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A B S T R A C T   

Immunogenic cell death (ICD) and DNA damage response (DDR) are involved in cancer progression and prog-
nosis. Currently, chemotherapy is the first-line treatment for intermediate or advanced hepatocellular carcinoma 
(HCC), which is mostly based on platinum and anthracyclines that induce DNA damage and ICD. With the 
treatment of HCC with immune checkpoint inhibitors (ICIs), it is important to understand the molecular char-
acteristics and prognostic values of ICD and DDR-related genes (IDRGs). We aimed to explore the characteristics 
of ICD and DDR-related molecular patterns, immune status, and the association of immunotherapy and prognosis 
with IDRGs in HCC. We identified IDRGs in HCC and evaluated their differential expression, biological behaviors, 
molecular characteristics, immune cell infiltration, and prognostic value. Prognostic IDRGs and subtypes were 
identified and validated. FFAR3, DDX1, POLR3G, FANCL, ADA, PI3KR1, DHX58, TPT1, MGMT, SLAMF6, and 
EIF2AK4 were determined as risk factors for HCC, and the biological experiments indicated that high FANCL 
expression is harmful to the treatment and prognosis. HCC was classified into high- and low-risk groups based on 
the median values of the risk factors to construct a predictive nomogram. These findings provide novel insights 
into the treatment and prognosis of HCC and provide a new research direction for HCC.   

Introduction 

Liver cancer is a common malignancy that caused 906 000 new cases 
and 830 000 deaths globally in 2020 [1]. HCC is a primary subtype of 
liver cancer that accounts for approximately 90% of all liver cancer cases 
[2]. In China, HCC is the second most frequently diagnosed cancer and 
the most common cause of cancer-related deaths [3]. Liver resection 
remains the primary strategy for treatment [4], however, the prognosis 
of patients with HCC remains dissatisfactory because of the high 
recurrence rate after surgery and poor overall survival (OS) [5]. Un-
fortunately, HCC is almost always diagnosed at middle or advanced 
stages when palliative treatment is the only option [6]. These treatments 
include transarterial chemoembolization and hepatic perfusion chemo-
therapy, with most chemotherapeutic agents based on platinum and 
anthracyclines [7], such as cisplatin, oxaliplatin, doxorubicin, and epi-
rubicin, which induce DNA damage and ICD [10]. 

ICD triggers the immune response against dead cell antigens and is 

mediated by damage-associated molecular patterns (DAMPs), including 
surface-exposed calreticulin, secreted ATP, and released high mobility 
group protein B1 [11]. ICD plays a major role in the tumor microenvi-
ronment (TME) by activating the immune system against cancer tumors 
[10]. DAMPs commonly attract and activate dendritic cells to promote 
antigen presentation and eventually stimulate specific T-cell responses 
to kill cancer cells [11]. Thus, the induction of ICD might be an effective 
strategy for anticancer treatment by combining direct cancer cell killing 
and antitumor immunity [12]. In addition, novel ICD inducer has been 
designed and synthesized, and shows obvious anticancer activity in HCC 
[13]. ICD also involves DDR, endoplasmic reticulum stress, and 
apoptotic responses [14]. Recent reports have identified some crosstalk 
between DDR and the immune system [15,16], indicating that DDR is 
linked to both the innate and adaptive immunity in cancers [17]. In 
addition to surgery, traditional therapeutic agents, radiation, chemo-
therapy, and immunotherapy can selectively induce DDR in tumor cells 
to enhance antitumor drug efficiency [16,18]. ICD and DDR are involved 
in tumor initiation, metastasis, invasion, and prognosis and induce 
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antitumor immune responses, and the combination of ICD- and DDR 
inducer and ICIs has recently become the focus. However, the efficacy is 
still unsatisfactory. The challenges of immunotherapy in HCC are 
finding predictive biomarkers, advancing early treatment, classifying 
treatment, and finding more effective combinatorial therapy [19]. 
Hence, the identification of ICD- and DDR-related molecular subtypes 
and their responses to immunotherapy in HCC is necessary. 

In this study, we investigated ICD- and DDR-related molecular pat-
terns using online databases, namely The Cancer Genome Atlas (TCGA), 
Gene Expression Omnibus (GEO), and International Cancer Genome 
Consortium (ICGC). We identified differentially expressed genes (DEGs), 
biological function, immune cell infiltration, somatic mutations, and 
prognostic values that informed the construction of a prognostic pre-
dictive model using bioinformatics methods and provide a perspective 
for exploring the diagnosis and treatment of HCC. 

Materials and methods 

Data information and processing 

The mRNA profiles, somatic mutation data, copy alteration data, and 
corresponding clinical data of 368 tumor samples and adjacent non- 
tumor samples were downloaded from TCGA (https://portal.gdc.ca 
ncer.gov/) and the University of California Santa Cruz Xena browser 
(https://xena.ucsc.edu/). The mRNA expression profiles and corre-
sponding clinical information in the GSE14520 dataset, containing 225 
tumor and non-tumor samples, were obtained from GEO (https://www. 
ncbi.nlm.nih.gov/geo/) database and generated using the Affymetrix 
HT Human Genome U133A Array. The Liver cancer-RIKEN, JP project 
(LIRI-JP) dataset (https://dcc.icgc.org/projects/LIRI-JP), including the 
mRNA profiles and corresponding clinical information of 240 tumor 
samples and 198 non-tumor samples, was obtained from the ICGC data 
portal. We also collected 671 ICD-related genes from previous articles 
[8,9,12,20] and 451 DDR-related genes from the Molecular Signatures 
Database (http://www.gsea-msigdb.org/gsea/index.jsp). The differen-
tially expressed IDRGs between HCC tumor and non-tumor samples 
were visualized using the ggplot package in R. 

Selecting prognostic IDRGs and protein-protein interaction (PPI) network 
construction 

The survival package in R and univariate Cox analysis were used to 
screen the prognostic IDRGs with P-values < 0.01. The connection be-
tween prognostic IDRGs was explored by developing a PPI network. 
Pearson correlation analysis was used to evaluate the correlation among 
the prognostic genes with a threshold of absolute Pearson coefficient >
0.5 and P-value < 1e-5. The relationship between the significant prog-
nostic genes and survival was determined using the Surv _cutpoint R 
package. 

Consensus clustering 

Based on prognostic IDRGs, patients with HCC were classified into 
distinct ICD- and DDR-related subtypes using the unsupervised clus-
tering method. The number of clusters was determined by consensus 
clustering using the ConsensusClusterPlus package in R with 1 000 
repetitions to ensure the stability of the classifications. Principal 
component analysis (PCA) was performed on TCGA-LIHC, GSE14520, 
and LIRI-JP datasets to verify the performance of the classifications. The 
OS of each subtype was analyzed using the survival package in R. 

Gene set variation analysis (GSVA) 

GSVA was performed using the GSVA R package to investigate the 
biological processes of each ICD- and DDR-related subtype. The different 
biological processes among different subtypes were confirmed using the 
limma R package with P-value < 1e-5. 

Screening the DEGs among subclusters and their biological function 
analysis 

The ICD- and DDR-related DEGs were screened using the limma R 
package with an absolute log (fold change, FC) < 1 and adjusted P-value 
< 1e-5. Gene Ontology (GO) annotation, including biological process 
(BP), molecular function (MF), cellular component (CC), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were 
analyzed using clusterProfiler R package to identify the biological 
functions of intersected DEGs. 

Evaluating gene mutation and copy number variation (CNV) 

The genetic alterations between the subtypes were investigated using 
the mutect R package and visualized using the maftools R package. The 
copy alteration data from the Xena browser was calculated with 
Genomic Identification of Significant Targets in Cancer (https://www. 
genepattern.org/modules/docs/GISTIC_2.0) and then the CNV fre-
quency for the subtypes was analyzed. 

Estimating immune cell infiltration 

The ESTIMATE algorithm was used to evaluate the immune score, 
stromal score, and tumor purity. The Kruskal– Wallis test was used for 
differential comparisons of ICD- and DDR-related subtypes. The 
enrichment scores, which represented the abundance of each immune 
cell type, corresponding to TCGA-LIHC samples were downloaded from 
Tumor Immune Estimation Resource 2 (http://timer.comp-genomics.or 
g/). Differences in the expression of immune checkpoint-related genes 
among subtypes were investigated using the t-test function in the rstatix 
R package with Holm–Bonferroni correction. 

Abbreviations 

Alpha fetal protein AFP 
Biological process BP 
Cellular component CC 
Copy number variation CNV 
Damage-associated molecular patterns DAMPs 
Differentially expressed genes DEGs 
DNA damage response DDR 
Gene Expression Omnibus GEO 
Gene Ontology GO 
Gene set variation analysis GSVA 
Hepatocellular carcinoma HCC 

Immune checkpoint inhibitors ICIs 
Immunogenic cell death ICD 
ICD- and DDR-related genes IDRGs 
Kyoto Encyclopedia of Genes and Genomes KEGG 
Least absolute shrinkage and selection operator LASSO 
Liver, cancer-RIKEN, JP project LIRI-JP 
Molecular function MF 
Overall survival OS 
Principal component analysis PCA 
Protein-protein interaction PPI 
The Cancer Genome Atlas TCGA 
Tumor microenvironment TME  
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Response to immunotherapy 

A submap algorithm was used to predict the response to immune 
checkpoint inhibitors PD-1 and CTLA4, and response of HCC to ICIs was 
classified into response and nonresponse. Statistical significance was set 
at P < 0.05. 

Prognostic signature and risk model construction 

Prognostic IDRGs were incorporated into a least absolute shrinkage 
and selection operator (LASSO) regression model using univariate Cox 
analysis to generate a prognostic ICD- and DDR-related gene signature 
using the glmnet R package. All the samples were classified into high- 
and low-risk groups based on the median risk score and compared using 
Kaplan–Meier analysis. A time-dependent ROC curve was used to eval-
uate the predictive accuracy of the risk model. The Kaplan–Meier 
analysis and ROX curves were used to validate the predictive ability of 
the validation cohorts (GSE14520 and LIRI-JP datasets) and ensure the 
stability of the prognostic signatures. 

Development of a nomogram 

Univariate and multivariate Cox analyses were performed using the 
cph function in the rms R package to evaluate the prognostic values of 
the risk score and clinicopathological characteristics. Based on the risk 
score and clinicopathological characteristics, a nomogram was devel-
oped to predict the prognosis of HCC patients. Calibration plots were 
constructed to evaluate the accuracy and stability of the predictive 
models. 

Cell culture and siRNA transfection 

Huh-7 (human hepatoma cell line, Wuhan Fine Biotech Co., Ltd, 
Wuhan, China) cells were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM, Gibco, CA, USA) containing 10% fetal bovine and 1% 
penicillin-streptomycin in culture flasks of 25 cm2 and maintained in a 
humidified incubator with 5% CO2 at 37 ℃. The siNC and siFANCL small 
interfering RNA (siRNA) were transfected into Huh-7 cells with Lip-
ofectamine 2000 transfection reagent (Invitrogen, Carlsbad, CA, USA), 
respectively. Briefly, Huh-7 cells were randomly divided into the 
following groups: the siNC group transfected with the scrambled siRNA 
(negative control) and the siFANCL group transfected with the siRNA 
specific for FANCL (target sequence GACAAGAGCTGTATGCACT) 
(Sangon Biotech, Guangzhou, China). Transfection experiments were 
performed when cells were 50% confluent in six-well plates. Once the 
cells reached the desired confluence, the culture medium was aspirated, 
and 1.5 mL complete medium was added to each well. SiRNA (20 nM) 
and lipo2000 (5 µL) were added to 0.5 mL of the serum-free medium, 
mixed, and incubated at room temperature for 30 min. The siRNA- 
lipo2000 mixture was added to each well, and wells were cultured at 
37◦C in a humidified atmosphere with 5% CO2. 

Western blot analysis 

The siNC and siFANCL were transfected into Huh-7 cells with Lip-
ofectamine 2000 reagent. After 48 h, western blot analysis was per-
formed. Briefly, cells were lysed with 1% SDS lysing buffer containing 
protease inhibitor cocktail and phosphatase inhibitor cocktail (Biospec, 
Inc., Bartlesville, OK, USA). Protein concentration was determined using 
a BCA protein assay reagent kit (Thermo Scientific, Waltham, MA, USA). 
All the blots were incubated with primary antibodies for anti-GAPDH 
(1:5000, Invitrogen, Waltham, MA, USA) and anti-FANCL (1:1000, 
Cell Signaling Technology, Boston, MA, USA), Protein bands were 
visualized using ECL reagents (Smart-Lifesciences, Nanjing, China). 

Cell growth and viability assay 

After the cells were transfected for 48 h, the effect of FANCL 
knockdown and treatment by oxaliplatin on the viability of Hun-7 cells 
was assessed using the cell counting kit-8 (CCK-8) assay (Songshu 
Biotech, Guangzhou, China). In brief, the cells were seeded in 96-well 
plates at a density of 5 × 103 cells per well and cultured for 24 h. Sub-
sequently, the cells were treated with varying concentrations of oxali-
platin (1, 2, 5, 10 µM) for 24, 48, or 72 h. Following this, CCK8 solution 
(15 µL) were added to each well and incubated for 1 h. Finally, the 
absorbance of each well was measured at 450 nm using a microplate 
reader (Thermo Scientific, Waltham, MA, USA). Cell viability (CV) was 
calculated as follows: CV=(ODtest− ODblank)/(ODcontrol− ODblank). 

Clone formation assay 

After siNC and siFANCL were transfected into Huh-7 cells for 48 h, 
they were seeded in a six-well plate at a density of 5000 cells per well 
and cultured overnight. Then, the cells were treated with the indicated 
concentrations of oxaliplatin (0 or 1 µmol) for another 14 days. The 
supernatants were discarded, and the cells were washed three times with 
phosphate-buffered saline and fixed with methanol for 5 min. Finally, 
the cells were stained in crystal violet for 20 min, and colonies wre 
imaged. 

Statistical analysis 

Data management and statistical analysis were performed using R 
(version 3.5.3, Vienna, Austria) and GraphPad Prism (version 9.0.0, 
GraphPad Software Inc., San Diego, CA, USA). All experiments were 
performed in at least in three biological replicates. Data are presented as 
the mean ± SD and compared by a one-way ANOVA analysis. Statisitcal 
significance was set at P < 0.05. 

Results 

Identification of IDRGs with HCC prognostic value 

We collected 671 ICD-related and 451 DDR-related genes from the 
literature and the Molecular Signatures Database (Table S1) and 
measured the expression of 1,122 IDRGs from HCC samples and non- 
tumor samples (Fig. 1A). 80 prognostic IDRGs were identified 
(Table S2), and the top 20 are shown in Fig. 1B. A PPI network was 
constructed (Fig. 1C). Subsequently, in patients with HCC who pre-
sented different expression of the top nine prognostic genes, high 
expression of IFNAR1, EIF2AK4, C3, CCR7, and PIK3R1 was associated 
with favorable survival, whereas high expression of CD58, DDX1, 
FFAR3, and HDAC2 correlated with poor survival (Fig. 1D-L). These 
results demonstrated that a large proportion of IDRGs, including 80 
prognostic genes, are involved in HCC progression. 

Construction of ICD- and DDR-related molecular subtypes in HCC 

All samples in TCGA-LIHC cohort were classified into three distinct 
molecular subtypes, i.e., cluster 1 (n=135), cluster 2 (n=152), and 
cluster 3 (n=81) (Fig. 2A). The expression patterns of these genes are 
shown in Fig. 2B; there were significant differences in gene expression 
among the three clusters. PCA showed distinct gene expression profiles 
among the three subtypes (Fig. 2C), and Kaplan–Meier analysis indi-
cated significant differences in the survival among the three subtypes, 
with the worst survival in cluster 3 (Fig. 2D). To ensure the stability of 
the subtypes, we also performed clustering in the validation cohorts 
(Fig. 2E, G). There was also a distinct survival time among the three 
subtypes, with cluster 3 having the shortest survival time in the 
GSE14520 cohort (Fig. 2F); patients in cluster 1 showed a worse survival 
than those in clusters 2 and 3 in the LIRI-JP cohort (Fig. 2H). We also 
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investigated the differences in clinicopathological characteristics within 
these subtypes, including TCGA molecular clustering, immune-related 
clustering, vascular tumor cell type, alpha fetal protein (AFP), hepatic 
cirrhosis, alteration of TP53, clinical stage, age, and sex. These results 
indicated obvious differences in molecular characteristics, pathological 
features, and prognosis among the three subtypes. 

Transcriptomic and biological function characteristics in ICD- and DDR- 
related subtypes 

GSVA enrichment analysis showed distinct enrichment pathways 
among the three subtypes, the top three biological pathways were 
enriched in the three clusters: cell cycle, homologous recombination and 
DNA replication (Table S3); cell cycle, apoptosis, and DNA replication- 

related pathways (Table S4); DNA replication, metabolism and biosyn-
thesis (Table S5). We found 80 937 ICD-related and 1 683 DDR-related 
DEGs clusters 1, 2, and 3, respectively (Fig. S1B, Table S6-8). A total of 
39 DEGs intersected among the three subtypes (Fig. S1C). GO enrich-
ment analysis of the intersected DEGs indicated that they were related to 
BPs, such as organic acid, carboxylic acid, and cellular amino catabolic 
processes (Fig. S1D, Table S9). MF analysis indicated that these DEGs 
were related to inhibitor activity of enzymes, endopeptidase, and 
peptidase functions (Fig. S1E, Table S10), while CC enrichment indi-
cated that the DEGs were enriched in collagen-containing extracellular 
matrix, platelet dense granule lumen, and platelet dense granule pro-
cesses (Fig. S1F, Table S11). Finally, KEGG pathway enrichment 
revealed that these DEGs were involved in complement and coagulation 
cascades; glycine, serine, and threonine metabolism; and peroxisome 

Fig. 1. Identification of nine IDRGs with prognostic value in HCC 
(A) Heatmaps illustrating the expression of 1 122 IDRGs in TCGA-LIHC cohort. (B) The top 20 prognostic IDRGs associated with prognosis of HCC patients.(C) A PPI 
network including 50 prognostic IDRGs with |coefficient| > 0.5 and P-value < 1e-5. The red and blue dots represent DDR and ICD genes, respectively.(D)-(L) 
Kaplan–Meier analysis of the OS of patients with high and low expression of the top 9 IDRGs. 
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Fig. 2. Construction of three ICD- and DDR-related molecular subtypes in HCC. 
(A) Consensus matrix heatmap showing the three subtypes and their correlation to one another. (B) Heatmaps illustrating the expression of 80 prognostic IDRGs in 
TCGA-LIHC cohort.(C)-(H) PCA for the transcriptome profiles of the three subtypes, with Kaplan–Meier survival curves showing the OS in TCGA-LIHC, GSE14520, 
and LIRI-JP cohorts, respectively. (I) Rate frequency of the three subtypes in patients was evaluated with TCGA molecular clustering, immune-related clustering, 
vascular tumor cell type, AFP outcome value, hepatic cirrhosis, alteration of TP53, clinical stage, age, and sex. 
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pathways (Fig. S1G, Table S12). Together, these results showed differ-
ential gene expression among the three subtypes and its association with 
clinicopathological features and pathway enrichment. 

Landscape of genetic alteration in ICD- and DDR-related subtypes 

We also investigated the somatic alteration distribution and gene 

mutation patterns among the three subtypes. which showed that the 
highest mutation rates of cancer-related genes TP53 (35%), CTNNB1 
(23%), MUC16 (22%), and TTN (22%) were in cluster 1 (Fig. S2A); 
CTNNB1 (32%), TTN (26%), ALB (14%), MUC16 (13%), and PCLO 
(13%) were in cluster 2 (Fig. S2B); and TP53 (54%), TTN (28%), and 
MUC16 (14%) were in cluster 3 (Fig. S2C). Missense mutations were the 
most common. We found pervasive CNV changes in the DEGs on 

Fig. 3. Infiltration of immune cells into the tumor microenvironment in the ICD- and DDR-related subtypes 
(A-C) ESTIMATE algorithm calculated the immune score, stromal score, and tumor purity.(D) Heatmap of the infiltrating immune cells.(E) A box plot of the different 
immune cell distributions. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. 
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chromosomes in all three subtypes (Fig. S2D), with significant differ-
ences in CNV changes among the three subtypes (Fig. S2E). 

Tumor microenvironment immune cell infiltration in ICD- and DDR-related 
subtypes 

We further investigated the immune characteristics of subtypes and 
found that the highest immune score in cluster 3 in TCGA-LIHC, 
GSE14520, and LIRI-JP datasets (Fig. 3A-C). We explored the immune 
cell fraction among the three subtypes, and the results showed that 
Macrophage M0, activated mast cells, resting CD4+ memory T cells, T 
follicular helper cells (Tfhs), and regulatory T cells (Tregs) were differ-
entially enriched in all three subtypes. Activated mast cells and resting 

CD4+ memory T cells enriched in clusters 2 than clusters 1 and 3, and 
Macrophage M0, Tfhs, and Tregs were significantly elevated in cluster 3 
(Fig. 3D-E, Table S13-14). The immune cell microenvironment of HCC is 
complicated, briefly, effector T cells have an overall positive effect, 
whereas Treg and tumor associated macrophages have a negative effect; 
in addition, the number and activation status of T cells has influence on 
tumor response to ICIs [19]. These results suggested that the TME im-
mune cell infiltration in ICD- and DDR-related subtypes are different, 
which may indicate different responses to immunotherapy. 

Response to anti-CTLA-4 and anti-PD-1 treatment in HCC 

The landscape of immune cell infiltration among the three subtypes 

Fig. 4. Construction of an IDRGs signature and function validation in vivo 
(A) LASSO coefficient distribution of 21 IDRGs. (B) 10-fold cross-validation error rate. (C) Bar chart showing the coefficients of 11 IDRGs signatures.(D) Forest plot 
showing the independent factors for prognosis prediction. (E) Heatmap of the correlation between the risk score and IDRGs signature or clinicopathological char-
acteristics. (F) Western bolt analysis confirmed the efficiency of siRNA knockdown of FANCL. (G-H) Clone formation and CCK8 assay for cell viability of Huh-7 cells 
in vitro. The cells were cultured for 24, 48, 72, 96h.(I-L) Clone formation and CCK8 assay for cell viability of Huh-7 cells in vitro by treat withvarying concentrations 
of oxaliplatin (1, 2, 5, 10 µM) for 24, 48, 72 h. Data shown are mean ± SD of triplicate samples for each treatment. P-values are shown as: *, P < 0.05; **, P < 0.01. 
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might indicated potentially different responses to immunotherapy. 
Therefore, we examined the expression of immune checkpoint-related 
genes and found the difference among the subtypes (Fig. S3A-C). 
Based on responses to immune checkpoint blockade therapy, significant 
responses to anti-CTLA4 and anti-PD1 immunotherapy in cluster 2 
compared to clusters 1 and 3 were noted (Fig. S3D). These results 
indicated that the landscape of immune cell infiltration among the three 
subtypes induced different responses to immunotherapy. 

Construction and validation of an ICD- and DDR-related gene signature in 
HCC 

We identified 21 ICD- and DDR-related gene candidates (Fig. 4A-B). 
After stepwise multivariate Cox regression analysis, a prognostic ICD- 
and DDR-related gene signature containing 11 genes (FFAR3, DDX1, 
POLR3G, FANCL, ADA, PI3KR1, DHX58, TPT1, MGMT, SLAMF6, and 
EIF2AK4) was generated (Fig. 4C-D). Based on the median value of risk 
score, 368 samples were classified into high-risk (n= 183) or low-risk 
(n= 185) groups (Table S15). The heatmap visualization of the risk 
score analysis showed that high expression of FFAR3, DDX1, POLR3G, 
FANCL, and ADA and low expression of PI3KR1, DHX58, TPT1, MGMT, 
SLAMF6, and EIF2AK4 was more associated with the high-risk group 
(Fig. 4E). Moreover, analysis of the correlation between risk scores and 
clinicopathological characteristics indicated that high-risk scores were 
associated with clinical stage and TP53 mutations (Fig. 4E, Table S16). 
In addiation, we performed loss-of-function experiments and silenced 
the expression of a randomly selected gene, i.e., FANCL, in the human 
HCC cell line Huh-7. Western blotting analysis confirmed the efficiency 
of siRNA knockdown of FANCL (Fig. 4F). CCK8 and clone formation 
assays showed that FANCL knockdown did not significantly affect cell 
viability in vitro (Fig. 4G-H); however, it increased the therapeutic effect 
of oxaliplatin, indicating that high FANCL expression is harmful to the 
treatment and prognosis of HCC (Fig. 4I-L). 

Correlation between clinicopathological characteristics and ICD- and DDR- 
related risk score 

ICD- and DDR-related subtypes were significantly associated with 
risk scores in the TCGA-LIHC, GSE14520, and LIRI-JP cohorts and a 
high-risk score indicated poor survival time for patients with HCC 
(Fig. 5A-B). These results were consistent with those from cluster 1 in 
both the training and validation cohorts (Fig. 5C-E), and time-dependent 
ROC curves verified the predictive probability for 1-5 years of survival in 
patients with HCC (Fig. 5F). These findings suggested that IDRGs pro-
files are useful in the prediction of disease prognosis. 

Construction of a predictive nomogram for HCC 

The univariate and multivariate Cox regression models demon-
strated that risk score, stage, sex, vascular, age, and AFP were inde-
pendent prognostic variables for HCC, and the risk score had the best 
predictive prognosis accuracy (Fig. 6A-B). Therefore, a nomogram was 
constructed based on these independent variables (Fig. 6C), and the 
calibration curves for survival probability at 1 and 3 years indicated the 
predictive ability of the model (Fig. 6D-E). Together, these results 
showed that the nomogram based on the ICD- and DDR-related risk 
score can be used as a quantitative analysis tool to predict the survival 
risk of HCC patients. 

Discussion 

There were some new foundings in this study. First, we identified and 
validated a ICD- and DDR-related gene signature and a predictive 
nomogram containing 11 genes for the prediction of HCC; Furthermore, 
we constructed of ICD- and DDR-related molecular subtypes and found 
the immune features and the different responses to immunotherapy, 

providing scientific references for clinical immunotherapy. 
The mutational landscape of DDR genes in HCC has been identified 

and suggests that some mutations may be promising targets for precision 
cancer treatment [21], with DDR serving as a potential biomarker for 
predicting the clinical potential of immunotherapy and 
non-immunotherapy in HCC [22]. ICD is an important pathway that can 
be induced by DNA-damaging drugs and is linked to DDR during the 
antitumor immune response by triggering antigen and adaptive immune 
responses, in addition to activating cytotoxic T cells [8]. Evidence has 
suggested that targeting DDR promotes the high cytotoxicity in HCC 
through ICD arising in response to DNA damage [23]. Therefore, finding 
novel molecular biomarkers can improve the effectiveness of treatment 
strategies and indicate prognosis in HCC. 

Thus, we investigated the expression and prognostic value of IDRGs 
in HCC and used this transcriptional information to divide HCC samples 
into three ICD- and DDR-related subtypes, to explore the transcriptomic 
and biological function characteristics, landscape of genetic alteration, 
immune features, immunotherapy response and the different prognoses 
in these subtypes. We comprehensively investigated the molecular 
characteristics of ICD- and DDR-related subtypes and found 39 DEGs 
among the three subtypes. These genes inhibit or activate several en-
zymes and are involved in some biological functions, including com-
plement pathways, a key component of innate immunity and is 
associated with carcinogenesis and HCC development by promoting 
immunosuppressive, stimulant, and angiogenic microenvironments 
[24]. We found that the metabolism of glycine, serine, and threonine 
was differentially regulated in the ICD- and DDR-related subtypes in 
patients with HCC. Peroxisomes are involved in lipid metabolism and 
cellular redox balance, targeting lipid metabolism promotes ICD and 
links DDR to metabolism, whereas lipid metabolic alterations regulate 
the DDR pathway [25,26]. 

Somatic alteration analysis indicated that the mutation rates signif-
icantly differed between the three subtypes. Somatic mutations in TP53 
are the most frequent alterations in human cancers, affect the progres-
sion and prognosis of HCC, and are associated with the immune 
microenvironment in HCC [27,28]. CTNNB1 mutations are also 
frequently found in HCC, where they promote Wnt/β-catenin pathway 
activation and facilitate tumor progression; therefore, CTNNB1 muta-
tions can be used as biomarkers for evaluating immunotherapeutic effect 
in HCC [29–31]. MUC16 is a novel oncogene in cancers that is strongly 
related to tumorigenicity and antitumor therapy resistance [32]. It 
suggested that the distinct mutation landscape among the ICD- and 
DDR-related subtypes might indicate different clinical outcomes for HCC 
treatments. 

ICIs, including programmed cell death-1 (PD-1 or its ligand PD-L1) 
and CTLA-4, have become established pillars in the treatment of 
advanced HCC [33]. DNA damage could induce antitumor immunity, 
and DDR pathway blockade might affect PD-L1 expression [34]. DDR 
inhibition may selectively sensitize innate immune signaling and ICD 
and potentiate antitumoral cytotoxic T cells [35,36]. DDR-targeted ICD 
may increase the efficacy of PD1 blockade and sensitize ICI-refractory 
tumors [37,38]. Some approaches based on DDR and ICD have shown 
promising clinical efficacy and have been approved for non-small cell 
lung cancer, small cell lung cancer, and triple negative breast cancer 
[39–41]. We found different expression levels of immune 
checkpoint-related genes among the three ICD- and DDR-related sub-
types. Thus, we divided the response of HCC to ICIs into response and 
nonresponse based on a previous study evaluating the therapeutic effi-
cacy of PD-1 and CTLA-4 inhibitors in melanoma [42], and our analysis 
indicates that patients in cluster 2 showed more sensitivity to 
anti-CTLA4 and anti-PD1 treatment. That provide new insights into the 
classification and precise immunotherapy for HCC. 

We identified a prognostic ICD- and DDR-related gene signature 
containing 11 genes, and further analysis showed that high expression of 
FFAR3, DDX1, POLR3G, FANCL, and ADA, and low expression of 
PI3KR1, DHX58, TPT1, MGMT, SLAMF6, and EIF2AK4 was more 
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Fig. 5. Correlation between clinicopathological characteristics and ICD- and DDR-related risk score 
(A) Box plots showing the correlation between risk score. ns, not significant; *P < 0.05; **P < 0.01.; *** P < 0.001.(B-E) Kaplan–Meier analysis of the relationship 
between risk score and OS in patients.(F) Time-dependent ROC curves showing the predictive value of the risk score for 1-, 3-, and 5-year OS. 
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associated with the high-risk group. The prognostic value of DDX1, 
POLR3G, ADA, MGMT, SLAMF6 and EIF2AK4 in HCC have been reported 
[43–48]. We silenced the expression of FANCL, and investigated its 
biological function in the human HCC cell line Huh-7 by performing 
loss-of-function experiments. We found FANCL knockdown increased 
the therapeutic effect of oxaliplatin in HCC. Studies showed that high 
FANCL expression was a risk factor for tumor prognosis and related to 
chemotherapy resistance in prostate and breast cancers [49,50]. Our 
data also indicated that the high expression of FANCL is harmful to the 
treatment and prognosis of HCC. However, the biological function and 
molecular mechanisms underlying the role of other genes in HCC still 
need further investigation. 

Finally, we investigated the prognostic and predictive values of 
IDRGs by generating risk and nomogram models. The results indicated 
that high-risk patients had poorer survival than low-risk patients. Risk 
score, clinical stage, sex, vascular invasion, age, and AFP level were 
identified and validated as independent variables that can predict the 
probability of survival. 

This study had some limitations. First, patients in the TCGA-LIHC, 
GSE14520, and LIRI-JP cohorts may have been administered a variety 
of antitumor therapies, which could have potentially affected our re-
sults. Further validation studies are needed to support the predictive 
abilities of the identified gene candidates. Future studies should include 
patients with HCC receiving ICI treatment to further verify the influence 
of ICD and DDR molecular types on patient outcomes. 

Conclusions 

We found that the ICD- and DDR-related molecular subtypes and the 
molecular and immune cell infiltrating characteristics can guide precise 
HCC immunotherapy, and the prognostic model based on IDRGs was 
generated to predict the survival time of patients with HCC. These 
findings may provide a novel method for advancing cancer therapy and 
evaluating the prognosis of patients with HCC. 
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