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Abstract: Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its
use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks
of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced
colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily
intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae)
attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/-
mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages,
including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM;
using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent inten-
sity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities
(fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1β and iNOS),
and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and
TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite
the upregulated IL-1β. In conclusion, S. cerevisiae inhibited the growth of colon cancers through
dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our
data support the use of S. cerevisiae for colon cancer protection.

Keywords: colon cancer; S. cerevisiae; whole glucan particle; cGAS deficiency; macrophages; dysbiosis;
Dectin-1

1. Introduction

Colorectal cancer is one of the leading causes of cancer-related death worldwide [1,2].
The pathogenesis of gastrointestinal cancers consists of multifactorial factors, including
some genetic background and ethnicity and environmental lifestyle factors (a high fat
with low fiber diet, alcoholic consumption, smoking, and an overweight and sedentary
lifestyle) [2]. Among these risk factors, the avoidance of dietary cancer promotors (several
hydrocarbon and dioxin-liked compounds) [3] and the administration of some products
with health benefits are most often mentioned. As such, probiotics are non-pathogenic
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organisms with possible health benefits, including colon cancer prevention, through sev-
eral possible mechanisms such as the maintenance of the physicochemical conditions of
enterocytes, the attenuation of dysbiosis (an imbalance in gut microbiota), a reduction in
carcinogenic compound-producing bacteria (e.g., Escherichia coli and Clostridium perfringens)
and carcinogen degradation, the enhanced production of some beneficial molecules (e.g.,
short-chain fatty acids), and immune modulation [4].

Indeed, Saccharomyces cerevisiae (S. cerevisiae), the regular yeasts used for several human
foods, are Eukaryotic cells with several biological proteins that resemble human cells [5]
and inhibit cancer growth through anti-proliferation and apoptosis induction properties [6].
Additionally, S. cerevisiae also induces some immune responses against cancers possibly
through lymphocyte activities and trained immunity (enhanced innate immune activi-
ties) [7,8]. In parallel, the responses against cancer cells by innate immunity, especially
macrophages, are important, as the tumor micro-environment induces macrophages that
promote tumor growth, referred to as “tumor-associated macrophages (TAM)”, and the
anti-tumor effect of S. cerevisiae through macrophage manipulation is mentioned [9]. In-
deed, whole glucan particles (WGPs), the soluble (1→3)/(1→6)-β-glucan that is the major
cell wall component of S. cerevisiae, enhances macrophage activity, partly through energy
promotion [10], and the antitumor effect of WGP in an animal model through dendritic
cell functions was reported [11]. Hence, Dectin-1, a pattern recognition receptor for glu-
can on the surface of myeloid cells (neutrophils, macrophages, and dendritic cells) and
B cells [12], might be responsible for the tumoricidal effect through immune cell activa-
tions. Nevertheless, studies on immune modulation of S. cerevisiae in macrophages are few
in number.

The colon cancer model with the use of azoxymethane (AOM), a metabolite of
dimethylhydrazine (DMH), which is a strong DNA alkylating agent found in cycads [13],
together with enterocyte damage by dextran sulfate solution (DSS) for 6 months, supports
hydrocarbon ingestion with chronic mucosal inflammation being a cause of cancer [14].
Although S. cerevisiae attenuated DMH-induced colon cancer [15], the mechanism of action
is still inconclusive. On the other hand, cyclic GMP-AMP synthase (cGAS) is the central
cytosolic double-stranded DNA (dsDNA) sensor that recognized the self-DNA from the dy-
ing cells (cancer cells), allowing the innate immune system to respond against the abnormal
cells [16]. Accumulated self-dsDNA in cancer cells induce a cGAS conformational change
to catalyze the formation of 2’,3’-cyclic GMP-AMP (cGAMP), a cyclic dinucleotide (CDN)
from ATP and GTP that activates the stimulator of interferon genes (STING), results in the
local production of type-I interferon (IFN-I)-induced cell apoptosis [17]. Unsurprisingly,
cGAS deficient (cGAS-/-) mice have been used as susceptible cancer models.

Because (1) S. cerevisiae or WGP might attenuate colon cancer through a direct effect on
immune cells [10] or tumor cells [1,11,18], (2) the presence of Dectin-1 (a major receptor of
WGP) in macrophages and its importance on cancer cells are well-known [19], and (3) there
remains a lack of data on AOM-induced cancer in cGAS-/- mice, we hypothesized that the
beta-glucan of S. cerevisiae (WGP) attenuated cancer, even with the more cancer-susceptible
property of cGAS-/- mice, through the induction of tumoricidal macrophages and tested
the hypothesis in vivo and in vitro.

2. Results
2.1. Azoxymethane Induced Colon Cancer Only in cGAS-Deficient (cGAS-/-) but Not in the
Wild-Type nor S. cerevisiae-Administered cGAS-/- Mice Partly through Dysbiosis Attenuation

Spontaneous colon cancer without an alteration in body weight was demonstrated
only in cGAS-/-, but not in wildtype (WT), mice, with a variation in the number of ma-
lignant lesions and the total tumor burdens (Figure 1A–C). As such, five out of nine
cGAS-/- mice developed intestinal lesions, while no mice in other groups demonstrated
colon cancers (Figure 1C,D), supporting the vulnerability of cGAS-/- mice against cancer
development [20]. The representative gross pictures and histological characteristics (ho-
mogeneous bizarre cell morphologies) of spontaneous colon carcinoma are demonstrated
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in Figure 1E. Because we hypothesized that the anti-tumor effect of S. cerevisiae might be
due to (1) dysbiosis attenuation [21] or (2) immune modification, especially an enhance-
ment in macrophage activities [22], further experiments were conducted. Although the
fecal microbiome analyses among WT versus cGAS-/- mice with or without S. cerevisiae
administration were not obviously different, as indicated by the abundance of bacteria in
phylum and species level (Figure 2A–C), the possible unique bacteria in each group using
linear discriminant analysis (LDA score) (Figure 2D) were different. While Anaeroplasma
was a feature that characterized WT feces, Chlamydia, Sutterella, Beta-proteobacteria, and
Mycoplasma characterized the feces of WT with S. cerevisiae (Figure 2D). Likewise, Turi-
cibacter, Coprococcus, Peptostreptococcus, Rikenella, Clostridium, Gemella, Parabacteroides, and
Marvinbryantia were a feature of cGAS-/- mice, while some beneficial bacteria (Lactobacillus
and Akkermansia), Bacteroides, Verrucomicrobia, and Ruminococcus characterized the feces
of cGAS-/- mice with S. cerevisiae (Figure 2D). Additionally, nonmetric multidimensional
scaling (NMDS), a statistical tool that groups data points into classes of similar points and
enables complex multivariate data sets to be visualized in a reduced number of dimensions,
demonstrated a possible similarity between cGAS-/- feces and cGAS-/- with S. cerevisiae
feces (Figure 2E). In parallel, the principal coordinate analysis (PCoA) of the community
structure using ThetaYC distances, a statistical method which converts data between groups
into a visualization of the similarity among groups, demonstrated a possible similarity be-
tween WT feces, the feces of WT with S. cerevisiae, and cGAS-/- feces (Figure 2F). Although
there was only a subtle difference among these groups, cGAS-/- feces was the only group
that demonstrated an increase in Rikenella and Turicibacter (Figure 2G), which might be
associated with colon cancer. However, the total abundance of fecal bacteria as indicated
by total operational taxonomic units (OTUs) and alpha-diversity analysis (Chao-1 and
Shannon score) among all groups was not different (Figure 2G). Thus, the attenuation of
colon cancer by S. cerevisiae in the AOM-induced colon cancer model might partly be due
to the impact of S. cerevisiae on fecal microbiome alteration.
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Figure 1. Schema of the experiments of azoxymethane (AOM) with dextran sulfate solution (DSS)-
induced colon cancer and oral gavage of Saccharomyces cerevisiae or phosphate buffer solution (PBS)
control in cGAS-deficient (cGAS-/-) and wild-type (WT) mice (A); characteristics of the mice as
indicated by body weight (B), number of lesions (C), total tumor size (diameter of each polyp multi-
plied by the number of polyps displaying this diameter) (D); a representation of the tumor by direct
visual observation (from mice and histological slide with a scale in centimeters) (E, left upper) and
Hematoxylin and Eosin (H&E) staining from a polyp-liked lesion indicating the monomorphic bizarre
cell morphology of the cancer lesion, with the original magnification at 100x–400x (E, histological
pictures) (n = 9–10/group) (ip., intraperitoneal injection). The analysis of time-point data (B) and
the multiple groups (C,D) were determined by repeated measures ANOVA and one-way analysis of
variance (ANOVA) with Tukey’s analysis, respectively. The exact p values for (C,D) are demonstrated
in Table S1.
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Figure 2. Fecal microbiome analysis from azoxymethane (AOM) with dextran sulfate solution (DSS)-
induced colon cancer and oral gavage of phosphate buffer solution (PBS) control or Saccharomyces
cerevisiae (S. cerevisiae) in cGAS-deficient (cGAS-/-) and wild-type (WT) mice as indicated by the
abundance of fecal bacteria in phylum and genus level with the average value (A–C); the possible
unique bacteria in each group using linear discriminant analysis (LDA score) (D); the dissimilarity
among each group by distance from the axis with non-metric multidimensional scaling (NMDS) (E);
the principal coordinate analysis (PCoA) of the community structure using ThetaYC distances (F);
and a graph demonstration of significant bacteria, with the total bacterial abundance in operational
taxonomic units (OTUs) and alpha-diversity analysis (Chao-1 and Shannon score) (n = 3/group).
*, p < 0.05 vs. other groups. The analysis of multiple groups (G) were determined by one-way analysis
of variance (ANOVA) with Tukey’s analysis. The exact p values were demonstrated in Table S1.
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2.2. Intralesional Injection of the Extract from S. cerevisiae or Whole Glucan Particle (WGP)
Attenuated Tumor Growth Partly through Macropahge Responses

Because we hypothesized that beta-glucan on the S. cerevisiae cell wall (WGP) attenu-
ates cancers in cGAS-/- mice, the subcutaneous injection of cancer cell line (MC38) with the
intralesional injection of S. cerevisiae crude extract (yeast extract), WGP, or normal saline so-
lution (NSS) control was performed in cGAS-/- mice (Figure 3A). Indeed, both yeast extract
and WGP attenuated tumor growth at the 4th week of the experiments (Figure 3B), with
the reduction in serum IL-1β and IL-6, but not TNF-α and IL-10 (Figure 3C–F), supporting
a previous publication [1]. Despite the deficiency in cGAS, S. cerevisiae still attenuated can-
cers, implying a cGAS-independent mechanism that might be correlated with WGP-altered
macrophage activities. Because WGP might have a different influence on different sub-
types of macrophages, WGP was incubated in several macrophage manipulation protocols,
including M0 (control), M1 (activation by lipopolysaccharide; LPS), M2 (IL-4 stimulation),
and TAM (tumor supernatant incubation), to explore tumoricidal activity (Figure 4A). As
such, all of these macrophages without WGP demonstrated similar tumor burdens, as indi-
cated by fluorescent intensity after 24 h incubation (Figure 4B). Meanwhile, WGP enhanced
tumoricidal activity prominently in M0 and M2 but less profoundly in TAM, without any
beneficial effects on M1 macrophages (Figure 4B). Regarding macrophage polarization
genes, M1 upregulated IL-1β and iNOS and M2 increased TGF-β, Fizz-1, and Arg-1, while
TAM mildly enhanced iNOS, TGF-β, Fizz-1, and Arg-1 (Figure 4C–H). With WGP, IL-1β
and iNOS were upregulated in all types of macrophages, except non-elevated iNOS in
M1 (Figure 4D,E). On the other hand, WGP downregulated TGF-β, Fizz-1, and Arg-1 in
M2 and reduced TGF-β and Arg-1 in TAM but upregulated TGF-β in M1 (Figure 4F–G),
supporting WGP-induced M1 macrophage polarization with pro-inflammatory properties.
For inflammatory mediators, M1 increased higher supernatant TNF-α, IL-6, and IL-10, with
the highest upregulation of TNF-α and IL-6 compared to other macrophages, while IL-10
was enhanced in all types of macrophages compared with the M0 control (Figure 5A–F).
Additionally, the upregulation of TLR-4 and NFκB was demonstrated only in M1, while
increased Dectin-1 was found in all types of macrophages when compared with M0 control
(Figure 5G–J). With WGP, there were only upregulations of TNF-α and Dectin-1, but not
other parameters, in M0, M2, and TAM, without any effects on M1 (Figure 5A–J), perhaps
in correlation with the neutral effect of WGP on M1 in macrophage tumoricidal activity
(Figure 4C). In the comparison to the M0 control, all interventions (LPS, IL-4, tumor su-
pernatant, and WGP) upregulated Dectin-1 and the elevated Dectin-1 from IL-4 and tumor
supernatant induction, but not LPS, could be enhanced by WGP (Figure 5I). Because of the
recognition of WGP by Dectin-1, the enhanced Dectin-1 (Figure 5I) might be responsible for
the elevated tumoricidal activity of macrophages (Figure 4C).
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Figure 3. Schema of the experiments of subcutaneous injection of a murine colon cancer cell line
(MC38) in cGAS-deficient (cGAS-/-) mice with daily intralesional injection by normal saline solution
(NSS) control, crude extract of Saccharomyces cerevisiae (yeast extract), or whole glucan particle (WGP)
starting from the 2nd to 4th week of experiments (A) with characteristics of the mice as indicated
by tumor volume with the representative pictures of the excised tumors (B) and serum cytokines
(IL-1β, IL-6, TNF-α, and IL-10) (C–F) (n = 7–8/group). *, p < 0.05. The analysis of time-point data
(B) and the multiple groups (C–F) were determined by repeated measures ANOVA and one-way
analysis of variance (ANOVA) with Tukey’s analysis, respectively. The exact p values for (A,C,D) are
demonstrated in Table S1.
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Figure 4. Schema of the in vitro experiments (A) with the incubation of fluorescence-stained colon
cancer cell line (MC38) with different bone marrow-derived macrophages of the wild-type mice,
including M0 (incubation with DMEM control media), M1 (LPS activation), M2 (IL-4 stimulation),
and tumor-associated macrophages (TAM; using MC38 supernatant), together with whole glucan
particle (WGP) or DMEM media control (A), with the characteristics of DMEM- or WGP-activated
experiments, as indicated by tumor burdens (fluorescent intensity with the representative pictures)
(B,C), genes of M1 macrophage polarization (pro-inflammation) (IL-1β and iNOS) (D,E), and M2
polarization (anti-inflammation) (TGF-β, Arg-1, and Fizz) (F–H). Independent triplicate experiments
were performed. *, p < 0.05 vs. DMEM in each group; #, p < 0.05 vs. M0 (DMEM). The picture was
generated by BioRender.com.

BioRender.com
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Figure 5. The characteristics of the in vitro experiments with the incubation of fluorescence-stained
colon cancer cell line (MC38) with different bone marrow-derived macrophages of the wild-type mice,
including M0 (incubation with DMEM control media), M1 (LPS activation), M2 (IL-4 stimulation),
and tumor-associated macrophages (TAM; using MC38 supernatant), together with whole glucan
particle (WGP) or DMEM media control, as indicated by supernatant pro-inflammatory cytokines
(A–C) and gene expression (TNF-α, IL-6, and IL-10) (D–F) with inflammatory signals (TLR-2, TLR-4,
Dectin-1, and NFκB) (G–J). Independent triplicate experiments were performed. *, p < 0.05 vs. DMEM
in each group; #, p < 0.05 vs. M0 (DMEM).

2.3. Cell Energy Status in Different Types of Macrophages and the Impact of WGP

Because of the well-known association between cell energy status and macrophage
function (prominent glycolysis in M1 pro-inflammatory and profound mitochondrial activ-
ity in M2 alternative macrophage polarization) [23] and the correlation between Dectin-1
activation and cell energy status [24], WPG might alter the cell energy of macrophages
(Figure 6A–F). Without WGP, the mitochondrial activity in M1 (LPS-induced macrophages)
was lower than in the M0 control, while the activity in M2 (IL-4 activation) and TAM (su-
pernatant tumor induction) were not significantly different to the M0 control, as indicated
by the oxygen consumption rate (OCR) (Figure 6A upper) and the respiratory parameters
(maximal respiration and respiratory reserve) (Figure 6E). For glycolysis activity (without
WGP), M1 and M2 (but not TAM) demonstrated a higher extracellular acidification rate
(ECAR) than the M0 control, as indicated by the value in the graph (Figure 6A lower);
however, the glycolysis activity as calculated by the area under the curve (AUC) of ECAR
of all the activated macrophages (M1, M2, and TAM) was higher than that of the M0
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control (Figure 6F). With WGP (Figure 6B), there was an increase in mitochondrial functions
(maximal respiration and respiratory reserve) without an alteration in glycolysis activity
(Figure 6E,F). In M2 and TAM (Figure 6C,D), WGP enhanced both mitochondrial and
glycolysis activities when compared with M2 or TAM alone (Figure 6E,F). The enhanced
cell energy status in M2 and TAM by WGP (Figure 6F–L) might be responsible for the
enhanced tumoricidal activity of M2 and TAM against the MC38 colon cancer cell line
(Figure 4C).

Figure 6. The characteristics of cell energy of bone marrow-derived macrophages from wild-type
mice after incubation with DMEM control media (M0), LPS (M1), IL-4 (M2) and the supernatant of
cancer cell line (MC38) (tumor-associated macrophages; TAM) with or without the whole glucan
particle (WGP), as indicated by graphs of extracellular flux analysis for mitochondrial function
(oxygen consumption rate; OCR) and glycolysis activity (extracellular acidification rate; ECAR)
(A–D), with a graph presentation of cell energy parameters, including mitochondrial functions
(maximal respiration and respiratory reserve) (E) and area under the curve (AUC) of ECAR (glycolysis
activity) (F). Independent triplicate experiments were performed. *, p < 0.05 vs. M0; #, p < 0.05.
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3. Discussion

Oral administration of Saccharomyces cerevisiae reduced the growth of colon cancers
in cGAS-deficient (cGAS-/-) mice in the models using azoxymethane (AOM) induction
and subcutaneous injection of cancer cells, possibly through energy enhancement in
macrophages through whole glucan particle (WGP)-induced Dectin-1.

3.1. Impacts of Environemental Factors and Genetic Susceptibility in Spontaneous Colon Cancer in
cGAS-/- Mice and Saccharomyces cerevisiae Administration

Although spontaneous colon cancer activation by AOM is frequently used in wildtype
(WT) mice [25–27], the protocol could not induce cancer in our WT mice and activated only
some cGAS-/- mice, possibly due to the difference in the gut microbiota of mice in the
different animal facility environments. Repeated AOM in several doses and/or increased
doses of AOM might increase cancer lesions in WT mice [28]. However, our proof of
concept experiments supported the importance of cGAS in cancer development [29]. A
single administration of a hydrocarbon compound with chronic intestinal inflammation
by dextran sulfate, a substance which directly affects the enterocyte tight junction [30],
together with a lack of dsDNA recognition by cGAS deficiency, is an example of colon
cancer development that might also be possible in humans. Indeed, chronic intestinal
inflammation without any intestinal symptoms is possible in several situations, as it can be
detected through an enhanced translocation of pathogen molecules from the gut into the
blood circulation (gut barrier defect, gut leakage or leaky gut) [31]. Examples of asymp-
tomatic chronic intestinal inflammation are obesity (systemic inflammation-induced leaky
gut) [32–34], uremia (uremic toxin-induced intestinal damage) [35,36], iron overload (ente-
rocyte iron toxicity) [37], autoimmune diseases (circulating-immune complex deposition
in the gut) [38–40], prolong oral administration of some drugs [41], and dysbiosis from
several diseases [42].

The increased susceptibility to AOM-induced colon cancer in cGAS-/- mice is possibly
not only a result of the defect in dsDNA recognition but might also from gut dysbiosis from
cGAS deficiency. With the defects in cGAS, there might be a defect in immune responses
against several intracellular bacteria, including obligate intracellular bacteria (Coxiella
burnetti, Chlamydia, Anaplasma, Ehrlichia, Rickettsia, Orientia, and Mycoplasma) [43] and non-
obligate intracellular bacteria (Salmonella, Listeria, Brucella, Rickettsia, and Legionella) [44],
that are naturally pass through the macrophage cell membrane and activate the cytosolic
cGAS receptor [45]. Indeed, the dissimilarity in fecal microbiome analysis between WT
and cGAS-/- mice was demonstrated by different distances from the axis in principal
coordinate analysis (PCoA) and different representative organisms in each group from
linear discriminant analysis (LDA). As such, cGAS-/- mice demonstrated a higher abun-
dance of Rikennella (Gram-negative anaerobic bacilli) [46] and Turricibator (Gram-positive
anaerobic bacilli) than WT mice. However, these bacteria are difficult to culture and the
data on cancer association is still unknown. Nevertheless, there was no colon cancer in S.
cerevisiae-administered cGAS-/- mice, suggesting a beneficial effect associated with yeast
probiotics against cancers, as previously mentioned [1]. Despite the several anti-cancer
mechanisms of the yeast cells, a possible effect of S. cerevisiae on the attenuation of gut
dysbiosis was indicated by an increase in some beneficial bacteria against cancers, including
Lactobacilli and Akkermansia [47,48], in cGAS-/- feces. Hence, the combination probiotics
using S. cerevisiae with other bacteria is of interest concerning cancer prevention.

3.2. Beta-Glucan from the Cell Wall of Saccharomyces cerevisiae Attenuated Subcutaneous Tumor
Growth Partly through Dectin-1-Mediated Cell Energy Enhancement in Macrophages

Additionally, S. cerevisiae might manipulate macrophage activation by the beta-glucan
component of the cell wall. Despite the deficiency in the cGAS receptor, the injection
of WGP (a commercially available S. cerevisiae glucan) or the in-house extract of glucan
inhibited the growth of subcutaneous tumors in cGAS-/- mice suggested that non-cGAS-
mediated anti-cancer mechanisms are associated with beta-glucan. Notably, the reduced
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burdens of cancer cells in glucan-administered mice resulted in lower serum IL-1β and
IL-6 (the cytokines that might be associated with tumor growth) [49]. Although glucan
might be the main component of the yeast extract, the difference in serum cytokines after
the administration of yeast extract versus the commercially available WGP (higher serum
IL-1β with lower IL-6 after WGP) implied a possible contamination in the in-house yeast
extract procedure. Due to the importance of macrophages in inflammatory responses
(M1 and M2 of pro- and anti-inflammation, respectively) and in cancers (M2-liked tumor-
associated macrophages; TAM), several subtypes of macrophages were tested. All the
subtypes of macrophages here (M1, M2, and TAM) demonstrated a similar tumoricidal
activity to control M0, as indicated by the reduction in fluorescent activities despite the
well-known prominent tumoricidal activity of M1 compared to TAM [50], implying the
importance of cytotoxic T cells (Tc) in anti-cancer activity. Indeed, TAM and M1 promote
and inhibit cancers, respectively, partly through the blockage and facilitation of Tc [51]. On
the other hand, with WGP, there was an enhanced tumoricidal activity with the upregulated
genes of M1 polarization in non-LPS activated macrophages (M0, M2, and TAM), despite
a lessor tumoricidal activity in WGP-activated TAM among all groups. Although WGP
upregulated IL-1β in M1, WGP could not enhance tumoricidal activity, implying non-
cytokine-dependent anti-tumor mechanisms [52].

Because WGP activates macrophages through Dectin-1 and other inflammatory sig-
nals [53,54], several genes were explored. Indeed, all activators (LPS, IL-4, WGP, and tumor
supernatant) upregulated Dectin-1, but not TLR-2 and TLR-4, highlighted an enhancement
of Dectin-1 on the non-specific activations of macrophages, perhaps as a preparation for
the possible following activations [24,55–57]. Although TLR-2 and TLR-4 might possibly
recognize WGP [58], Dectin-1 might be the most important pattern recognition receptor for
WGP. In M1 macrophages, WGP could not up-regulate Dectin-1, in parallel with a failure
in enhanced tumoricidal activity. Meanwhile, WGP enhanced Dectin-1, together with the
increased tumoricidal activity of M0, M2, and TAM. Hence, Dectin-1 facilitation might be
responsible for macrophage tumoricidal activity, supporting previous publications [59,60].
Due to the profound potency in terms of the inflammatory activator and cell energy alter-
ation of LPS [10] when compared with IL-4 and tumor supernatant, the limited Dectin-1
upregulation in WGP-activated M1 might be because of the lack of cell energy after LPS
stimulation. Indeed, the extracellular analysis demonstrated low mitochondrial activity
with high glycolysis in both M1 and TAM when compared with M0, similar to a previous
publication [61,62], but the more prominent mitochondrial defect, especially in the respira-
tory reserve, was demonstrated more clearly in M1 than TAM. In parallel, considering the
preserve of mitochondrial activity, the energy status of M2 was similar to TAM [63,64] when
compared with the M0 control. Nevertheless, WGP improved the cell energy status (both in
terms of mitochondria and glycolysis) in all subtypes of macrophages. From these results,
the failure of M1 in Dectin-1 upregulation and tumoricidal enhancement might be due to
the profound defect in mitochondria after LPS stimulation [65,66], which might be beyond
the point that could be significantly improved by WGP. Interestingly, the impact of WGP on
the induction of tumoricidal activity in TAM might be responsible for tumor attenuation in
AOM-mediated colon cancer and subcutaneous tumor injection, which will be beneficial for
protection against colon cancer. Although the influence of mitochondrial activity in cancer
cells is well-known [67–69], data on the impact of the mitochondria of immune cells and
Dectin-1 is less documented. We hypothesize that upregulated Dectin-1 and mitochondrial
improvement in terms of macrophages might be associated with macrophage anti-cancer
activities, as presented in Figure 7. Notably, the tests concerning macrophage stimulation
and cell energy manipulation using the in-house yeast extract were not performed here
due to an awareness of the standard of the preparation procedures. However, yeast extract
might be an economical source of glucan for real clinical settings in some developing
countries. More studies on these topics would be of interest.
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Figure 7. The proposed working hypothesis demonstrates the role of whole glucan particles (WGPs)
in the enhancement of the tumoricidal activities of macrophages. While all activators, including the
tumor microenvironment (using tumor supernatant for inducing tumor-associated macrophages;
TAM), IL-4 (M2), and lipopolysaccharide (LPS) (M1), had an effect on upregulated Dectin-1 and
increased glycolysis, LPS more prominently reduced mitochondrial activities when compared with
tumor supernatant and IL-4. Then, Dectin-1 was further upregulated by WGP in non-LPS-activated
macrophages (M2 and TAM) and further upregulated by WGP stimulation, leading to an elevation
in glycolysis and mitochondrial activities partly through WGP-Dectin-1 activation. In parallel, the
WGP-improved glycolysis was more prominent in M2 and TAM than in M1 (possibly due to the
already high glycolysis present in M1) and is possibly correlated with enhanced tumoricidal activity
in M2 and TAM, implying a glycolysis-dependent tumoricidal effect. The picture was created by
BioRender.com and is available online: https://app.biorender.com/ (accessed on 7 August 2022).

4. Materials and Methods
4.1. Animal and Animal Models

Animal care and use protocol based upon the National Institutes of Health (NIH),
USA was approved by the Institutional Animal Care and Use Committee- of the Fac-
ulty of Medicine, Chulalongkorn University, Bangkok, Thailand. Wild-type male 8-wk-
old mice on C57BL/6j background were purchased from Nomura Siam International
(Pathumwan, Bangkok, Thailand). Likewise, cyclic GMP-AMP synthase (cGAS) deficient
mice in C57BL/6J background (cGAS-/-) were kindly provided by Paludan (Aarhus Uni-
versity, Aarhus, Denmark), and only male 8-week-old mice were used [70]. The mice were
housed in standard clear plastic cages (3–5 mice per cage) with free access to water and food
(SmartHeart Rodent, Perfect companion pet care, Bangkok, Thailand), air change ration at
15 air changes per h, and a light/dark cycle of 12:12 h in 22 ± 2 ◦C with 50 ± 10% relative
humidity. A chronic inflammation-driven colon cancer model by intraperitoneal admin-
istration of azoxymethane (AOM) at 10 mg/kg body weight with 3 cycles of 1 week in
duration of 2.5% (w/v) dextran sulfate solution (DSS) solution, with a 2 week resting period,
was performed following a previous protocol [25,26]. Then, 1 × 108 CFU of S. cerevisiae
(ATCC 1171) (The American Type Culture Collection, Manassas, VA, USA) in 500 µL normal
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saline solution (NSS) of NSS alone was administered by oral gavage every other day from
the 12th to the 24th week of the experiment (Figure 1A) using 18 gauge feeding tubes
1.5 inches in length with a rounded tip mouse oral gavage needle (Sigma-Aldrich, St. Louis,
MO, USA). All mice were sacrificed in the 24th week of the experiment by cardiac puncture
under isoflurane anesthesia, and samples were collected (small and large bowels, blood,
and feces). Notably, S. cerevisiae was prepared on Sabouraud dextrose agar (SDA) (Oxiod,
Basingstoke, Hampshire, UK) for 24 h at 35 ◦C before resuspension in NSS to determine the
abundance using the Mcfarland method (0.5 Mcfarland for approximately 1 x 108 cell/mL).

To explore the anti-cancer mechanism of S. cerevisiae, the subcutaneous injection of
a colon cancer cell line (MC38) (C57BL6 murine colon adenocarcinoma cells) (Kerafast,
Boston, MA, USA) was performed. As such, MC38 at 1 x 105 cells per mice in 100 µL of
culture media, using Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine
serum (FBS), was subcutaneously injected into the left flank area following a previous
publication [71]. At 2 weeks post-injection, 10 mg of whole glucan particle (WGP), the
soluble (1→3)/(1→6)-β-Glucan) extracted from S. cerevisiae (InvivoGen, San Diego, CA,
USA) in 100 µL of normal saline solution (NSS) or NSS alone or the crude extract of S.
cerevisiae (yeast extract) were intralesionally injected once daily from the 2nd to the 4th
week of experiments. The crude extract S. cerevisiae was performed following a previous
protocol [72]. Briefly, a heating process (50 ◦C for 24 h) was used to prepare the autolyzed
yeast before mixing with 1 M NaOH at 80 ◦C in a stirrer for 2 h, dissolving the pellets with
distillation water resuspension, centrifuged again with dissolving in 1 M HCl at 80 ◦C in a
stirrer for 2 h, and centrifuged to retrieve the yeast extract pellets. The pellets were washed
with distillation water 3 times, dried in a hot air oven (60 ◦C), and kept at 4 ◦C before use.
Then, 10 mg of the yeast extract was dissolved by 1 M NaOH before pH neutralization
and injected into the tumor. Tumor volume was observed as previously mentioned [71],
and all mice were sacrificed at the 4th week of the experiment by cardiac puncture under
isoflurane anesthesia, and samples were collected (tumors and blood). Serum cytokines
were determined by enzyme-linked immunosorbent assays (ELISAs) (Invitrogen, Waltham,
MA, USA).

4.2. Fecal Microbiome Analysis

Using the DNA from each mouse’s feces (0.25 g per mouse), a fecal microbiota study
was carried out following the protocols described in earlier publications [35,42,73,74].
In brief, the power DNA isolation assay (MoBio, Carlsbad, CA, USA) and agarose gel
electrophoresis with nanodrop spectrophotometry were utilized for total DNA extrac-
tion and metagenomic DNA quality determination, respectively. The universal prokary-
otic primers 515F (forward) and 806R (reverse), 5’-GTGCCAGCMGCCGGTAA-3’ and
5’-GGACTACHVGGGTWTCTAAT-3’, respectively, and a 16S rRNA V4 library (appended
50 Illumina adapter and 30 Golay barcode sequences) were used. Each sample (240 ng) was
put on the MiSeq300 sequencing platform (Illumina, San Diego, CA, USA) with Mothur’s
standard quality screening operating procedures. Aligned and assigned taxa (operational
taxonomic units [OTUs]) based on default parameters were employed in the MiSeq plat-
form [36,75–77].

4.3. Macrophage Experiments and Fluorescent Labelling Cancer Cells

To explore the impacts of macrophages and yeasts on tumoricidal activities, in vitro
experiments were conducted. Bone marrow (BM)-derived macrophage preparation from
mouse femurs using supplemented DMEM with a 20% conditioned medium of the L929 cell
line (ATCC CCL-1), the fibroblasts used as a source of macrophage colony-stimulating
factor (M-CSF), in 5% CO2 humidified incubator at 37 ◦C for 7 days before harvesting
with cold PBS was conducted [37,54,70,78]. The macrophages at 5 x 104 cells/well in
DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS) and Penicillin-
Streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) were incubated in 5% carbon
dioxide (CO2) at 37 ◦C for 24 h before being treated for another 24 h by lipopolysaccharide
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(LPS) (Escherichia coli 026: B6; Sigma-Aldrich, St. Louis, MO, USA) (100 ng/mL) or IL-
4 (20 ng/mL) to induce M1 pro-inflammatory and M2 alternative (anti-inflammatory)
macrophage polarization, respectively [79], or DMEM alone (M0). In parallel, tumor-
conditioned media from the MC38 cell line (with IL-4 cocktails) were used to activate tumor
associate macrophages (TAM) following a previous publication [80]. For tumor-conditioned
media, MC38 cells at 4 × 106 cells in 8 mL in modified DMEM were centrifuged to remove
the suspended cells [80]. All subtypes of macrophages (M0, M1, M2, and TAM) were
incubated at 1 × 105 cells/well with 1 × 105 MC-38 cancer calls that were previously
labeled with Carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) (Sigma-Aldrich,
St. Louis, MO, USA) with WGP (100 µg/mL) or DMEM control for 24 h before sample
collection (cells and supernatant). The intensity of fluorescent cells using a fluorescent
microscope was determined by ImageJ (National Institutes of Health, MD, USA). For
fluorescent labeling, CFDA-SE (20 µM in PBS) was incubated with 1 × 105 cancer calls
for 30 min at 37 ◦C before the gentle removal of the buffer, with a further 15 min of
incubation and cell collection, according to the manufacturer’s protocol. Notably, the
passively diffused CFDA-SE in the cytoplasm was cleaved by intracellular-esterase to form
the fluorescent activity.

4.4. Gene Expression, Supernatant Cytokines, and Extracellular Flux Analysis

The influence of WGP or DMEM against different macrophages (M0, M1, M2, and
TAM) was evaluated after 24 h incubation, as determined by the expression of M1 macrophage
polarization (IL-1β and iNOS), M2 polarization (TGF-β, Arginase-1, and Fizz-1), inflamma-
tory cytokines (TNF-α, IL-6, and IL-10), pattern recognition receptors (TLR-2, TLR-4, and
Dectin-1), and NFκB downstream signaling using the primers listed in Table 1. In parallel,
supernatant cytokines (TNF-α, IL-6, and IL-10) were measured by ELISAs (Invitrogen,
Waltham, MA, USA). To determine an alteration in macrophage cell energy, extracellular
flux analysis was conducted using Seahorse XFp Analyzers (Agilent, Santa Clara, CA,
USA) with the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)
representing mitochondrial function (respiration) and glycolysis activity, respectively, as
previously described [41,81,82]. In the OCR evaluation, the stimulated macrophages
at 1 × 105 cells/well were incubated for 1 h in Seahorse media (DMEM complemented
with glucose, pyruvate, and L-glutamine) (Agilent, Santa Clara, CA, USA; 103575–100)
before activation by different metabolic interference compounds such as oligomycin, car-
bonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), and rotenone/antimycin
A. Meanwhile, the respiratory data for mitochondrial function were analyzed by Sea-
horse Wave 2.6 software based on the following equations: maximal respiration = OCR
between FCCP and rotenone/antimycin A; OCR after rotenone/antimycin A and respira-
tory reserve = OCR between FCCP and rotenone/antimycin A; OCR before oligomycin. In
parallel, glycolysis stress tests were calculated from the mitochondrial stress test using the
wave program Seahorse XF Analyzers (Agilent, Santa Clara, CA, USA) and demonstrated by
the area under the curve (AUC) of the ECAR graph, as calculated by the trapezoidal rule [83].

Table 1. List of primers used in the study.

Primers Forward Reverse

Tumor necrosis factor-alpha (TNF-α) 5′ -CCTCACACTCAGATCATCTTCTC- 3′ 5′ -AGATCCATGCCGTTGGCCAG- 3′

Interleukin-6 (IL-6) 5′ -TACCACTTCACAAGTCGGAGGc- 3′ 5′ -CTGCAAGTGCATCATCGTTGTTC- 3′

Interleukin-10 (IL-10) 5′ -GCTCTTACTGACTGGCATGAG- 3′ 5′ -CGCAGCTCTAGGAGCATGTG- 3′

Inducible nitric oxide synthase (iNOS) 5′ -ACCCACATCTGGCAGAATGAG- 3′ 5′ -AGCCATGACCTTTCGCATTAG- 3′

Interleukin-1ß (IL-1ß) 5′ -GAAATGCCACCTTTTGACAGTG- 3′ 5′ -TGGATGCTCTCATCAGGACAG- 3′

Arginase-1 (Arg-1) 5′ -CTTGGCTTGCTTCGGAACTC- 3′ 5′ -GGAGAAGGCGTTTGCTTAGTTC- 3′

Transforming Growth Factor-β (TGF-β) 5′ -CAGAGCTGCGCTTGCAGAG- 3′ 5′ -GTCAGCAGCCGGTTACCAAG- 3′

Resistin-like molecule-α (FIZZ-1) 5′ -GCCAGGTCCTGGAACCTTTC- 3′ 5′ -GGAGCAGGGAGATGCAGATGA- 3′

Nuclear factor-κB (NF-κB) 5′ -CTTCCTCAGCCATGGTACCTCT- 3′ 5′ -CAAGTCTTCATCAGCATCAAACTG- 3′

Toll like receptor-2 (TLR-2) 5′ -ACAGCAAGGTCTTCCTGGTTCC- 3′ 5′ -GCTCCCTTACAGGCTGAGTTCT- 3′

Toll like receptor-4 (TLR-4) 5′ -GGCAGCAGGTGGAATTGTAT- 3′ 5′ -AGGCCCCAGAGTTTTGTTCT- 3′

Dectin-1 5′ -TCCCGCAATCAGAGTGAAG- 3′ 5′ -GTGCAGTAAGCTTTCCTGGG- 3′
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4.5. Statistical Analysis

All data were analyzed by the Statistical Package for Social Sciences software (SPSS
22.0, SPSS Inc., Chicago, IL, USA) and Graph Pad Prism version 7.0 software (La Jolla, CA,
USA). Results were presented as mean ± standard error (SE). The differences between
multiple groups were examined for statistical significance by one-way analysis of variance
(ANOVA) with Tukey’s analysis. The survival analysis and time-point data were deter-
mined by the log-rank test and repeated measures ANOVA, respectively. A p-value < 0.05
was considered statistically significant.

5. Conclusions

In conclusion, S. cerevisiae attenuated colon cancer in AOM-induction and subcuta-
neous injection models through dysbiosis attenuation and immune modulation by beta-
glucan from the cell wall. The S. cerevisiae glucan upregulated Dectin-1 and enhanced
macrophage tumoricidal activities, partly through the improved macrophage cell energy
status. Our data support the use of S. cerevisiae or beta-glucan for colon cancer prevention.
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