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Abstract: The Internet of Things has grown quickly in the last few years, with a variety of sensing,
processing and storage devices interconnected, resulting in high data traffic. While some sensors
such as temperature, or humidity sensors produce a few bits of data periodically, imaging sensors
output data in the range of megabytes every second. This raises a complexity for battery operated
smart cameras, as they would be required to perform intensive image processing operations on
large volumes of data, within energy consumption constraints. By using intelligence partitioning
we analyse the effects of different partitioning scenarios for the processing tasks between the smart
camera node, the fog computing layer and cloud computing, in the node energy consumption as well
as the real time performance of the WVSN (Wireless Vision Sensor Node). The results obtained show
that traditional design space exploration approaches are inefficient for WVSN, while intelligence
partitioning enhances the energy consumption performance of the smart camera node and meets the
timing constraints.

Keywords: intelligence partitioning; smart camera; WVSN; IoT; in-sensor processing; fog; cloud;
energy-efficiency

1. Introduction

This is the era of information and technology, where data from a variety of sensors and devices are
merged into products and services for the end user [1–3]. The advancement in embedded electronics
providing low cost devices with small form factor and low power consumption enables the design
of smart sensors with in-sensor processing capabilities [4]. In the meantime, IoT applications have
expanded with scenarios relying on sensor deployment in both indoor and outdoor environments.
Hence, designing smart devices assuming the presence of a power plug would restrict their
applicability. To facilitate the deployment we need battery-operated smart sensors capable of
performing their tasks within the energy consumption constraint.

An alternative to the constrained resources of in-sensor computing is cloud computing [5]. It relies
on a subscription-based use of cloud instances with well defined specifications regarding computational
capabilities and network traffic. Depending on the scope of the application, the cloud can be used as
an extensive storage unit for statistical analysis of large volumes of data. It can also become part of the
processing in the WSN providing real-time support for the sensor and the end user. Our focus lies
on the latter, considering the cloud as a computational entity in an IoT application, where the sensor
can offload processing tasks and data via the Internet. The inclusion of Internet communication in an
IoT environment raises insecurities regarding achieving a satisfactory quality of service (especially
for hard real-time applications) due to significant variations in communication latency influenced by
congestion, bandwidth, or distance.
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Visual inspection has a prominent role in our daily activities. Similarly, VSNs play a significant
role in the Internet of Things perspective, for example in environmental monitoring and smart cities.
Smart cameras are sensor nodes that contain the imaging sensor, the processing device and a transceiver
in the camera node. If we consider the computational requirements of a smart camera node, they vary
depending on the imaging sensor. However, a common feature is the large volume of data produced
per second, which can be in the range of kilobytes per second up to several gigabytes per second.
This introduces a twofold problem, where on the one hand there is the significant energy consumption
caused by in-node processing of a large volume of data. On the other hand, if we consider continuously
streaming the data from the camera node to the cloud, this would result in high communication latency,
which can affect the quality of service.

Considering the large volume of data produced from a WVSN, the constrained resources of a
battery-operated smart camera and the latency for data transfer over the Internet raises the question
of where the optimal place to allocate the image processing tasks would be. Current architectures
focus on either of the two following options: all the processing is performed in the smart camera, and
sporadic data is sent to the cloud for statistical analysis; or, all the data is continuously streamed to the
cloud where all the processing is done. The first option could have a significant impact on the battery
life, while the latter could affect the quality of service due to latency, and significantly increasing the
Internet traffic for large-scale deployment. The distribution of the computational workload between
the two processing elements can be an option, as well as the introduction of an intermediate processing
layer such as fog computing [6]. The location of the fog closer to the sensor relieves the latency
complexity, while also overcoming the energy consumption constraint present in the smart camera.

In this paper, we introduce intelligence partitioning as an approach towards energy efficient smart
sensor nodes in an IoT environment. The main contributions of this work are:

• Analysis of the inter-effects that three processing entities and three classes of communication
technologies have in the IoT architecture.

• Analysis of the trade-off between processing and communication workload in the smart
sensor node.

• Defining energy efficient regions on the three implementation cases considered, based on the
hierarchy of constraints.

The remainder of the paper is organised as follows. Section 2 provides an overview of the methods
presented by state-of-the-art research for node energy-efficiency in IoT related scenarios such as mobile
computing and battery-operated cameras. Section 3 introduces the methods used in our analysis.
Sections 4 and 5 present the results and discussion on the effects of intelligence partitioning in the
node energy consumption and real-time performance.

2. Related Work

Energy efficiency in battery-operated devices has been an issue that has interested researchers
for many years. Several approaches were investigated, from which we can define three major groups.
The first group focuses on the hardware architecture, where techniques such as clock gating or power
gating can be used to reduce the energy consumption. If we simply consider a design change where we
reduce the clock frequency by 50%, it would reduce the power consumption by 87.5%, while doubling
the execution time. Hence, the overall energy consumption would be reduced to a quarter of the initial
energy consumption. Another approach considered is the use of sleep and stand-by modes when the
device is inactive. Despite the effectiveness on energy consumption reduction of these two approaches,
their implementation in devices that are generally active and with real-time performance constraints
would affect the quality of service due to either the lower clock frequency, or due to delays in wake-up
time. The third approach consists on migrating the data to remote processing elements to perform a
part or all the processing tasks. This paper focuses on the latter approach, investigating the effects that
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the distribution of image processing tasks has in the energy consumption and the overall processing
and communication delay.

In the myriad of systems constituting the IoT, WVSN systems have a higher complexity than
most smart sensor systems, due to the extensive amount of data to be processed and transferred.
The WVSN approach for energy efficiency consists mainly of either processing everything in the smart
camera, or the frames captured being continuously streamed to host processing units. For cases where
in-sensor processing is used, energy efficiency is obtained through hardware and software optimised
implementation of specific algorithms as in the case of DreamCam [7] with the feature extraction
hardware. Other smart cameras, such as SENTIOF-CAM [8] and MeshEye [9], rely on the energy
savings resulting from duty-cycling with predefined constraints, while [10,11] use external elements
such as passive infrared detectors to switch between the sleep and wake-up modes. In contrast to
in-node processing, some applications process all the data in a remote processing unit that can be a
nearby server or a public cloud service [12]. Considering the high data volume to be transferred, which
would also impact the node energy consumption, their focus is on implementing energy efficient data
reduction methods. In addition to the frame-based image processing considered so far, other smart
camera architectures have analysed the energy efficiency of the node caused by video encoding and
cloud computing [13].

Mobile cloud computing is an environment similar to WVSN due to the hard constraints
in computational resources and energy consumption. In the analysis of their energy-efficiency
problem, the use of intermediate processing layers between the mobile device and the cloud, usually
referred to as cloudlets, was included. The following papers [14–18], analyse the distribution of the
processing tasks between the computational layers based on energy constraints, latency constraints,
or a combination of the two. Their results suggest that the presence of cloudlets improves the
energy-efficiency and latency of the mobile device. However, we should also take into consideration
the difference in the constraints of real-time performance among WVSN and mobile computing,
where the former requires about one order of magnitude shorter latency intervals, resulting in harder
constraints than the latter.

The introduction of several processing layers, such as fog and cloud computing, requires a
paradigm shift regarding design space exploration. Traditional methods focus more on total allocation
of the processing tasks in only one computational entity, where all optimisation efforts are also
concentrated. In our previous work we instead investigated the inter-effects of communication and
processing in scenarios where the processing is partitioned between the smart camera node and a
remote processing unit. We named this intelligence partitioning, and the results showed that the node
energy efficiency is achieved for configurations where the processing tasks are partitioned between the
node and the remote processing unit, instead of fully allocating them in either processing component.
Considering the energy efficiency of the smart camera node achieved by intelligence partitioning,
we decided to investigate the latency and possible applicability of such a system in the real world,
considering fog and cloud processing with their incurring delays.

3. Methodology

IoT applications rely on sensor data and a set of computational tasks to be executed to achieve the
scope of the application. Through the years the set of applications together with the computational
entities have evolved, where each of these entities was analysed separately for implementation
cases. To adapt the design space exploration for these architectural requirements, we investigate in
the inter-effects that the computational entities and communication technologies have on the overall
performance of the system. The term intelligence partitioning refers to the distribution of computational
tasks among a number of computational entities, using several communication technologies, while
focusing on the node energy consumption and real-time performance of the system.

The aim of this paper is to analyse aspects related to smart camera node energy consumption
and the latency of a WVSN system consisting of node, fog and cloud computing. For the in-sensor



Sensors 2019, 19, 5162 4 of 14

processing, the smart camera supports both embedded hardware and software implementation of
the image processing tasks. We base the analysis on the assumption that the allocation of any of the
tasks is not restricted to a specific processing element. In addition, considering the processing flow in
an image processing pipeline, where the successor task is fully dependant on the predecessor task,
we consider only forward processing allocation starting from the smart camera node and moving
towards the cloud, omitting the communication from the cloud to the smart camera node. This is
represented in Figure 1 and Equation (1), where fNode, fFog and fCloud represent the computational
entities in the node, fog, and cloud, respectively, while D represents the data to be transferred between
the computational entities.

=
(

F
)
=

{ {
fNode, fFog, fCloud

}
DNode→Fog, DFog→Cloud, DNode→Cloud,

(1)

Figure 1. Schematic representation of intelligence partitioning between the node, fog and cloud
computing layers.

From the set of N image processing tasks to be executed in the WVSN, we denote by Shw and Ssw

the tasks allocated in embedded hardware and software in the smart camera, respectively. F represents
the tasks allocated in the fog node, and C the set of tasks in the cloud instance. The energy consumption
in the smart camera node can be formulated as:

Enode = ∑
i∈Shw

ti × Phw + ∑
j∈Ssw

tj × Psw + twl × Pwl (2)

ti, tj and twl represent, respectively, the execution time of the tasks implemented in embedded
hardware, software and the time to transfer the data resulting from the smart camera processing (the
node to fog communication time). Another element of interest in our analysis is the latency in the
WVSN from the moment when a frame is captured until the end of the image processing pipeline.
This can be formulated as the sum of the processing latency in each computational entity (t f and tc

is the latency of a task implemented in the fog and cloud), to which is added the latency invoked
by data transfers between the computational layers (twl represents the latency for the node to fog
communication, and tI is the latency for the fog to cloud communication via the Internet).

L = ∑
i∈Shw

ti + ∑
j∈Ssw

tj + twl + ∑
f∈F

t f + tI + ∑
c∈C

tc (3)

3.1. Processing Setup

The architecture of smart cameras consists of an imaging sensor, the processing element and
a transceiver embedded in the same node. In Section 3.3 we introduce in more detail the people
counting scenario used in our analysis. Regarding its implementation in the WVSN, the in-node
processing element relies on a TE0726-03M Raspberry Pi that includes the Xilinx Zynq-7010 FPGA
in its System on Chip (SoC) module. Due to constrained resources in the FPGA, only background
modelling, segmentation and morphology were implemented in the programmable logic. However,
all the image processing tasks were implemented in the processing system of the board, in the dual
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core ARM Cortex A9 processor. The estimation of the processing energy consumption in the smart
camera node is calculated based on the power estimator tool provided by Xilinx [19].

In our WVSN architecture, in addition to the smart camera node, we considered the presence of
fog and cloud computing elements, where the fog layer is allocated in the communication gateway and
relies on a Raspberry Pi model 3B+. Regarding cloud computing, it is a widely used term that does not
always refer to the same set of characteristics. Hence, in some publications the identifiers private and
public are used to make a distinction between them. A private cloud represents a cloud instance with a
location defined by the owner, with less computational resources than a public cloud, and generally it
is connected through a wireless network [17]. A public cloud, however, is a cloud instance owned by a
third party, located at specific points in the world and connected to the IoT system through an Internet
connection. As the focus of this paper is on public clouds only, by cloud computing we will refer to
this type of instance. This definition is of great importance for the following analysis in processing
and communication latency of the image processing tasks. In the cloud computing layer we used a
small instance from the Amazon Elastic Compute Cloud (EC2), with two virtual CPUs, 1 GB memory
and a network performance of up to 5 Gigabit. For both the fog and cloud computing layers, the
implementation of the image processing tasks for the people counting scenario was done using the
OpenCV library.

3.2. Communication Setup

In the analysis of intelligence partitioning, the communication component has a major importance
because of its influence in both the node energy consumption and the real-time performance of the
WVSN. Regardless, WVSN architectures introduced in the state-of-the-art research focus on a specific
communication technology chosen a priori [8]. In the meantime, the evolution in IoT applications has
affected communication technologies resulting in the introduction of standards such as IEEE 802.15.4,
NB-IoT and LoRa. Their aim is to support smart sensors with low energy consumption communication,
at the cost of lower data rates and longer duty cycles. Considering only such technologies would
limit our analysis to cases where all the processing is performed locally in the node, and sporadic
data is sent to the fog or cloud. For this reason, we have considered three classes of communication
technologies as shown in Table 1.

Table 1. Configurations of communication technologies.

Category Technology Plotting Order

LAN

BLE 4.2 [20] (1)
BLE 5 [21] (2)
802.11n [22] (3)

Cellular

GPRS [23] (4)
HSPA [24] (5)
LTE Cat. 4 [25] (6)

IoT

802.15.4 [26] (7)
NB-IoT [27] (8)
LoRa [28] (9)
LTE Cat. 1 [29] (10)

The estimation of the communication energy consumption and latency for the technologies in
Table 1 is based on the model of Krug et al. [30], with point-to-point communication between the node
and the gateway. The data represents ideal communication conditions under the assumption that the
nodes are already connected to each other, there are no transmission errors during communication,
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and the interference by other technologies is omitted. For each technology, the required transmission
time for a specific data amount is calculated based on the operation of the physical and medium
access layer. Intelligence partitioning configurations result in varying data rate requirements, hence,
for the transfer of large packets of data we consider several transmissions taking place continuously,
until the required data amount is transferred, assuming that fragmentation at the network layer is
possible. Furthermore, acknowledgements from the receiver are used to verify the reliability of data
transmission according to protocol specifications. Equation (4) represents the calculation of the energy
consumption for each transceiver analysed, based on the duration t and power consumption P of four
operational states tx (transmitter), rx (receiver), idle, and sleep, to transfer the data d.

E
C
(

tech
)(d

)
= ttx

(
drx

)
Ptx + trx

(
dtx

)
Prx + tidlePidle + tsleepPsleep (4)

In addition to the wireless communication technologies used for the node to fog communication,
we also need to include the latency for node to cloud or fog to cloud communication in our analysis,
which would rely on the Internet. We measured the communication latency for the different data
rate requirements produced by the configurations of intelligence partitioning in the three scenarios.
For each set we recorded the latency for transfers done every minute to the cloud for a week. The final
latency for each dataset is the average of the 90% most relevant latency information.

3.3. People Counting

The analysis of the node energy consumption alongside the WVSN latency is supported by data
provided from the implementation of a people counting scenario, as shown in Table 2. It consists of
a smart camera deployed in the city centre of Härnosand, Sweden to detect and count the people
presence continuously throughout the day and night cycle. The information produced regarding the
occupancy level of the city centre provides an important input for city planning in terms of business
development and security. In addition, to comply with regulations regarding privacy when it comes
to recording in public places, we used a low resolution thermal camera. The thermal sensor in FLIR
Lepton 3 camera detects wavelengths in the range of 8 to 14 µm with a frame rate of 9 frames per
second, 60× 149 pixels, with 8 bits pixel depth. This resolution enables the detection of people, without
features that can be used to reconstruct a person’s identity.

Table 2. Intelligence partitioning configurations in accordance with Equation (1) for the people counting
scenario. (SC - smart camera, and Cl - cloud)

Conf. Background
Modelling Segmentation Morphology Detection &

Tracking Data Rate

1 SC SC SC SC 4
2 SC SC SC Fog 75
3 SC SC SC Cl 75
4 SC SC Fog Fog 91
5 SC SC Fog Cl 91
6 SC SC Cl Cl 91
7 SC Fog Fog Fog 3179
8 SC Fog Fog Cl 3179
9 SC Fog Cl Cl 3179
10 SC Cl Cl Cl 3179
11 Fog Fog Fog Fog 3179
12 Fog Fog Fog Cl 3179
13 Fog Fog Cl Cl 3179
14 Fog Cl Cl Cl 3179
15 Cl Cl Cl Cl 3179

The people counting scenario relies on a set of image processing tasks starting with background
modelling and subtraction as described in [31]. After subtraction we obtain the foreground image,
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a greyscale frame, which is later segmented based on a global predefined threshold. The segmented
frame has a reduced size compared to the initial greyscale image, with 1 bit per pixel representation.
To further improve the accuracy of the foreground detection, we apply morphological operations as
erosion and dilation to the binary frame, removing the noise around the object of interest. The resulting
binary image is used to detect and count people based on bounding box and Kalman filter methods.
As we consider partitioning these image processing tasks between the computational elements present
in the WVSN, we transfer frames to the fog and cloud. To reduce the communication bandwidth
requirements, we use PNG compression for greyscale images, and CCITT group 4 compression for
binary image compression. When the partitioning point is between the node and the fog/cloud
precedes segmentation, we apply greyscale compression to each frame, otherwise we rely on binary
image compression. Furthermore, we omit video compression methods from our analysis, because
their artefacts from spatial and temporal compression would require adaption and verification of the
image processing systems taken from literature. Hence, we have limited the design exploration to use
only lossless image compression in order to fit the selected design cases.

3.4. Particle and Pedestrian Detection

In our analysis of the effects of intelligence partitioning in the node energy consumption and the
overall latency, we have also included two scenarios of particle and pedestrian detection. The set of
image processing tasks and the resulting data rate requirements based on the intelligence partitioning
configurations vary between the two. The former scenario is developed by Imran et al. [32] and as
shown in Table 3, it results in ten processing configurations with data rates varying from 259 bytes
to 256,000 bytes, based on image processing tasks such as subtraction, segmentation, morphology,
ROI and compression. The latter scenario designed by Maggiani et al. [33] provides and embedded
architecture for pedestrian detection, relying on tasks such as gradient calculation, histogram of
gradient, normalisation and SVM (Support Vector Machine). For our analysis we consider ten
intelligence partitioning configurations, with the resulting data rates in the range from 11,264 bytes to
964,608 bytes, as shown in Table 4.

Table 3. Intelligence partitioning configurations in accordance with Equation (1) for the particle
detection scenario. (SC - smart camera, and Cl - cloud)

Conf. Image
Capturing

Background
Modelling Segmentation Morphology ROI CompressionOther Data

Rate

1 SC SC SC SC SC SC Fog 259
2 SC SC SC SC SC SC Cl 259
3 SC SC SC SC Fog SC Fog 500
4 SC SC SC SC Cl SC Cl 500
5 SC SC SC Fog Fog SC Fog 680
6 SC SC SC Cl Cl SC Cl 680
7 SC SC Fog Fog Fog - Fog 256,000
8 SC SC Cl Cl Cl - Cl 256,000
9 SC Fog Fog Fog Fog - Fog 256,000
10 SC Cl Cl Cl Cl - Cl 256,000
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Table 4. Intelligence partitioning configurations in accordance with Equation (1) for the pedestrian
detection scenario. (SC - smart camera, and Cl - cloud)

Conf. Image
Capturing Gradient Histogram Normalisation SVM Other Data

Rate

1 SC SC SC SC SC Fog 11,264
2 SC SC SC SC SC Cl 11,264
3 SC SC SC SC Fog Fog 119,808
4 SC SC SC SC Cl Cl 119,808
5 SC SC SC Fog Fog Fog 119,808
6 SC SC SC Cl Cl Cl 119,808
7 SC SC Fog Fog Fog Fog 964,608
8 SC SC Cl Cl Cl Cl 964,608
9 SC Fog Fog Fog Fog Fog 964,608
10 SC Cl Cl Cl Cl Cl 964,608

4. Results

The performance of a WVSN is strongly related to the fulfilment of constraints regarding the
smart camera node energy consumption and the overall latency of both processing and communication
of data between the processing layers. In this section we present the results of the node energy
consumption and latency from applying intelligence partitioning to the three scenarios analysed.
The latency and energy consumption calculations are done on frame-based image processing.

4.1. People Counting

For the people counting scenario, in Figure 2, there are the plots regarding the node energy
consumption and the latency of the intelligence partitioning configurations considered. Configurations
11–15 have all the processing tasks allocated among the fog and the cloud layer, while the smart
camera node only captures the frames, compresses and transfers them via wireless communication to
the gateway. Configurations 7–10 only have background modelling and subtraction implemented in
the smart camera, while the remaining tasks are computed remotely. A common factor among these
configurations is the communication workload, where they are required to transfer greyscale frames of
8940 bytes, for each captured frame, to be further processed in the fog and/or cloud. Both the node
energy consumption and the latency are at their peak for these configurations with about 2 × 10−2

Joules per frame, and a latency of 0.4 s.

(a) (b)
Figure 2. Total energy consumption and latency for the people counting scenario. (a) Energy
consumption in the smart camera node and battery energy allowance per sample; (b) Latency of
processing and communication in WVSN for each intelligence partitioning configuration.

Other configurations of interest are 1, 11 and 15, where all the processing is allocated in only one
of the computational layers (the node, the fog and the cloud, respectively). This approach is common in
many WVSN systems, as well as other IoT systems, facilitating the design process by concentrating the



Sensors 2019, 19, 5162 9 of 14

optimisation efforts to only one computational element. The implementation of all the tasks in the smart
camera node delivers results within our expectations, with sub-optimal energy consumption 3 times
higher than the energy consumption of the optimal intelligence partitioning configuration, while
meeting the latency constraints. Configurations 11 and 15 have a worse performance with 3 orders of
magnitude higher energy consumption, and latency beyond the real-time performance constraints.

Configurations 5, 8 and 9 rely on the use of all three computational layers for the image processing
pipeline. As mentioned above, configurations 8 and 9 have a sub-optimal performance due to extensive
data rate requirements. However, configuration 5 provides an optimal energy consumption for the
smart camera node with 3.5 × 10−5 Joules per frame, while meeting the latency constraint with a
latency of 8 × 10−2 s. As the latency is very close to the constraint of 0.1 s, the choice of wireless
communication technology is of major importance in the preservation of the constraint. In this case,
technologies such as LoRa and NB-IoT cannot be used due to high communication latency, while BLE
5 and 802.11n provide better performance.

The overall optimal intelligence partitioning configuration is configuration 2. It relies on the
execution of background modelling, subtraction, segmentation and morphology in the smart camera,
while detection and tracking are allocated in the fog, with the communication supported by BLE 5.
This configuration provides the lowest energy consumption in the node with 3.4 × 10−5 Joules per
frame, and the overall latency is 3 × 10−3 s, within the constraints of real-time performance.

4.2. Particle and Pedestrian Detection

The intelligence partitioning analysis omits the processing latency in the fog and cloud computing
elements for the particle and pedestrian detection scenarios. Instead, it considers the communication
latency for the required data rates. Figures 3 and 4 show the results of the energy consumption
and latency for the partitioning configurations considered in the particle detection and pedestrian
detection scenarios. Configurations from 1 to 6 in Figure 3 have a comparable energy consumption
of 3.1 × 10−4 Joules, varying among them with approximately 1%, while the minimum latency is
obtained in configuration 5 with 4 × 10−2 s. Configurations 7 to 10 have a higher energy consumption
due to higher communication workload with data rates of 250 kB per frame. The latency of all the
configurations is above the 3.3 × 10−2 s threshold, showing that this system cannot deliver real-time
performance regardless of intelligence partitioning configurations.

(a) (b)
Figure 3. Total energy consumption and latency for the particle detection scenario. (a) Energy
consumption in the smart camera node and battery energy allowance per sample; (b) Latency of
processing and communication in WVSN for each intelligence partitioning configuration.
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(a) (b)
Figure 4. Total energy consumption and latency for the pedestrian detection scenario. (a) Energy
consumption in the smart camera node and battery energy allowance per sample; (b) Latency of
processing and communication in WVSN for each intelligence partitioning configuration.

The pedestrian detection scenario, unlike the previous scenarios shows that the optimal
partitioning configuration consists of implementing all the tasks considered in the smart camera
node. This is due to the significant data reduction from 964,608 bytes to 11,264 bytes per frame
from the image processing tasks, subsequently reducing the communication requirements from the
node to the gateway. These results put an emphasis on the relationship between processing and the
reduction in data rate requirements and the significant impact it can have on the efficiency of design
space exploration.

5. Discussion

In this paper, we analyse how intelligence partitioning of the computational tasks between the
smart camera node, the fog layer and the cloud affects the performance of the node in terms of energy
consumption, while also considering real-time performance and coverage area for communication.
The aim is to show how sensitive and therefore flexible the design exploration method needs to be,
to optimise the performance of the node in an environment with node, fog and cloud computing.
While traditional task partitioning in WVSN mainly consists of either in-node or remote processing,
with intelligence partitioning, we prove that such an approach is not necessarily optimal, especially
if we consider many constraints such as communication range, real-time performance and battery
lifetime. The results obtained from the people counting, particle, and pedestrian detection scenarios
suggest that intelligence partitioning can be used to enhance the performance of a WVSN. However,
there are several elements that need to be considered related to processing and communication aspects.

In the results section, we showed that for the pedestrian detection scenario, the extensive
processing provides marginal reduction in data rate requirements until the final processing task.
Hence, in-node allocation of the image processing tasks proved to be more efficient. Instead, for the
people counting and the particle detection scenarios there is a continuous data reduction resulting
from the image processing tasks. Therefore, the energy efficient configurations consisted of distributed
processing among the computational entities. To provide an insight at the inter-effects of processing
and data rate requirements in the overall performance of the smart camera node in the WVSN,
we plotted the latency against the node energy consumption for each of the scenarios as shown
in Figure 5. For the people counting scenario, we have data rates from 4 to 3179 Bytes per frame,
with Figure 5a showing a clear distinction between the intelligence partitioning configurations where
the tasks are allocated between node-fog, node-cloud and all remotely in either the fog or the cloud.
The performance advantages of intelligence partitioning are visible, with the node-fog partitioning
configuration providing the highest efficiency in terms of energy consumption and latency.

The particle detection scenario has higher data rate requirements, reaching a range of 259 to
256,000 Bytes per frame. This results in communication limitations for IoT technologies such as
LoRa and NB-IoT. The increment in communication workload diminishes the distinction between the
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intelligence partitioning configurations, with the efficiency trade off marked mainly by communication
technologies as shown in Figure 5b. The data rate requirements in the pedestrian detection scenario
vary from 11,264 to 964,608 Bytes, and are the highest among the scenarios considered. Subsequently,
in Figure 5c the latency and energy consumption of the wireless communication technology defines the
optimal intelligence partitioning configuration. These results emphasise the importance of processing
and communication inter-effects in design space exploration.

In the motivation of intelligence partitioning analysis, we mention scenarios such as
environmental monitoring and smart city, alongside their prospective need for a network of
battery-operated smart cameras to cover large areas and perform a multitude of tasks within a
satisfactory battery lifetime. Considering this, one key aspect in selecting the optimal partitioning
configuration and communication technology is not only the node energy consumption, but also the
communication range. For all the scenarios reviewed above, the overall optimal energy consumption
is provided by configurations relying on communication technologies with a low communication
range of about 100 m (BLE, 802.11n, 802.15.4). A strong constraint regarding the communication range
would shift the optimal partitions to configurations with LTE Cat.1 and Cat.4 technologies, resulting in
higher energy consumption in the range of 3 to 7 times higher than the overall optimum.

(a) (b)

(c)
Figure 5. Delay and energy for intelligence partitioning configurations. (a) People counting scenario;
(b) Particle detection scenario; (c) Pedestrian detection scenario.

Both people counting and particle detection had their best performance in terms of energy
consumption and latency for configurations where the tasks are partitioned between the computational
layers. Nevertheless, if we consider both systems with hard real-time performance, only the people
counting scenario can be implemented. For the particle detection scenario, the processing latency
is high enough that the addition of the wireless communication latency for data transfers to the fog
makes it impossible to meet real-time performance constraints. Furthermore, if we continue under
the assumption of hard real-time constraints, the use of cloud computing can result in an unstable
system, caused by the high variation of communication time through the Internet. We analysed the
latency for node/fog to cloud communication for different data rate requirements, and the results
showed no correlation between the communication workload in terms of frame size, and the latency.
Hence, for systems without stringent real-time constraints, the aggregation of data in the gateway and
allocation of intensive computational tasks in the cloud could have a positive impact on the camera
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node energy efficiency. However, this does not mean that we can simply stream all the data collected
from the camera and process it in the cloud. The energy consumption of all three scenarios showed
that fully remote processing is inefficient for the smart camera node energy consumption due to the
high communication workload for the node to gateway communication.

Figure 6 summarises the observations resulting from intelligence partitioning. For architectures
where in-node implementation of the computational tasks results in high energy consumption and
high latency, we observe three prominent solutions. In-node optimisation through fine-tuned hardware
implementation of computational blocks that can be demanding in processing time, can improve both
energy consumption and latency. However, such solutions require a long time to be developed and
considerations about the embedded device capacity. A less time consuming option can be to shift the
architecture towards a node-fog computing system, which, depending on the application requirements,
can meet real-time performance requirements. Furthermore, if the system has no constraints regarding
latency, cloud computing can be an optimal solution, reducing the node energy consumption while
using extensive computational and memory resources at a low cost.

Figure 6. Representation of the computational shift inspired by intelligence partitioning, and the
expected effects.

6. Conclusions

This paper proposes intelligence partitioning as an approach towards energy efficient
battery-operated smart cameras. The data obtained from the analysis of three implementation scenarios
disproves the general assumption that the allocation of all the computational tasks either in-node
or remotely is the most energy efficient approach. It also shows that there is no golden intelligence
partitioning point, but there are different regions where performance improves depending on the
definition and hierarchy of constraints such as energy consumption, latency, or communication range.
The overview of latency and energy consumption underlined the importance of the communication
workload in the energy efficiency of the node. Understanding the relationship between additional
processing and the resulting reduction in communication data rates is a key element in defining if
intelligence partitioning can enhance the given system. Considering the requirement for small form
factor in IoT devices, intelligence partitioning enables the implementation of demanding computer
vision applications within satisfactory battery lifetime thresholds.

The problem of the distribution of the computational tasks for the node energy efficiency is greater
than could be presented in this paper. Another important consideration that will need to be included
as we move forward with WVSN architectures is security. The distribution of the computational
tasks and data results in a more exposed system, hence, the inclusion of encryption algorithms in the
smart camera node will become a strong requirement in future WVSN, subsequently affecting design
space exploration.
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