Concerta® (methylphenidate), and Strattera®

(atomoxetine)). Blood samples were taken from both parents and children at the Institute of Nutrition
and Functional Foods (INAF). The experimental protocol was approved by the Ethics Committees of
Laval University Hospital Research Center and Laval University. All participants signed an informed
consent document. Parental consent was also obtained by signing the child consent document.

2.2. Anthropometric and CM Measurements

Body weight and height were measured [26]. Blood samples were collected from an antecubital vein
into vacutainer tubes containing EDTA after 12-hour fast and 48-hour alcohol abstinence. Plasma was
separated by centrifugation (2500 g for 10 min at 4 ◦C), and samples were aliquoted and frozen (−80 ◦C).
Plasma TC and TG concentrations were measured using enzymatic assays [27,28]. Precipitation of
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very-low density lipoprotein and LDL particles in the infranatant with heparin manganese chloride
generated the HDL-C fraction for measurements of HDL levels [29]. LDL-C was estimated using the
Friedewald formula [30]. The rocket immunoelectrophoretic method was used to measure plasma
apolipoprotein B-100 (ApoB100) concentrations [31]. Plasma C-reactive protein (CRP) was measured
by nephelometry using a sensitive assay (Prospec equipment Behring) [32]. Fasting plasma glucose
concentrations were enzymatically measured [33]. Radioimmunoassay with polyethylene glycol
separation was used to measure fasting plasma insulin concentrations [34].

2.3. DNA Extraction and Methylation Analysis

Genomic DNA was extracted from blood leukocytes using the GenElute Blood Genomic DNA
kit (Sigma-Aldrich, St. Louis, MO, USA) in all 48 subjects. NanoDrop Spectrophotometer (Thermo
Scientific, Wilmington, DE, USA) and PicoGreen DNA methods were used to quantify DNA. Infinium
Human Methylation 450 array (Illumina, San Diego, CA, USA) was used to measure DNA methylation
levels. McGill University and Genome Quebec Innovation Center (Montreal, QC, Canada) proceeded
to the bisulfite conversion and quantitative DNA methylation analysis. Methylation data on all 485,577
CpG sites were analyzed using Illumina GenomeStudio software v2011.1 and the Methylation Module.
All samples were retained after quality control steps [23]. GenomeStudio was used to perform global
normalization using control probes. Probes with a detection p-value > 0.01 in more than 5 subjects
(>10% of all subjects) were removed. We restricted our analysis to autosomes and multi-mapped
probes were also excluded [35]. Thus, 472,245 probes were considered in the analysis.

2.4. Carotenoid Measurements

Samples and standards preparation has been reported previously [8]. Briefly, 100 µL of fasting
plasma samples were thawed a few hours before analysis and transferred to Eppendorf tubes with
20 µL of 2-propanol, and 20 µL of carotenoid standard. Samples were transferred on a 400 µL fixed
well plate (ISOLUTE® SLE+, Biotage, Charlotte, NC, USA) with 900 µL of hexane:isopropanol (90/10,
v/v) in each well. Each extracted sample was evaporated under nitrogen and reconstituted with 300 µL
of methanol:dichloromethane (65/35, v/v). Plates were shaken for 10 min and samples were transferred
into high performance liquid chromatography glass vials.

Agilent 1260 liquid handling system (Agilent, Mississauga, ON, Canada) was used to perform high
performance liquid chromatography (HPLC)-UV analysis as previously described [8]. Carotenoids were
separated with a mobile phase consisting of methanol:water (98/2, v/v; Eluent A) and methyl-tert-butyl
ether (MTBE; Eluent B; VWR, Mississauga, ON, Canada). Flow-rate and gradient elution are detailed
in a previous paper [8]. UV detector was set at 450 nm and identification of each compound was
confirmed using retention time and UV spectra (190–640nm) of the pure compounds. The Chemstation
software (Agilent, Mississauga, ON, Canada) was used to carry out data acquisition. The carotenoid
concentrations are reported in µmol/L of plasma. One value for β-crypoxanthin was considered an
outlier (defined as a value falling outside of the mean ± 4 standard deviations) and was excluded
from analyses. The exclusion of this outlier is likely to have very little impact on further analysis,
considering that it affected only one subject, and the mean of total carotenoids remained very similar
(6.00 µmol/L without the outlier and 6.04 µmol/L including the outlier).

2.5. Association between DNA Methylation Levels and Total Carotenoid Concentrations

Concentrations of plasma carotenoids are available in Supplementary Table S1. Plasma total
carotenoid concentrations (µmol/L of plasma) were defined as the sum of α-carotene, β-carotene,
β-cryptoxanthin, lutein, lycopene, and zeaxanthin concentrations. Regressions between normalized
DNA methylation levels of all 472,245 CpG sites and total carotenoid concentrations adjusted for
the family ID were computed using R software v2.14.1 (R Foundation for Statistical Computing;
http://www.r-project.org) [36]. Plasma total carotenoid concentrations (independent variable) were
used to predict DNA methylation levels (dependent variable). A p-value ≤ 0.05 was used to identify

http://www.r-project.org
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significant associations. Regressions were adjusted for family ID (fixed effect) to account for the familial
structure. In order to maintain a more exploratory approach, the regressions were not adjusted for
other confounding factors. Choices of linear model and confounding factors were made for comparison
purposes with similar study by our group [37]. Weighted gene correlation network analysis (WGCNA)
was performed with methylation levels of 20,687 CpG sites showing a significant association (p-value
≤ 0.05) with total carotenoid concentrations. This allowed evaluating co-methylation similarities only
in CpG sites that are associated with carotenoids.

2.6. Weighted Gene Correlation Network Analysis (WGCNA)

WGCNA was performed with the WGCNA package [22,38] in R software using default
parameters [36]. A weighted adjacency matrix was established by calculating Pearson correlations
between each CpG site pair. The co-methylation similarity matrix was raised to a power β = 5 (R2

of 0.9570) to calculate weighted adjacency matrix [39] (Supplementary Figure S1). From this matrix,
values were used to construct a topological overlap matrix (TOM), which provided a similarity measure.
The TOM is then used to calculate the corresponding dissimilarity (1-TOM). Next, CpG sites with
coherent methylation profiles were grouped into modules using the average linkage hierarchical
clustering applied to the TOM-based dissimilarity [39]. The dynamic tree cutting algorithm (function =

cutreeDynamic, deep split = 0, minimum number of genes per module = 40, cut height = 0.25) was used
to detect methylation modules (clusters of densely interconnected CpG sites in terms of co-methylation).
The assignment of outlying genes to modules was performed using the Partitioning Around Medoids
(PAM) method. DNA methylation levels of CpG sites within a module were summarized with the
module eigengene (ME) value, which is the overall methylation level of CpG sites clustering in a
module. To identify modules that were significantly associated with lipid profile traits (TC, LDL-C,
HDL-C, TG, ApoB100), correlation between MEs [40] and traits were computed. Associations of
individual genes with lipid profile traits was quantified using gene significance (GS), defined as
the absolute correlation between the gene and the trait. Module membership (MM), defined as the
correlation of the ME and the gene methylation profile, was used to quantify the similarity of all genes
to each module. Correlations between MM and GS were computed to identify modules of interest.
We considered CpG sites with the highest MM and GS to be those of highest biological relevance [41].
CpG sites with a GS > 0.2, a MM > 0.8, and a p-value ≤ 0.05 were retained as hub genes. Due to the
high number of hub genes obtained (n = 2734), genes were subsequently ordered according to their GS
with the trait. A total of three top annotated hub genes were selected in each of the six module-lipid
associations, for a total of 18 top hub genes. VisANT 5.0 was used to construct and visualize the
topological interaction network in the black, turquoise, and pink modules [42]. VisANT is a software
framework for mining, analyzing and visualizing hierarchical organization of biological networks [43].
Weighted correlation cut-offs of 0.23, 0.44, and 0.27 were used for the black, turquoise, and pink
modules, respectively. The cut-offs were chosen to obtain visually interpretable networks, without
being too heavily loaded. Central genes were those with the most gene-gene connections. Enrichr
(http://amp.pharm.mssm.edu/Enrichr/) was used to obtain KEGG pathways 2019 and Gene Ontology
molecular functions 2018 associated with genes in the black, turquoise, and pink modules [44].

3. Results

3.1. Characteristics and Biochemical Parameters

Characteristics and biochemical parameters including plasma total carotenoid concentrations of
the parents and children are presented in Table 1. Plasma concentrations of the six main carotenoids
(α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, and zeaxanthin) and of total carotenoids
concentrations measured in each participant are presented in Supplementary Table S1.

http://amp.pharm.mssm.edu/Enrichr/
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Table 1. Characteristic and biochemical parameters.

Biochemical Parameters Parents (n = 22) Children (n = 26)

Age (years) 42.3 ± 5.3 11.3 ± 3.4
BMI (kg/m2) 23.9 ± 3.0 -

BMI percentile - 50 ± 31.1
TC (mmol/L) 4.68 ± 0.55 4.28 ± 0.51

HDL-C (mmol/L) 1.63 ± 0.38 1.55 ± 0.29
LDL-C (mmol/L) 2.61 ± 0.55 2.31 ± 0.45

TC/HDL-C 3.02 ± 0.78 2.83 ± 0.47
ApoB100 (g/L) 0.80 ± 0.15 0.70 ± 0.13
TG (mmol/L) 0.95 ± 0.35 0.93 ± 0.39

Glucose (mmol/L) 5.20 ± 0.34 4.86 ± 0.23
Insulin (pmol/L) 66.59 ± 33.54 73.00 ± 28.96

CRP (mg/L) 0.77 ± 0.84 0.43 ± 0.66
Total carotenoids (µmol/L) 6.35 ± 2.39 5.70 ± 2.05

All values are means ± SD. Abbreviations: Apolipoprotein B100 (ApoB100), body mass index (BMI), C-reactive
protein (CRP), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), standard
deviation (SD), total cholesterol (TC), total cholesterol/HDL-C (TC/HDL-C), triglycerides (TG).

3.2. Weighted Gene Correlation Network Analysis (WGCNA)

Normalized methylation levels of all 472,245 CpG sites were tested for associations with plasma
total carotenoid concentrations using regressions. A total of 20,687 CpG sites were significantly
associated (p ≤ 0.05) with total carotenoids (Supplementary Table S2). This subset of CpG sites
associated with total carotenoids was then related to lipid profile traits using WGCNA.

A total of nine distinct modules were identified from methylation levels of the 20,687 CpG sites
associated with total carotenoid concentrations using a dynamic tree cutting algorithm (Figure 1).
Using a cut-off height of 0.25 for the clustering of module eigengenes (MEs) (merged dynamic), none
of the modules has merged (Figure 1). The black, blue, brown, green, grey, pink, red, turquoise, and
yellow modules contained 431, 3308, 3235, 2096, 1479, 243, 482, 7119, and 2294 CpG sites, respectively.
The 1479 uncorrelated CpG sites were assigned to the grey module, which was excluded from further
analysis. Correlations between MEs and lipid profile traits (TC, LDL-C, HDL-C, TG, ApoB100) were
computed to find modules of interest. According to the heatmap of module-trait correlations (Figure 2),
ME of the black module (431 CpG sites) had a negative correlation with HDL-C (r =−0.34 p = 0.017). The
ME of the turquoise module (7119 CpG sites) had negative correlations with TC (r = −0.46 p = 0.0011),
HDL-C (r = −0.30 p = 0.036), LDL-C (r = −0.32 p = 0.028), and ApoB100 (r = −0.34 p = 0.018). The ME
of the pink module (243 CpG sites) had a negative correlation with HDL-C (r = −0.29 p = 0.048).

Gene significance (GS) (i.e., correlation between CpG site methylation and lipid profile traits)
was correlated to module membership (MM) (i.e., correlation of the ME and the CpG site methylation
profile). In the black module, GS for HDL-C had a significant correlation with the MM (r = 0.25
p = 1.5 × 10−7) (Supplementary Figure S2). In the turquoise module, GS for TC, HDL-C, LDL-C, and
ApoB100 had significant correlations with the MM (r = 0.46 p < 1 × 10−200, r = 0.17 p = 2.6 × 10−47,
r = 0.41 p < 1 × 10−200, and r = 0.43 p < 1 × 10−200, respectively) (Supplementary Figure S2). In
the pink module, GS for HDL-C had a significant correlation with the MM (r = 0.37 p = 2.7 × 10−9)
(Supplementary Figure S2). Hence, the black, turquoise, and pink modules were considered as modules
of interest for subsequent analyses.
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Figure 2. Heatmap of module-trait relationships depicting correlations between module eigengenes 
and lipid profile traits. Numbers in the table correspond to the correlation r and the p-value in 
parentheses. The degree of correlation is illustrated with the color legend. Abbreviations: 
Apolipoprotein B100 (ApoB100), high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), module eigengene (ME), total cholesterol (TC), triglycerides (TG). 
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The degree of correlation is illustrated with the color legend. Abbreviations: Apolipoprotein B100
(ApoB100), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
module eigengene (ME), total cholesterol (TC), triglycerides (TG).
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3.3. Hub Gene Analysis

Hub gene analysis in black, turquoise, and pink modules was conducted to explore the underlying
mechanisms behind the associations observed. A total of 17, 2700, and 17 hub genes were identified
in the black, turquoise, and pink modules, respectively (Supplementary Table S3). Due to their high
number, hub genes were subsequently ordered according to their GS with the trait. Top three most
significant hub genes were selected in each module-lipid association, for a total of 18 top hub genes
(Table 2). In the black module, PAX4, TBC1D16, and PGA5 were the top three hub genes associated with
HDL-C. In the turquoise module, RBL2, GRIN3A, and TEX2 were the top three hub genes associated
with TC, while LST1, GOSR1, and GBGT1 were associated with HDL-C, C7orf50, PDPK1, SYT17 with
LDL-C, and finally GABBR1, RAG2, and C7orf50 were associated with ApoB100 (Table 2). In the
pink module, RNASE11, TRIM68, and DEPDC1 were the top three hub genes associated with HDL-C
(Table 2).

Table 2. Top hub genes identified from WGCNA analysis.

Module-Lipid CpG Site Gene
(Chr, Accession Number) GS p-Value

GS MM p-Value
MM

Black
HDL-C

cg01999908 PAX4
(Chr7, NM_006193) −0.37 0.0092 0.85 2.10 × 10−14

cg08731068 TBC1D16
(Chr17, NM_019020) −0.37 0.011 0.89 1.70 × 10−17

cg04010296 PGA5
(Chr11, NM_014224) −0.36 0.011 0.83 4.08 × 10−13

Turquoise
TC

cg00000029 RBL2
(Chr16, NM_005611) −0.59 8.49 × 10−6 0.83 3.45 × 10−13

cg02500883 GRIN3A
(Chr9, NM_133445) −0.57 1.98 × 10−5 0.81 2.52 × 10−12

cg00864012 TEX2
(Chr17, NM_018469) −0.56 3.39 × 10−5 0.85 2.39 × 10−14

Turquoise
HDL-C

cg27616007 LST1
(Chr6, NR_029461) −0.42 0.0027 0.81 3.82 × 10−12

cg24240870 GOSR1
(Chr17, NM_004871) −0.42 0.0030 0.81 4.55 × 10−12

cg18089000 GBGT1
(Chr9, NM_021996) −0.42 0.0031 0.86 3.88 × 10−15

Turquoise
LDL-C

cg07665923 C7orf50
(Chr7, NM_001134396) −0.45 0.0012 0.83 2.22 × 10−13

cg02119755 PDPK1
(Chr16, NM_031268) −0.44 0.0017 0.87 1.62 × 10−15

cg06142108 SYT17
(Chr16, NM_016524) −0.43 0.0022 0.88 1.75 × 10−16

Turquoise
ApoB100

cg17053201 GABBR1
(Chr6, NM_021904) −0.46 0.00096 0.82 8.40 × 10−13

cg21671607 RAG2
(Chr11, NM_000536) −0.46 0.0011 0.84 7.35 × 10−14

cg07665923 C7orf50
(Chr7, NM_001134396) −0.46 0.0011 0.83 2.22 × 10−13

Pink
HDL-C

cg15505294 RNASE11
(Chr14, NM_145250) 0.36 0.012 −0.95 1.87 × 10−24

cg01719157 TRIM68
(Chr11, NM_018073) −0.35 0.013 0.81 4.10 × 10−12

cg09113768 DEPDC1
(Chr1, NM_017779) −0.35 0.015 0.83 2.22 × 10−13

Abbreviations: Apolipoprotein B100 (ApoB100), chromosome (Chr), cytosine-phosphate-guanine (CpG), gene
significance (GS), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), module
membership (MM), total cholesterol (TC) weighted gene correlation network analysis (WGCNA).
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3.4. Topological Interaction Networks

Topological interaction networks were used to illustrate gene-gene interactions within the black,
turquoise, and pink modules. In order not to overload networks, weighted correlation cut-offs were
used. In the black module containing 431 CpG sites, only annotated CpG sites with a weighted
correlation of 0.23 were included (n = 14 unique genes) (Figure 3). In the turquoise module containing
7119 CpG sites, only annotated CpG sites with a weighted correlation of 0.44 were included (n = 20
unique genes) (Figure 4). In the pink module containing 243 CpG sites, only annotated CpG sites with a
weighted correlation of 0.27 were included (n = 13 unique genes) (Figure 5). Gene Ontology molecular
functions and KEGG pathways of genes in the black, turquoise and pink modules are presented in
Supplementary Table S4.
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4. Discussion

First, in order to identify CpG sites associated with carotenoids, associations between genome-wide
DNA methylation levels and plasma total carotenoid concentrations were tested. A total of 20,687 CpG
sites were significantly associated with total carotenoid concentrations. To the best of our knowledge,
this is the first study that considered the association of plasma total carotenoid concentrations with
genome-wide DNA methylation levels. Until now, studies have been mainly focusing on the effect of
genetic variants (SNPs) on the variability in carotenoid concentrations [45–47]. Circulating carotenoids
have also been shown to have an impact on gene expression via transcription factors [16]. However,
very few studies have considered the impact of carotenoids on DNA methylation. In two cell studies,
lycopene had modest to null effects on DNA methylation of GSTP1, which is involved in prostate and
breast cancers [17,18]. In addition, a study of 165 overweight and obese subjects observed positive
associations between HERV-w methylation and dietary intakes of β-carotene and carotenoids, while
TNFαmethylation showed negative associations with dietary intakes of β-carotene and carotenoids [19].
Moreover, blood carotenoid levels were also associated with extrinsic epigenetic age acceleration [20].
Thus, the relationship between carotenoids and DNA methylation has not been widely studied using
pan-genomic tools. A potential mechanism underlying the action of carotenoids on DNA methylation
is the inhibition of the DNA methyltransferase (DNMT). Studies have shown that carotenoids (lycopene
and astaxanthin) decreased DNMT activity and protein level in vitro [48,49].

Secondly, modules and key hub genes related to lipid profile traits in the subset of 20,687 CpG
sites associated with carotenoid concentrations were identified using WGCNA. Among nine modules
identified, MEs of the black and pink modules had a significant correlation with HDL-C, while ME of
the turquoise module had significant correlations with TC, HDL-C, LDL-C, and ApoB100. Thus, highly
co-methylated genes in the black, turquoise, and pink modules may have potential interactions or
biological effects on lipid concentrations. Moreover, these modules also showed positive correlations
between GS for several lipid profile traits and the MM of the respective module. This suggests that
genes showing a strong association with lipid profile traits were also the most important elements
of their respective module. The analysis with hub genes allowed getting insights on the potential
mechanisms linking carotenoid concentrations and lipid profile. Three top hub genes were selected in
each of the six module-lipid associations. Among these 18 top hub genes (17 unique top hub genes),
several were related to lipid profile. First, cg07665923 is located in C7orf50. Several SNPs within this
gene have been associated with TC. Indeed, SNP rs1997243 was associated with TC in a genome-wide
association study on 188,577 individuals [50]. Moreover, another SNP (rs6951245) has been shown to be
a novel pleiotropic locus for both CRP and TC [51]. SNP rs11763835 is also a peak cis-microRNA-eQTL
associated with TC [52]. Second, cg02500883 is located in GRIN3A, encoding for a glutamate ionotropic
receptor NMDA type subunit 3A. SNPs within this gene have been associated with circulating lipid
concentrations [53,54]. Interestingly, treatment with astaxanthin, a xanthophyll carotenoid, in rat
neurons reduced GRIN3A gene expression [55]. Third, cg21671607 is located in RAG2, encoding for the
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recombination activating 2. Variations in this gene are associated with several clinical phenotypes going
from severe, early-onset infections to inflammation and autoimmunity [56]. Interestingly ApoE and
RAG2-deficent mice have lower plasma TC levels than do immune-competent apoE mice suggesting an
effect of the immune system on plasma lipid homeostasis [57]. Finally, cg24240870 is located in GOSR1
(GS28), encoding for the Golgi SNAP receptor complex member 1, which transports proteins among
the endoplasmic reticulum and the Golgi, and between Golgi compartments. In murine melanocytes,
25-hydroxycholesterol reduced protein levels of GS28 and may be linked to cholesterol homeostasis
through an OSBP-related protein [58].

Moreover, topological interaction network visualization represented another method to identify
novel central genes in co-methylation modules. In the black module, five central genes were identified
(ANKRD5, HCFC1R1, MUC2, NAP1L4, and SGCD). A genetic variant (rs7935422) in NAP1L4, encoding
for a nucleosome assembly protein 1 like 4, has been associated with HDL-C concentrations in various
populations [59]. Moreover, genetic variants in SGCD, encoding for a sarcoglycan delta, have been
associated with circulating lipid concentrations [54] and HDL particle size [60]. In the turquoise
module, two central genes were identified (PACS2 and LGALS12). Interestingly, PACS2 impacts lipid
metabolism by controlling formation of endoplasmic reticulum lipid-synthesizing centers, which are
found on mitochondria-associated membranes [61]. Moreover, LGALS12 is encoding for the galectin 12.
Expression of LGALS12 in adipocytes is up-regulated by PPAR-γ agonists suggesting its role in insulin
signaling and type-2 diabetes [62]. In the pink module, two central genes were identified (CNNM2 and
FAM188A). A genetic variant in CNNM2, encoding for a cyclin and CBS domain divalent metal cation
transport mediator 2, has been associated with coronary artery disease and blood pressure [63–65].
In summary, several hub genes and central genes were related to lipid metabolism, immune and
inflammatory response, and the sensible connection between the two.

The present study has some limitations. The main limitation lies in the small sample size, which
may reduce variability in DNA methylation levels, as well as limiting the statistical power to detect
CpG sites associated with total carotenoid concentrations. We did not account for multiple testing,
since we used an exploratory approach and did not want this study to be overly constrained. However,
WGCNA allowed reducing the impact of multiple testing by grouping the 20,687 CpG sites into
nine modules. Despite the fact that DNA methylation in blood leukocytes is representative of DNA
methylation in other tissues [66], it is influenced by cell composition. However, the impact of cell
composition was not taken into account in the present analyses. In a previous paper by our group,
cell heterogeneity was predicted using DNA methylation levels, and it estimated proportions of six
different cell types [24]. These six additional cofounders were not included in the present analysis in
order to prevent the reduction of the statistical power to detect significant associations and correlations.
Finally, our study did not account for diet, physical activity, smoking, and alcohol consumption of the
participants, all of which may affect circulating carotenoid concentrations [67,68].

5. Conclusions

In conclusion, DNA methylation levels of 20,687 CpG sites were associated with plasma total
carotenoid concentrations. Using WGCNA, nine co-methylation modules were identified. A total
of 2734 hub genes, and more specifically 17 unique top hub genes, associated with total carotenoid
concentrations were potentially related to lipid profile traits. Even though further studies and
validation of the hub genes are needed, this research provides evidence for the potential role of gene
co-methylation in the relationship between carotenoids, lipid profile and ultimately CM health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/6/1265/s1,
Figure S1: Scale independence and mean connectivity; Figure S2: Scatterplots of gene significance for lipid profile
traits and module membership in the A) black-HDL-C B) pink-HDL-C C) turquoise-TC D) turquoise-HDL-C E)
turquoise-LDL-C and F) turquoise-ApoB100; Table S1: Concentrations of plasma carotenoids (µmol/L of plasma);
Table S2: CpG sites showing significant correlation with plasma total carotenoids (n = 20,687); Table S3: Hub genes
identified from WGCNA analysis (n = 2734); Table S4: Molecular functions and pathways in the black, turquoise
and pink modules.
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