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Abstract

The genomic information of microbes is a major determinant of their phenotypic properties,

yet it is largely unknown to what extent ecological associations between different species

can be explained by their genome composition. To bridge this gap, this study introduces two

new genome-wide pairwise measures of microbe-microbe interaction. The first (genome

content similarity index) quantifies similarity in genome composition between two microbes,

while the second (microbe-microbe functional association index) summarizes the topology

of a protein functional association network built for a given pair of microbes and quantifies

the fraction of network edges crossing organismal boundaries. These new indices are then

used to predict co-occurrence between reference genomes from two 16S-based ecological

datasets, accounting for phylogenetic relatedness of the taxa. Phylogenetic relatedness

was found to be a strong predictor of ecological associations between microbes which

explains about 10% of variance in co-occurrence data, but genome composition was found

to be a strong predictor as well, it explains up to 4% the variance in co-occurrence when all

genomic-based indices are used in combination, even after accounting for evolutionary rela-

tionships between the species. On their own, the metrics proposed here explain a larger pro-

portion of variance than previously reported more complex methods that rely on metabolic

network comparisons. In summary, results of this study indicate that microbial genomes do

indeed contain detectable signal of organismal ecology, and the methods described in the

paper can be used to improve mechanistic understanding of microbe-microbe interactions.

Author summary

It is still unknown to what extent ecological associations between microbes, as measured

by co-occurrence of different taxa in 16S rRNA surveys, can be explained, or predicted,

using composition and structure of microbial genomes alone. Here I introduce two new

genome-wide, pairwise indices for quantifying the propensity of microbial species to

interact with each other. The first measure quantifies similarity in genome composition

between two microbes. The second measure summarizes the topology of a protein func-

tional association network built for a given pair of microbes and quantifies the fraction of
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network edges crossing organismal boundaries. I then study the ability of two newly pro-

posed and two previously reported indices to explain variation in microbial co-occur-

rence. All four measures are significantly correlated with co-occurrence of microbes even

when accounting for evolutionary relationships between the species. One of the newly

developed indices outperforms previously proposed ones and explains up to 3.5% of the

variance in co-occurrence. In summary, the indices described here are able to detect eco-

logical associations between species using only their genomic information; however, addi-

tional methods are needed to provide more reliable genomic tools for microbial ecology.

Introduction

Due to the rise of polymicrobial infections [1], the potential of community replacement ther-

apy in preventing infections after antibiotic treatment [2–4], and the developing interest in

microbiome engineering [5,6], there is a pressing need to better understand the mechanisms

behind microbial community assembly and function. Unfortunately, the processes that govern

complex communities of microorganisms remain poorly understood. Below, I describe the

two canonical approaches used in microbial ecology to predict interactions between microbes

and explain their limitations.

Phylogenetic marker-based approaches in microbial ecology

Classical approaches for characterizing microbe-microbe interactions include environmental

surveys where the presence or abundance of different species in the community is estimated

from the presence or abundances of lineage specific 16S rRNA or other phylogenetic markers

[7,8]. These types of data collected from a variety of different but related habitats [9–11] or

from the same habitat across time or space [12,13] are used to understand microbe-microbe

interactions. The interactions are inferred from concerted changes in organismal abundance

or patterns of species co-occurrence. While 16S rRNA based approaches to the problem are

informative, they do not provide a clear way to understand the molecular mechanisms of

inferred dependencies between the species.

Genomics-based approaches in microbial ecology

While 16S rRNA based approaches do not lead mechanistic understanding of inferred patterns

of microbe-microbe interactions, it is known that such interactions are driven by microbial

metabolism and physiology: bacteria compete for essential nutrients [14,15], form food chains

[16], and influence each other via secondary metabolites [17] and signaling molecules [18].

However, the extent to which global genome composition and structure influences organismal

ecology remains undetermined, and only recently have researchers attempted to use geno-

mics-based approaches to characterize microbial communities and their governing molecular

principles.

The most popular currently existing genomics-based approaches for predicting relation-

ships between microbes were developed within “reverse ecology” framework [19,20]. This

framework produces indices measuring metabolic complementarity (the fraction of biochemi-

cal compounds predicted to be necessary for the metabolism of one microbe but synthesized

by another) and metabolic competition (the fraction of biochemical compounds predicted to

be necessary for the metabolism of both microbes), which can be used to evaluate how two

given microorganisms might interact metabolically [21]. While these metrics are well regarded
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and have been used to study microbe-microbe interactions in human gut and other human

associated habitats [21–23], it is not known to what extent they are able to explain ecological

associations between microbial species.

Metabolic competition and complementarity indices are constructed upon the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) biochemical pathway annotations, which are avail-

able only for some proteins (often a small fraction) in any given genome. Additionally, level of

KEGG pathway annotation depends heavily on how extensively a given microorganism has

been studied. These are two potential limitations to using KEGG microbial comparative geno-

mics in general and for understanding microbial ecology with metabolic indices in particular.

An alternative to using KEGG pathways is to assess protein functional associations with

genome content-based methods. These methods infer functional associations between proteins

using measures derived from a number of distantly related genomes, summarizing informa-

tion on their composition and structure [24]. Well-known genome content-based methods for

predicting protein functional associations include phyletic profile, gene neighbor, and gene

fusion [24]. The gene neighbor approach is built upon the observation that functionally related

proteins tend to be encoded next to each other in various microbial genomes. Co-encoding is

driven by the contribution of horizontal gene transfer to microbial genome evolution [25] as

well as some aspects of transcriptional regulation in prokaryotes [26]. The gene neighbor

approach has been shown to outperform other methods when evaluated using EcoCyc com-

plexes and pathways data [27]. While composite methods incorporating information from sev-

eral genome content-based prediction strategies have been proposed, they were not found to

provide a significant advantage over the gene neighbor method alone [28].

While the gene neighbor method or other genome content-based methods do not pinpoint

the exact molecular mechanisms of functional associations between the proteins, they have

been successfully used to predict novel cellular systems [28,29], biosynthetic gene clusters pro-

ducing secondary metabolites [30,31], CRISPR associated genes [32], and novel genetic com-

ponents of known metabolic pathways [33,34]. The success of genome content-based methods

in understanding the biology of individual genomes suggests that these methods could be use-

ful in evaluating functional relationships between the proteins within supra-genomes of micro-

bial communities as well [35]. Additionally, genome content-based inference about functional

associations between proteins should be less affected than KEGG pathways by how well an

organism is understood, which mitigates at least one limitation of using KEGG annotation.

Aims of the study

In this study I aim to address two following points: (1) to develop new genomic indices for

quantifying propensity of the microbes to interact with each other using gene neighbor

method for predicting functional associations between proteins; (2) to understand to what

extent microbe-microbe interactions, represented by microbial co-occurrence, can be

explained using genomic information alone. I also evaluated how well newly developed geno-

mics-based methods can predict microbial co-occurrence in comparison to already existing

ones.

Results

Gene neighbor-based predictions incorporate a large fraction of genes

across bacterial genomes than KEGG pathways

To better understand what fraction of ORFs (Open Reading Frames) across variety of micro-

bial genomes is annotated with KEGG pathways information or using gene neighbor-based
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predictions I surveyed. 308 microbial genomes from ecological dataset 2 (described later).

Results indicate that between 10% and 65% of the ORFs are included in the KEGG pathways

data from IMG JGI (S1A Fig). On the other hand, using gene neighbor-based predictions

allows for the incorporation of information from a much larger fraction of genes encoded in

each genome. Putative pathways predicted using clustering of protein functional association

networks (also called “clusters of functionally linked genes”, or “gene sets” throughout the

manuscript) incorporate between 35% and 95% of all ORFs (S1B Fig). Proportion varies across

organisms and depending on minimal allowed gene set size.

New metrics for quantifying associations between microbes

Genome content similarity index. I designed the “genome content similarity index” to

capture the overall similarity of genome content of any two given microbes. The central idea of

using this metric is that microbes with more similar genomes might ether exclude each other

through competition or co-occur with each other due to habitat filtering. This index was calcu-

lated for every relevant pair of genomes as illustrated in Fig 1A and explained in details in

Materials and Methods section.

Microbe-microbe functional association index. I design the “microbe-microbe func-

tional association index” to capture potential for interaction between proteins encoded in

genomes of two microbes if there was no boundary between them. This metric was calculated

for every relevant pair of genomes as illustrated in Fig 1B and explained in details in Materials

and Methods section.

The approach of ignoring organismal boundaries and treating a community of microbes as

one organism is consistent with the idea of a metagenome of a supra-organism, which is com-

monly used in microbial ecology [36]. The idea of a supra-organism is mechanistically justifi-

able through the presence of diffusible molecules which connect metabolic networks of single

individuals [37], release of all of the metabolites and macromolecules in case of cell lysis [38],

and the existence of extracellular proteins carrying out their functions on the outside of the

cell [39], in addition to other possibilities.

Empirical distribution of genome content similarity and microbe-microbe

functional association indices

In order to evaluate the empirical properties of the indices described above, I calculate genome

content similarity and microbe-microbe functional association metrics by comparing the

genome of Escherichia coli str. K-12 substr. MG1655, Clostridium tetani E88, or Halobacterium
sp. NRC-1, to the other 759 microbial genomes in STRING (S2A Fig). Only representative, dis-

tantly related, core genomes from STRING are included here. Accessory genomes, closely

related to the three species in focus, are also included, but not ones related to core genomes

other than E. coli, C. tetani or Halobacterium sp.

Uneven representation of bacteria and archaea in STRING is evident from the bimodal dis-

tribution of phylogenetic distances between each of the three focal genomes and the rest of the

included species (Fig 2 histograms on top), and from differences between distributions of phy-

logenetic distances measured from Halobacterium (archeae) and E. coli and C. tetani
(bacteria).

Across all pairs of species examined, the two indices show a unimodal distribution ranging

from 0.5 to 1 (Fig 2A) and 0 to 0.4 (Fig 2B) for genome content similarity and microbe-

microbe functional association, respectively. Both indices decay with growth of phylogenetic

distance. In the case of the genome content similarity index for E. coli, the relationship appears

exponential, while in case of other genomes, they seem linear (Fig 2A). This can possibly be

Explaining ecology using genomics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005366 February 2, 2017 4 / 20



attributed to the presence of closely related strains of E. coli in STRING and the absence of a

large number of closely related taxa for other genomes.

Indices developed here are correlated with microbial co-occurrence in

two ecological datasets

Correlation analysis is performed to reveal if new indices developed here can be useful in pre-

dicting microbial co-occurrence (S2B Fig). Pairwise genome content similarity, microbe-

microbe functional association, and co-occurrence of the microbes are calculated for STRING

genomes detected in following ecological datasets:

1. Co-occurrence between microbes from various habitats (marine and fresh water, soil, host-

associated habitats and so on) is calculated from Operational Taxonomic Unit (OTU) and

sample information in the Greengenes database, which includes 308 genomes.

2. Co-occurrence between microbial species from the human intestinal microbiome as

reported in Levy and Borenstein, 2013 [21], which includes 127 genomes.

Fig 1. An illustration of how new genomics-based indices are computed. (A) Genome content similarity index. In case of gene set 1 there are

four gene families which are absent or present in both genome A and genome B, resulting in similarity value of 4 for this gene set. In total gene set 1

contains 8 gene families, which means on average 0.5 of them have the same presence/absence state. This way gene set specific similarity per gene

was calculated for each gene set, in current illustration there are 7 of them. Further, to produce genome-wide summary scores are averaged across

gene set of appropriate size and represented in at least one of the genome (see text for details). (B) Microbe-microbe functional association index.

Genomes of two species (A and B) encode genes from 6 and 5 gene families respectively, three gene families are encoded exclusively in genome A

(1, 4 and 5), two exclusively in genome B (2 and 3), and three in both genomes (6, 7 and 8). These three categories label the nodes of the protein

functional association network. Edges connecting gene families are classified in 6 classes as shown on the figure. Edges connecting gene family

encoded in only genome A to gene family encoded in only genome B would have to cross organismal boundary in order to exist within the network of

two-species (A and B) community.

doi:10.1371/journal.pcbi.1005366.g001
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The two ecological datasets described above should represent different conditions for the

metrics to predict associations between microbes within different habitats (dataset 1) or to cap-

ture concerted patterns of presence or absence of microbes within the same environment

(dataset 2).

Next, I calculate partial correlations between the indices and co-occurrence accounting for

phylogenetic relationships between the species for both ecological datasets (S2B Fig). Co-

occurrence is correlated positively with the genome content similarity index in both ecological

datasets (Fig 3), with Pearson correlations between the measures equal to 0.207 (p-

value = 0.0001) in dataset 1 and 0.1954 (p-value = 0.0001) in dataset 2 (Fig 3A and 3C). This

result means that the more similar the genomes of two microbes are, the more likely they are

Fig 2. Relationship between new metrics and phylogenetic distances between the organisms. (A)

Genome content similarity and (B) microbe-microbe functional association indices with phylogenetic

distances between the species for three microbial taxa (shown on the top right) when compared to other core

genomes from STRING and microbes related to the query genomes. Distribution of phylogenetic distances (in

substitutions per site in 16S rRNA) is shown as histogram on the top, distributions of the indices are shown on

the right of the corresponding plots.

doi:10.1371/journal.pcbi.1005366.g002
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to be found together in the environment, thus highlighting the importance of habitat filtering

in microbial community assembly both across the environments (dataset 1) and within similar

ecological habitats (dataset 2).

Co-occurrence is also correlated positively with the microbe-microbe functional association

index in both ecological datasets (Fig 3). The Pearson correlations between the measures are

0.2437 (p-value = 0.0001) and 0.06768 (p-value = 0. 0331) in datasets 1 and 2, respectively (Fig

3B and 3D). This result indicates that taxa, which tend to be found together, have higher

Fig 3. Relationship between co-occurrence and new metrics. Genome content similarity index (A) and (C) and microbe-microbe functional

association index (B) and (D) in two different ecological datasets as shown in rows. In each plot, both response and independent variables are adjusted

for phylogenetic distance between organisms. Pearson correlations are shown for every plot, “*” and “**” symbols denote associated Mantel p-

value < 0.05 and < 0.01 respectively.

doi:10.1371/journal.pcbi.1005366.g003
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potential for interaction at the molecular level as captured here through reconstructed protein-

protein functional association network.

Comparing indices developed here to previously existing methods using

ecological data from human stool (dataset 2)

Ecological dataset 2 is also used to compare metrics developed here to previously reported

metabolic competition and complementarity indices, which are constructed using KEGG

pathways. To compare predictive power of different metrics, I perform Mantel regression anal-

ysis between co-occurrence as the response variable, and ether phylogenetic distance alone

(regression model 1), or one of the four available genomics-based indices, two generated in

this study and two existing ones, and phylogenetic distance between organisms (regression

models 2 to 5), or all five predictors as the independent variables (regression model 6), in eco-

logical datasets 2 (S2C Fig).

All of the tested regression models are statistically supported (Table 1), p-values associated

with F-statistics are less than 0.05. Phylogenetic distances alone explain 9.84% of the variance

in co-occurrence of microbes (regression 1). All of the genomic indices, when considered one

at a time in a combination with phylogenetic distances between microbes also produce statisti-

cally supported models (p-values for t-statistics associated with coefficients for genomic indi-

ces is less than 0.05 in regressions 2 to 5) and explain a significant amount of the variation in

the co-occurrence data (Table 1). Genome content similarity explains the highest fraction of

the variance in addition to the fraction explained by phylogeny alone (3.44%), followed by the

metabolic competition index, which accounts for 2.11% of the variance. Metabolic comple-

mentarity explains 1.7% of the variance in co-occurrence data, and the microbe-microbe func-

tional association index explains less than 1% of the variance.

Regression model 5, which combines all four genomics-based indices, does not seem to

improve over the predictive ability of regression model 2, which includes phylogenetic distance

and genome content similarity. Microbe-microbe functional association index is the only

other significant predictor in model 6 (p-value 0.0257). The regression model 6 explains 3.81%

of variance (in addition to phylogeny) marking the current predictive power of genomics-

based techniques in predicting ecological associations between microbes.

Table 1. Regressions analysis of co-occurrence using various genomics-based indices and phylogenetic distance.

Stats Considered

predictors

Regressions models of co-occurrence of microbes in ecological dataset 2

#1 #2 #3 #4 #5 #6

Estimated slope coefficient

(t-statistic, p-value)

Genome content

similarity

0.476 (17.53,

0.0001)

0.537 (11.84,

0.0001)

Functional

associations

0.093 (5.97,

0.0168)

-0.1 (-5.24,

0.0257)

Metabolic

competition

0.116 (13.63,

0.0001)

-0.013 (-0.88,

0.7098)

Metabolic

complementarity

-0.238 (-12.2,

0.0001)

-0.086 (-2.97,

0.1434)

Phylogenetic

distance

-0.15 (-29.08,

0.0001)

-0.13 (-24.93,

0.0001)

-0.148 (-28.72,

0.0001)

-0.135 (-25.75,

0.0001)

-0.143 (-27.85,

0.0001)

-0.128 (-24.52,

0.0001)

F-statistic (p-value) 846 (0.0001) 593 (0.0001) 442 (0.0001) 525 (0.0001) 245 (0.0001)

R2 (percent of variance in co-occurrence explained

by used predictors)

9.84% 13.28% 10.25% 11.95% 11.54 13.65

R2 –R2 of regression #1 (percent of variance

explained by genomic summary alone)

3.44% 0.41% 2.11% 1.7% 3.81%

doi:10.1371/journal.pcbi.1005366.t001
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Similar genome content composition in a context of specific gene sets is

detected in two co-occurring species of Firmicutes

To evaluate the potential use of genomics-based methods developed here for understanding

mechanisms driving microbe-microbe interaction I conduct analysis of putative pathways in

one set of four taxa from phylum Firmicutes, found in stool samples. The set of taxa under con-

sideration includes: C. comes, E. rectale, R. intestinalis and E ventriosum (Fig 4). Phylogenetic

relationships between these four species inferred using 16S rRNA support C. comes—E ventrio-
sum; and E. rectale—R. intestinalis as pairs of sister taxa. In this case, however, C. comes, E. rec-
tale co-occurred more frequently (Jaccard index of 0.65) than other combinations of four taxa

(Fig 4B).

Fig 4. Putative pathways exhibiting similarity of gene content in two co-occurring lahnospiracea species. (A) Pattern of gene presence

absence in two interacting species, C. comes and E. rectale, and their related species, E. ventriosum and R. intestinalis, in four identified gene sets of

interest. Species name abbreviations are shown in the bottom of the heatmap, gene family annotations from STRING are shown on the right. Gene set

IDs are on the left of the heatmap. (B) Patterns of co-occurrence of four species under consideration in human stool samples, ecological dataset 2, are

shown as a heatmap. Official names of the organisms are shown on the right. Phylogenetic relationships between the species, as detected using 16S

rRNA, are displayed as dendrogram on top and on the left in panes (A) and (B). Species name abbreviations at the bottom and top in panes (A) and

(B). Names of co-occurring taxa are shown in bold. Color keys for both panels are on the right.

doi:10.1371/journal.pcbi.1005366.g004
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Subsequently, I search for putative pathways exhibiting high enough level of genome con-

tent similarity between co-occurring taxa and sufficient overall pathway representation (see

Materials and Methods section for details), in comparison to their not co-occurring sister line-

ages. Four gene sets are identified (Fig 4A). Three of those gene sets, according to the annota-

tion, are related to riboflavin and cobalamin metabolism (gene sets 105 and 589) and energy

metabolism (gene set 1290). Additionally, this search identifies one gene set which includes

gene families of unknown function (gene set 694).

Discussion

16S-based approaches to microbial ecology have been productive and have yielded useful dis-

coveries [9,10,40], but at the same time they have several limitations: they do not provide a

handle on mechanisms determining observed patterns, and are limited for communities

which are hard to sample within ecological surveys. Genomics-based approaches to the prob-

lem might provide a handle on the mechanisms driving microbial community assembly and

dynamics, complementing conclusions derived from ecological surveys. They might also help

draw conclusions for microbes from poorly sampled communities. However such approaches

have been limited so far and only two metrics, metabolic competition and complementarity

indices, exist [21,41].

Major findings of the study and their implications

In this study, I attempt to advance genomics-based methods for understanding ecological asso-

ciations between microbes. I introduce two novel genome-wide measures of microbe-microbe

interaction—genome content similarity and microbe-microbe functional association indices

—and demonstrate how these measures predict associations between microbes in different

environments. Specifically, I show that both metrics predict common environmental affilia-

tions of bacterial species when ecological divergence between habitats is high (Fig 3, dataset 1).

The predictive power of both indices stays significant even when the surveyed environmental

conditions become more similar and the expected ecological differentiation between habitats

is reduced (Fig 3, dataset 2). This indicates the presence of detectable genome-wide signal of

co-occurrence of the microbes in both highly differentiated and similar environments.

Regression analysis also allows me to compare indices proposed here to the previously pro-

posed metrics. The results indicate that genome content similarity index explains patterns of

microbial co-occurrence better than sophisticated metabolic competition index constructed

upon KEGG pathway annotation (3.4% versus 2.1% of variance explained, Table 1, regression

models 2 and 4 respectively).

While it is clear that genomic information is one of the major factors determining species

ecology, it is still not known to what extent ecological interactions between the species, as mea-

sured here by co-occurrence, can be explained by genomic data. In this study I aim to address

this question. Using regression analysis, I show that genomic summaries alone predict co-

occurrence of microbes even when accounting for phylogenetic relationships between the

organisms and explain up to 4% of the variance in co-occurrence data (Table 1, regression

model 6).

This study also finds phylogenetic relatedness of the organisms to be the best predictor of

their co-occurrence. On it’s own phylogenetic relatedness explains about 10% of the variance

in co-occurrence data. This findings highlight the importance of the evolutionary process in

the emergence of ecologically important traits in microbial genomes and in agreement with

previous reports [9,10]. The observation, however, contradicts “limiting similarity hypothesis”

in community ecology [42]. Empirical studies suggesting closely related species tend to exclude
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each other have been reported [43,44] but contradictory reports also have been published

[45,46]. Existence of evidence pointing in different directions might be an indication that the

effect of “limiting similarity” can only be detected for specific values of divergence, or specific

time scales on which a community is surveyed, it might also vary depending on the rate of evo-

lution of the traits important in particular ecosystem. Elucidating these possibilities would

require in depth analysis and is not pursued in the study.

It is important to note that the indices introduced here are informed only by the genome

content and structure of various microbial species and not by biochemical annotation of pro-

teins. While some biases in the resolution of the protein functional association networks pre-

dicted using genome content are expected, given that taxa are not sampled into genome

sequencing studies at random [47], they should nevertheless be small in comparison to biases

in experimental biochemical annotation. Therefore, the metrics introduced here should be

more reliably applicable to a wide range of microbes, not only the well-studied taxa with large

number of annotated metabolic pathways.

The positive correlation between co-occurrence as measured by 16S rRNA and genome

content similarity detected here (Table 1) highlights the importance of habitat filtering pro-

cesses in community assembly [48,49]. This finding does not exclude other processes, such as

species assortment, as important drivers of community assembly [50]. Perhaps processes that

result in differences in genome composition, cooperation or cheating [15,51,52], operate on

the level of a small set of biological functions and go undetected at the level of the genome. For

instance, the loss of siderophore biosynthesis genes, but not reuptake genes, by some strains of

marine Vibrionaceae leads to differences in genome content composition in co-existing strains

but only for one particular cluster of functionally linked genes, not genome-wide [14].

Potential limitations of proposed methods

Additionally, similarities observed at the level of genome composition do not necessarily trans-

late into similarities at the level of mRNA or protein expression. It has been shown that social

cheating in Pseudomonas quorum sensing arises from changes in gene expression rather than

complete loss of the genetic modules encoding quorum-controlled factors [51]. Quick loss of

metabolic independence due to loss-of-function mutations in protein coding sequences, but

not loss of detectable orthologs, are also known [53]. The methods introduced here assume

that all the proteins present in the genomes of a microbial species are expressed and functional.

This unrealistic assumption, in theory, could be relaxed, but such a development would

require information on genome-wide patterns of gene expression for both species in question,

grown under the same conditions. This kind of information is limited for reference genomes

but should be accessible for wild strains from metatranscriptomics studies [54].

Avoiding the use of biochemical pathway annotation is advantageous, as it allows for the

incorporation of signals from large numbers of proteins (S1 Fig). On the other hand, using

genomics-based predictions about protein functional associations makes it harder to interpret

the results, especially for the microbe-microbe functional association index, as “functional

association” is broadly defined here and encompasses an ensemble of interactions ranging

form direct physical contact to genetic regulation to involvement in the same biochemical pro-

cess [24].

It should be highlighted that both genome content similarity and the microbe-microbe

functional association index are based on static gene family annotations from STRING, which

assumes that all the genes from the same automatically predicted orthologous group have

same functional associations. This is clearly a naïve assumption, given that proteins evolve new

functions across phylogeny [55,56]. For instance, comparative genomics study on the
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SecA_DEAD domain protein in some Gram-negative microbes suggested several functional

associations for some of the proteins from the SecA family (COG0653) from STRING, but not

all of them [57]. Therefore, investigating the role of lineage specific protein evolution on this

type of inference could be of interest.

Gene set specific analysis

Genome content similarity and microbe-microbe functional association indices summarize

information genome-wide. In reality, however, only a fraction of the genome might be mediat-

ing ecological interactions. Therefore, one potential extension of the methods introduced here

is to predict small set of putative pathways driving ecological interactions between microbes.

Experimental and computational detection of protein-protein interactions in host-microbe

systems [58,59] allowed to discover a number of microbial proteins potentially interacting

with human proteins. Detailed analysis of protein-protein functional association networks in

search of clusters of gene families contributing to the elevated microbe-microbe functional

association index could lead to the discovery of some promising candidate molecular systems.

In the case of genome content similarity, one approach is to search for gene sets exhibiting

higher than expected compositional similarity. In this manuscript, such a survey was con-

ducted for two co-occurring species from phylum Firmicutes, family Lahnospiracea.

Several promising candidate gene sets were discovered (gene sets 105, 589, 694 and 1290).

Three of the gene sets have assigned metabolic functions (105, 589 and 1290). For instance,

gene set 1290 includes genes linked to butyrate metabolism. Sporadic phylogenetic distribu-

tion of butyric acid producing enzymes, potentially driven by HGT, has been reported in Lah-
nospiracea [60]. Here the evidence indicates that lahnospiracea species with similar set of

butyric acid metabolism related genes, C. comes and E. rectale, also tend to co-occur in the

environment. Gene set 694 containes genes of unknown function, which could not have been

identified by KEGG pathways analysis.

Gene set 105 includes genes related to vitamin B12 biosynthesis and while the overall gene

family profile in this gene set is similar in co-occurring C. comes and E. rectale, several genes

catalyzing initial steps in the pathways [61–63] are missing from E. rectale. These findings

potentially suggest exchange of intermediates of vitamin B12 biosynthesis between co-occur-

ring E. rectale and C. comes. Overall, the gene sets discovered here constitute a list of promising

potential candidates for further functional studies but at this point inspire speculation.

Evolutionary processes generating detected patterns are not evaluated here and would

require more in-depth phylogenetic analysis. However, a parsimonious assessment of the

observed gene presence and absence profiles in the examined four taxa (Fig 4A) suggests that

identification of the gene sets might be attributed to gene loss in E. ventriosum, related to C.

comes, for two gene sets (105 two 589) and concerted gene gain and loss by two co-occurring

taxa (gene set 694 and 1290 respectively).

Conclusions

In summary, this study finds phylogenetic relatedness to be strongest predictor of microbial

co-occurrence (explains about 10% of the variance in microbial co-occurrence). Genome con-

tent similarity index is also identified as a strong predictor (explains 3.5% of the variance),

highlighting the importance of habitat filtering in microbial community assembly. Genome

content similarity index provides an improvement over more sophisticated metabolic compe-

tition index which requires metabolic pathway annotation for each of the genomes and is

highly limited for poorly studied microbes. Despite the fact that none-trivial fraction of vari-

ance in co-occurrence data is explained by genomic indices, detected explanatory power is
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rather modest. This highlights the need for the development of methods to improve current

genomic techniques to help in understanding the inner workings of microbial communities.

Materials and methods

Main functionalities and key data required for the analysis carried out in this study have been

included within genomics2ecology R package deposited to GitHub [64]. Scripts and data nec-

essary to generate results of this paper are available via another GitHub repository [65].

Genomes, genes, gene families and functional associations between

gene families

The files species.v10.txt, species.mappings.v10.txt and COG.mappings.v10.txt, which provide

information on species and genome annotation, relationships between genomes, genes and

gene families, were downloaded from the STRING version 10.0 website [66]. The file COG.

links.detailed.v10.txt, which provides information on functional associations between gene

families, was also downloaded from the database website. Information was extracted from

these files using custom Python scripts.

Network of functionally linked gene families

The global network of all the gene families existing in the STRING database was defined as a

collection of all nodes (orthologous groups from STRING) and all edges (gene neighbor scores

from STRING above critical value) connecting the nodes. The network is available within the

genomics2ecology R package under the reference_network table.

Gene neighbor score values were not derived within this study but obtained from COG.

links.detailed.v10.txt file from STRING [66]. A critical score value of 275 was used to define if

link between two gene families exists of not. The critical value of 275 was chosen because it

corresponds to the best values of both specificity and sensitivity in the ROC curve [57] when

the scores are evaluated on a set of known functionally related proteins.

To compute microbe-microbe functional association index values edges of reference gene

network were treated as unweighted.

Putative pathways and complexes

The genome content similarity index was calculated based on sets of functionally linked genes

(putative pathways and complexes). To identify such gene sets the global network of gene fam-

ilies, constructed as described above, was clustered with mcl-14-137 [67,68]. Edge weights

(gene neighbor score values above 275) in the global network of gene families were unit-based

normalized by subtracting minimal weight (275) from each value and then dividing the result

by the range (1000–275). This weight adjustment scheme is similar to what is recommended

in the literature in analysis of other networks with mcl [69]. The inflation value for mcl was set

to 4 to obtain fine-grained clusters, and the program was run in –abc mode to accommodate

the format of input data, for the rest of parameters default settings were employed. The

obtained clusters of gene families were further treated as putative protein pathways and com-

plexes. The gene sets are available within genomics2ecology R package under reference_gen-

e_sets data structure.

Given that I further used putative protein pathways and complexes to derive the genome

content similarity index, it was of interest to understand how the fraction of genes contributing

to putative protein pathways and complexes varies between genomes. I calculated this percent-

age for 308 genomes using clusters from mcl and protein.aliases.v10.txt file from STRING. I
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also obtained information on the percent of ORFs in KEGG pathways for the same genomes

from JGI.

New metrics for quantifying associations between microbes

Genome content similarity index. This index was calculated as illustrated in Fig 1A. For

every putative pathway network (see section above for details on how putative pathways are

obtained), which includes at least 4 gene families, presence and absence of every gene family in

each of the genomes is obtained from STRING. A similarity score was calculated for every

gene set as the number of gene families in the set with the same presence/absence states in two

genomes. This number was normalized by the size of the gene set to avoid large sets driving

the inference. In the last step, the similarity scores associated with different clusters were aver-

aged. Only gene sets present in at least one of the genomes were included to avoid inflation of

the index due to gene sets absent from both organisms. Presence of at least 5% of the gene fam-

ilies from the putative pathway in a given genome was considered as indication of a pathway’s

presence.

Microbe-microbe functional association index. This index was calculated for every rele-

vant pair of genomes as illustrated in Fig 1B. A protein-protein functional association network

for a given pair of organisms was derived from the reference network (see section above for

details on how reference network is obtained) by including gene families, nodes of the net-

work, present in at least one of the genomes under consideration and links connecting those

gene families, edges of the network, (Fig 1B). Gene families were also labeled to denote if a pro-

tein from a given gene family was present in genome A, genome B, or both, producing 3 types

of gene families (A, B and both labels, represented by blue, yellow and green colors, in Fig 1B).

Such a network contains 6 types of undirected edges, connecting two nodes of 3 different types

to each other (both to A, both to B, both to both, A to A, A to B and B to B).

Network edges, which connect proteins encoded exclusively in two different genomes (A to

B edges in Fig 1B), would have to cross genome boundaries in order to exist in the system (Fig

1B). Other edges can be formed within one genome. Therefore, I defined the microbe-microbe

functional association index between two microbes as a fraction of edges which would have to

cross organismal boundaries among all the edges connecting gene families encoded exclusively

in one of the genomes (Fig 1B).

Mapping STRING genomes to two ecological datasets

In this study, I used two ecological datasets to understand whether genomics-based indices

can predict co-occurrence of microbes in the environment. The first dataset was from the

Greengenes database files from May 2013 [70,71], and the second one was from a previously

published study [21].

To map STRING genomes onto the Greengenes OTUs, I first obtained the 16S rRNA

sequences for 1780 reference genomes (STRING_16S_tid.fa file in the GitHub repository [65])

from the Ribosomal Database Project [72] by matching the NCBI taxonomy ID provided within

the STRING database and in the files current_Archaea_unaligned.gb and current_Bacteria_una-

ligned.gb files downloaded from the RDP website in June 2015. Sequences were extracted from

current_Archaea_unaligned.fa and current_Bacteria_unaligned.fa. Taxa not found in RDP were

found in IMG JGI [73]. The longest 16S rRNA sequence for each genome was selected.

Data from the Greengens database were handled as follows: one representative sequence

which had “isolation source”, “authors” and “title” annotation in its arb record was selected for

each of the 97% OTUs from Greengens (97_otu_map.txt file from gg_13_5_otus.tar.gz

archive). Sequences shorter than 900 and 1,200 nucleotides in the case of Archaea and Bacteria,
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respectively, were removed. The rest of the sequences were searched with 16S rRNAs from

STRING genomes using blastn. Weak blast hits with less than 95% identity or covering less

than 85% of the query sequence length were ignored. 16S rRNAs from STRING genomes and

corresponding Greengenes sequence which produces strong blast hits were collected. Col-

lected sequences were aligned to each other using the bacterial 16S model and clustered using

complete linkage clustering based on sequence identity with tools available on the RDP web-

site, 97% identity cut-off was used for clustering. One Greengenes OTU and one STRING

genome were selected to represent each cluster that contained both STRING genome and

Greengenes OTU. In total 1119 STRING genomes were assigned to Greengens OTU this way.

R code is in get_data_ds1.R.txt on GitHub [65].

In order to establish correspondence between 154 genomes from [21] (file sd01.xlsx from

PNAS website, sheet A, row names) and STRING genomes, I first modified the “official name”

of the STRING genomes by replacing space, dot or dash characters with underscore characters,

then replacing repeated underscores with just one, and the looked for exact match between

modified STRING genome names and genome names from [21]. Using this method way 83

genomes from [21] were matched. The rest of the genomes were assigned manually, by strain

if possible, otherwise by species name. If several strains of the same species were present in

STRING, one strain was selected at random to represent the genome in subsequent analysis. If

no species with the same name was present in STRING, the genome was excluded from the

dataset. A total of 127 genomes were included into dataset 2. The R code is in get_data_ds2.R,

the list of assigned genomes is in genomes_ds2.txt file in GitHub [65].

Co-occurrence between Greengenes OTUs

Sample information was extracted from gg_13_5_arb_records files obtained from the Green-

genes ftp site [71]. Record files link sequences to samples. Only sequences annotated with “iso-

lation source”, “authors” and “title” were used. Sample IDs were created by concatenating

“isolation source”, “authors” and “title” fields. Individual 16S rRNA sequences in Greengenes

are grouped into OTUs. 97% identity OTUs were utilized here (97_otu_map.txt). OTUs which

did not match STRING genomes, OTUs present in less than 3 samples and samples with less

than 3 OTUs were removed. In total 308 OTUs (out of 1119 initially matched to genome from

STRING) and 532 samples were retained for further analysis. A similar strategy for OTU/sam-

ple filtering was used before [10]. The co-occurrence between the OTUs was calculated as Jac-

card similarity coefficients [74] between profiles of OTU presence/absence in samples as was

previously done in [21]. R code is in get_data_ds2.R; the generated matrix of species co-occur-

rence is in cooccurence_ds1.txt, and a list of assigned genomes is in genomes_ds1.txt on

GitHub [65].

Co-occurrence data and genomics-based indices from [21]

Metabolic complementarity and competition indices (file sd01.xlsx, sheet A) as well as co-

occurrence measures using the Jaccard similarity coefficient (file sd01.xlsx, sheet B) for human

gut microbiome data are provided as part of supporting information for [21] and were down-

loaded from the PNAS website, competition_ds2_full.txt and cooccurrence_ds2.txt on GitHub

[65].

Genome content similarity and microbe-microbe functional association

indices

Genome content similarity and microbe-microbe functional association indices were calcu-

lated for every relevant pair of genomes (as described in Results section) using similarity and
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functional_association functions from the genomics2ecology R package [64]. Code is provided

in get_data_ds1.R and get_data_ds2.R files; generated genomics based indices are in similari-

ties_ds1.txt, similarities_ds2.txt, similarities_F2.txt, associations_ds1.txt, associations_ds2.txt,

associations_F2.txt files on GitHub [65].

Phylogenetic trees

To approximate relationships between species in two ecological datasets and for the collection

of species used to create Fig 2, I first aligned 16S rRNA sequences from relevant STRING

genomes using the RDP web-server [72]. I then reconstructed 16S rRNA phylogeny using Fas-

tTree 2.1.9 [75], files STRING_16S_ds1_FastTree, STRING_16S_ds2_FastTree, STRING_16-

S_fig2_FastTree on GitHub [65]. FastTree was compiled for double precision to improve

length estimation of very short branches. It is necessary to note that the procedure adopted

here is not intended to recover a precise species tree but rather to account for a strong signal of

ancestry between closely related species.

Correlation between genomics-based indices and co-occurrence in

environmental samples and regression analysis

To address how genomics-based indices are related to co-occurrence of species in environ-

mental samples I used partial Mantel test accounting for phylogenetic distance between species

[76]. S2B Fig provides a graphical guide of the process. To calculate partial correlations raw

species phylogeny, data on co-occurrence, genome content similarity and microbe-microbe

functional association indices were used for ecological dataset 1 and 2. For dataset 2 metabolic

competition and complementarity indices were also used. Phylogenetic distances between the

species in each of the trees was calculated from the phylogenetic tree from the corresponding

dataset using the cophenetic function from the ape R package version 3.4 [77]. The tests were

performed using the vegan R package version 2.3–5 [78]. Adjustment for phylogenetic distance

was done because genomes cannot be considered as independent observations as they are

related to each other through evolutionary processes. The code is in analysis.R on GitHub

[65].

In addition to partial correlation, I performed Mantel regression analysis of co-occurrence

of microbes in the environment and genomics-indices in ecological dataset 2 (See S2C Fig for

graphical guide). This analysis was performed using phytools R package version 0.5–20 [79] on

the same set of raw data as used in the correlation analysis (analysis.R on GitHub [65]).

Analysis of individual gene sets

To identify gene sets potential driving co-occurrence of C. comes and E. rectale I first identified

gene sets that included at least 8 gene families, showed overall similarity of at least 0.6, and

overall gene set representation of at least 0.6 when co-occurring C. comes and E. rectale were

compared to each. Then I excluded from this list gene sets which were also identified when R.

intestinalis to E ventriosum in the same way. Resulting data were visualized using gplots R

package.

Supporting information

S1 Fig. Percent of ORFs in a KEGG pathways and b predicted pathways of different size.

(A) Percent of the ORFs included in a KEGG pathways or (B) putative pathways predicted

with MCL in 308 genomes from STRING from ecological dataset 1 which is introduced later
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S2 Fig. Analysis workflow. Graphical representation of statistical analysis workflow.

(PDF)
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