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Abstract

Background

Recent molecular characterization of urothelial cancer (UC) has suggested potential path-

ways in which to direct treatment, leading to a host of targeted therapies in development for

UC. In parallel, gene expression profiling has demonstrated that high-grade UC is a hetero-

geneous disease. Prognostic basal-like and luminal-like subtypes have been identified and

an accurate transcriptome BASE47 classifier has been developed. However, these pheno-

types cannot be broadly investigated due to the lack of a clinically viable diagnostic assay.

We sought to develop and evaluate a diagnostic classifier of UC subtype with the goal of

accurate classification from clinically available specimens.

Methods

Tumor samples from 52 patients with high-grade UC were profiled for BASE47 genes

concurrently by RNAseq as well as NanoString. After design and technical validation of a

BASE47 NanoString probeset, results from the RNAseq and NanoString were used to trans-

late diagnostic criteria to the Nanostring platform. Evaluation of repeatability and accuracy

was performed to derive a final Nanostring based classifier. Diagnostic classification result-

ing from the NanoString BASE47 classifier was validated on an independent dataset (n =

30). The training and validation datasets accurately classified 87% and 93% of samples,

respectively.
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Results

Here we have derived a NanoString-platform BASE47 classifier that accurately predicts

basal-like and luminal-like subtypes in high grade urothelial cancer. We have further vali-

dated our new NanoString BASE47 classifier on an independent dataset and confirmed

high accuracy when compared with our original Transcriptome BASE47 classifier.

Conclusions

The NanoString BASE47 classifier provides a faster turnaround time, a lower cost per sam-

ple to process, and maintains the accuracy of the original subtype classifier for better clinical

implementation.

Introduction

Gene expression profiling has demonstrated that high-grade urothelial cancer (UC) is a het-

erogeneous disease. Distinct molecular subtypes of UC have been identified that have clinically

meaningful differences in prognosis. Several independent groups have confirmed the existence

of these intrinsic subtypes with varying classification schemes and a general overall agreement

of a basal-squamous and non-basal-squamous group (i.e. luminal) [1, 2]. Among the multiple

classification schemes [1, 3–7], our group identified the existence of basal-like and luminal-

like subtypes and derived the BASE47 (Bladder cancer Analysis of Subtype by gene Expres-

sion) RNA expression classifier to characterize the molecular subtype of patient tumors [5].

Molecular stratification of muscle-invasive urothelial cancer is of particular importance

given the recent retrospective data suggesting that the basal and luminal subtypes are associ-

ated with differential response to current therapies, including platinum-based chemotherapy

and immune checkpoint inhibition [8–10]. The basal subtype, in particular, may be more

responsive to neoadjuvant chemotherapy but associated with worse overall prognosis com-

pared to the luminal subtype [8]. The basal subtype is also enriched in females, and it is not

known if it is enriched in black patients, such as in breast cancer [11]. Despite recent advances

in treatment, suboptimal outcomes in muscle-invasive urothelial cancer remain, and patient

selection for treatment, potentially incorporating molecular subtyping, is clearly needed.

The ability to efficiently and accurately determine molecular subtype in UC would enable

incorporation into clinical trial design and translational research efforts to improve patient

selection strategies for treatment. The original BASE47 classifier, which sorts UC tumors as

basal-like or luminal-like was developed from microarray and RNAseq data, and subtyping in

this manner can be cumbersome and expensive [5]. A fast, cost effective, clinically useful, fully

quantitative, and precise method of molecular subtyping is therefore needed. As an example,

the PAM50 subtype classifier in breast cancer has resulted in widespread clinical utility with

development of a risk of recurrence model to inform clinical care and prognosis [12, 13].

The NanoString nCounter system uses fluorescent barcodes tagged to individual nucleic

acid molecules (including mRNA) that are captured, imaged and counted to generate a quanti-

tative analysis of as many as 800 different genes in a single reaction [14]. Routine clinical prac-

tice results in the collection of tumor as formalin-fixed, paraffin-embedded (FFPE) tissue, and

prior studies have shown the NanoString system to result in more precise and accurate mea-

sures of RNA expression in FFPE compared to PCR-based techniques [15]. For these reasons,

a transition from RNAseq-based subtype classification to a NanoString-based classifier is
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warranted. To evaluate our hypothesis that the NanoString system can be used for molecular

subtyping of UC, we have designed a custom codeset using the original BASE47 gene set and

developed a de novo NanoString BASE47 classifier to accurately and efficiently determine

molecular subtype of UC tumors. We also used our novel dataset to investigate the question of

whether there is enrichment of black patients in the basal subtype.

Materials and methods

Tissue samples

All included tumor tissue samples were derived from patients with high-grade muscle-invasive

UC in three independent cohorts. The first set of UC tumor tissue samples (UNC-Training)

included patients who underwent cystectomy at the University of North Carolina (UNC) Hos-

pital between 2006 and 2014. The second set of samples (JHU-Validation) was collected at

John Hopkins University Hospital from patients that underwent cystectomy between 2005

and 2014. The JHU cohort was specifically selected for inclusion for its enrichment of black

patients. The third set of samples (UNC-Validation) included pre-treatment tumor samples

from patients at UNC that underwent neoadjuvant chemotherapy and cystectomy between

2012 and 2017. Clinical information was annotated for all patients in each of the 3 cohorts,

including patient demographics (which were self-reported and included age, sex, race, and

smoking status) and tumor stage and grade. Data was abstracted from medical records from

05/2015 to 06/2015 (UNC-Training), 07/2015 to 02/2016, and 06/2016 to 10/2017 (UNC-Vali-

dation). All included patients had FFPE tissue available with adequate quality and amount,

and all included patient samples were from tumors prior to any systemic therapy (ie, pretreat-

ment samples). This study was reviewed and approved by the Institutional Review Board at

UNC with an approved waiver of informed consent. All patient records were de-identified at

the time of data abstraction from the electronic medical record.

NanoString codeset design

The previously published Damrauer et al. BASE47 classifier (termed “Transcriptome BASE47

classifier” here) was considered the gold standard for molecular subtype classification in this

study. Custom NanoString probes were designed to match the 47 classifier gene signature

defined by Damrauer et al. [5]. A set of 4 housekeeping genes was selected from the BASE47

training dataset [5] based on their low coefficients of variance. The probeset verification was

carried out using NanoString’s standard custom codesets, consumables, and assay procedures.

Any probe that did not show expression above background across a test set of tumor samples

was redesigned.

RNA extraction and expression analysis

RNA was isolated from macrodissected 10uM FFPE slides from all patient samples using the

Roche High Pure RNA Paraffin Kit according to manufacturer’s protocol. Isolated RNA was

eluted in 50uL volume and tested using a Nanodrop One spectrophotometer. RNA samples

that met our sequencing specifications for concentration (>15 ng/uL) and purity (OD 260/280

& 260/230 nm>1.6) were run on the NanoString nCounter MAX system according to specifi-

cations in the Preclinical Genomic Pathology Core at UNC-Chapel Hill and analyzed using

local post-processing.

Counts of each barcode were summarized using the Nanostring nCounter system. In the

negative control probes (spiked in to account for nonspecific binding), a baseline expression

of 1 read was set, after which the geometric mean of the negative control probes was calculated
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for each sample. All housekeeping and BASE47 endogenous genes were scaled to the geomet-

ric mean of the negative control probes within the sample (the expression of all genes with

values below the threshold are set to 0). Any samples that had any housekeeping gene

(AMMECR1L, SRPRA, XRCC6, EIF2B4) expression below the geometric mean of the negative

control probes were removed from the dataset for quality control purposes (2 samples from

the UNC-Validation dataset were removed), as the barcode counts from the sample are unreli-

able, and subsequently resubmitted for NanoString nCounter processing. For each sample, the

geometric mean of the housekeeping genes was calculated, a normalization factor (100/[house-

keeping geometric mean]) was derived, and all endogenous BASE47 gene expression values

were multiplied by the normalization factor to control for total signal across samples. Relative

expression of classifier genes were log transformed and the resulting expression vector was

input into the BASE47 PAM classifier.

For RNA sequencing, a minimum of 2 μg of total RNA was isolated from FFPE tissues.

Extracted RNA was converted to double-stranded cDNA, and sequencing adapters were

ligated by using the Illumina RNA Access Library Prep Protocol (Illumina). Samples were

sequenced by paired-end, 150-bp sequencing on an Illumina NextSeq500. Sequence reads

were aligned to the human reference genome (hg38) using MapSplice [16] and quantified

with RSEM [17]. RNA sequencing data were normalized for variation in read counts, log2

transformed, and median centered before analysis. When combining data sets, no batch effect

correction analysis was used as the samples were sequenced on the same machine with the

same protocol, and we did not see obvious differences in gene expression values between

datasets.

Classifier testing and validation

Subtype classification was run using a PAM classifier with the pamr package v1.56.1 in R Stu-

dio v3.5.1 to derive both subtype calls and correlations to the basal and luminal centroid for

each sample and subtyping method (original Transcriptome BASE47 classification and new

NanoString BASE47 classification). The McNemar test was performed to test the concor-

dance between the various described BASE47 classifier models. Heatmaps were generated

with the ComplexHeatmap v2.6.0 package in R Studio, and all clustering was performed

using average linkage clustering with a centered correlation similarity metric. Coefficients of

Variance were calculated to assess repeatability. Pearson correlation coefficients and signifi-

cance metrics across NanoString and RNASeq analyses were calculated where appropriate.

Monte-Carlo cross-validation was performed to develop the NanoString BASE47 classifica-

tion. This training utilized the UNC-Training dataset with 2/3 of the samples randomly

being assigned to the training matrix and the remaining 1/3 assigned to a testing matrix,

with 10,000 iterations of cross-validation to estimate expected performance. The verified

BASE47 centroids for both the NanoString and RNASeq training matrices were calculated

and visualized using the pamr package v1.56.1 in R Studio. For all statistical tests, a p-

value� 0.05 was considered statistically significant. Code associated with the publication is

accessible within the Kim lab repository at https://github.com/kimlabunc/Kardos_Rose_

Nanostring. Associated sequencing data has been deposited in the NCBI GEO repository

and can be accessed at GEO160693.

Results

Technical development and validation of the BASE47 NanoString probeset

Patient samples used in this study were collected from three independent datasets: the

UNC-Training (n = 52), UNC-Validation (n = 40), and JHU (n = 23), for a total of 115
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samples of which n = 105 had successful high quality RNA extraction. All included samples

were pre-chemotherapy treatment, high-grade UC and patient characteristics were represen-

tative of patients with UC in the general population (Table 1). The JHU dataset was enriched

in black patient samples to determine whether there was enrichment of black patients within

a specific subtype.

Table 1. Clinical characteristics by cohort for samples used for classifier training and validation.

Characteristic UNC-Training JHU-Validation UNC-Validation

n 52 23 40

Age

Mean 67.7 65.9 63.6

St Dev 10.2 11.8 9.6

Grade

High 52 (100%) 23 (100%) 40 (100%)

Sex

Male 32 (62%) 16 (70%) 28 (70%)

Female 20 (38%) 7 (30%) 12 (30%)

Race

White 47 (90%) 10 (43%) 33 (82%)

Hispanic 1 (2%) 0 (0%) 1 (3%)

Black 4 (8%) 13 (57%) 6 (15%)

Smoking Status

Current 15 (29%) 7 (30%) 13 (32%)

Former 29 (56%) 11 (48%) 17 (43%)

Never 8 (15%) 5 (22%) 10 (25%)

Prior NMIBC

Yes 15 (29%) unknown unknown

No 37 (71%) unknown unknown

Prior BCG

Yes 11 (21%) 6 (26%) unknown

No 41 (79%) 17 (74%) unknown

pTstage

Tis 0 0 1 (3%)

T1 1 (2%) 0 (0%) 0 (0%)

T2 21 (40%) 9 (40%) 12 (30%)

T3 25 (48%) 7 (30%) 20 (50%)

T4 5 (10%) 7 (30%) 7 (17%)

pNstage

N0 44 (85%) 12 (52%) 27 (68%)

N1 2 (4%) 5 (22%) 4 (10%)

N2 1 (2%) 6 (26%) 5 (13%)

N3 1 (2%) 0 2 (5%)

NX 3 (6%) 0 2 (5%)

Secondary Histology

None (Pure UC) 41 (79%) 15 (65%) 28 (70%)

Squamous 1 (2%) 6 (26%) 7 (18%)

Micropapillary unknown 1 (4%) 3 (8%)

Other 10 (19%) 1 (4%) 2 (5%)

Abbreviations: NMIBC, non-muscle invasive bladder cancer; BCG, Bacillus Calmette-Guerin; UC, urothelial carcinoma.

https://doi.org/10.1371/journal.pone.0243935.t001
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RNA was extracted from all 52 FFPE samples in the UNC-Training dataset. We first ran

technical replicates (n = 2) of the same sample on the BASE47 NanoString probeset and found

that RNA expression by NanoString was highly replicable across runs with a median coeffi-

cient of variance of 0.09 across genes and no gene having a coefficient of variance above 0.6

(S1A Fig). This high level of technical replicability is consistent with prior work [15]. We next

ran all 52 samples from the UNC-Training set of tumors on the BASE47 NanoString probeset.

We verified that the designated housekeeping genes used for normalization across samples

had a lower variation in expression across samples than the BASE47 genes (S1B Fig) to con-

firm their validity as normalizing housekeeping genes.

The transcriptome BASE47 classifier does not work with NanoString-

derived BASE47 expression data

The RNA from the UNC-Training samples was run simultaneously on both the NanoString

nCounter platform (with our BASE47 probeset) and sequenced by RNASeq (Fig 1). Subtype

calls were made using our original Transcriptome BASE47 classifier on the processed RNAseq

data. These calls were considered the biologically ‘true’ subtype of each sample [5]. We first

Fig 1. Workflow for analysis of the UNC-Training dataset. RNA from UNC-Training set samples (n = 52) were profiled by both

RNAseq (RNA Access) and NanoString nCounter assay for the BASE47 probeset. The previously published Transcriptome BASE47

classifier was applied to the RNAseq data as well as the NanoString-derived BASE47 gene expression values. A NanoString BASE47

classifier was developed for NanoString nCounter expression values, tested by Monte Carlo cross validation, and independently

validated on the UNC-Validation dataset.

https://doi.org/10.1371/journal.pone.0243935.g001
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classified the 52 samples in the UNC-Training dataset using their NanoString derived BASE47

RNA expression values with the original Transcriptome BASE47 classifier [5]. This was a

highly inaccurate method of classification as 24 of 52 (46%) samples were incorrectly classified

(Fig 2A). This method of classification dramatically overcalled basal tumors, classifying all but

2 samples as basal.

Fig 2. Development of a NanoString BASE47 classifier that performs on NanoString derived RNA expression values. RNA from UNC-Training set

samples (n = 52) were profiled by both RNAseq (RNA Access) and NanoString nCounter assay for the BASE47 probeset to generate RNAseq and

NanoString expression matrices respectively. “True” biologic calls were assigned by applying the previously published Transcriptome BASE47 classifier

to the RNAseq data. (A) Application of the Transcriptome BASE47 classifier to the NanoString expression data resulted in a 46% misclassification

error. (B) Application of the newly derived NanoString BASE47 classifier to NanoString expression data resulted in only 13% misclassification error

(relative to the “True” biologic subtype designations).

https://doi.org/10.1371/journal.pone.0243935.g002
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Development of a NanoString BASE47 classifier

Because of the inaccuracy of applying NanoString derived BASE47 expression values to our

Transcriptome BASE47 classifier, we set out to retrain a NanoString BASE47 classifier to accu-

rately make subtype calls on NanoString derived RNA expression values. Indeed, scientific

best practices dictate that a de novo retraining of the BASE47 bladder cancer intrinsic subtype

classifier should be performed on NanoString derived expression values in order to develop

the most accurate and robust classifier. To this end, we used the “true” subtype calls from the

RNAseq and Transcriptome BASE47 classifier as the supervising variable to identify new lumi-

nal and basal centroids from the corresponding NanoString derived RNA expression. Applica-

tion of the “NanoString BASE47 classifier” to the UNC-Training dataset using NanoString

derived RNA expression values, as expected, dramatically improved accuracy relative to the

use of the Transcriptome BASE47 classifier as only 7 of the 52 samples (13%) were incorrectly

classified (Fig 2B). The 13% training error of the NanoString BASE47 classifier was signifi-

cantly better than the 46% training error when the UNC-Training set was classified using

NanoString expression values with the Transcriptome BASE47 classifier (p<0.001, McNemar

test). The NanoString BASE47 classifier not only provides a basal and luminal subtype call,

but a scaled distance from 0 (luminal) to 1 (basal) to each centroid. There was not a significant

correlation between the centroid values of the Transcriptome BASE47 classifier from RNAseq

data and the centroid values of the Transcriptome BASE47 subtype classifier from NanoString

derived RNA expression data (S2A Fig). In contrast, there was a strong correlation between

centroid values of the Transcriptome BASE47 classifier calls using RNAseq data and the cen-

troid values of NanoString BASE47 subtype classifier calls using NanoString derived RNA

expression data (S2B Fig, R = 0.88, p<0.001). Examination of clinical characteristics (T stage,

sex, ethnicity, and smoking status) found no association of clinical variables with subtype clas-

sification (Fig 3A and S3 Fig).

We were concerned that predicting subtype calls onto the same dataset that was used to

derive the NanoString BASE47 classifier (UNC-Training) could bias our training error

through self-validation. To rule out this potential bias, we ran a Monte Carlo cross-validation

by randomly splitting the UNC-Training dataset into a training matrix (2/3 patients) and used

the resulting centroids to predict onto the remaining 1/3 of the samples (S4A Fig). The Monte

Carlo sampling was run 10,000 times and compared to the ‘true’ subtype calls of each sample.

The Monte Carlo simulation resulted in a 16.2% training error that was not significantly differ-

ent from the 13% originally derived training error (X2 p = 0.96), indicating that our dataset

was not biasing the accuracy of the subtype classification (S4B Fig).

To further verify the accuracy of our basal and luminal subtype calls we examined the

NanoString derived RNA expression of the BASE47 genes in the UNC-Training dataset. A

heatmap of the 52 tumors from the UNC-Training dataset supervised by distance to the basal

centroid in the Nanostring BASE47 classifier demonstrated that there were very distinct basal

and luminal nodes of BASE47 genes, consistent with previous analyses of genes in the Tran-

scriptome BASE47 classifier (Fig 3A) [5]. In addition, examination of canonical basal (KRT5,

KRT6A) and luminal (UPK1B, UPK3B, FGFR3)-like genes by NanoString subtype demon-

strated patterns consistent with basal-like and luminal-like differentiation (Fig 3B).

Validation of NanoString BASE47 classifier on UNC validation dataset

In order to further validate our new NanoString BASE47 classifier, we examined the accuracy

of the NanoString BASE47 classifier on a set of independent tumors (n = 40, UNC-Validation

dataset). We performed RNAseq on 30 of the 40 samples in the UNC-Validation dataset for

which we were able to extract sufficient RNA and again ran RNAseq and NanoString in
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Fig 3. Heatmap of BASE47 genes on samples supervised by correlation to basal centroid. (A) Samples were supervised by correlation to

the basal centroid (NanoString BASE47 classifier applied to NanoString expression) and clustered on BASE47 gene expression values derived

by NanoString nCounter assay. Annotation of sex, race, smoking status, and T stage are indicated. (B) Log2 normalized RNA expression of

canonical basal and luminal genes based on NanoString subtype demonstrate expected basal and luminal expression patterns.

https://doi.org/10.1371/journal.pone.0243935.g003
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parallel to determine Transcriptome BASE47 and NanoString BASE47 classifier subtype calls

respectively (Fig 4A). Only 2 of the 30 samples were incorrectly classified for a 6.7% classifica-

tion error (Fig 4B). This demonstrates independent validation of the NanoString BASE47 clas-

sifier. Furthermore, the basal centroid correlation values derived from NanoString BASE47

classifier using NanoString derived expression values were significantly correlated with the

basal centroid values obtained from the Transcriptome BASE47 classifier using RNAseq

expression (Fig 4C, R = 0.90, p<0.001). Further supporting the reliability of the NanoString

nCounter method as a measure of gene expression, all individual genes within the BASE47

gene list had a significant correlation between the gene expression as measured by RNAseq

and NanoString platforms (Fig 4D). For example, UPK2 (luminal gene) and AHNAK2 (basal

gene) are shown (Fig 4E, p�0.001). These data in aggregate demonstrate that our NanoString

BASE47 classifier and centroid correlations are representative of the previous subtype classifi-

cation methodology (Transcriptome BASE47 classifier).

We examined whether there were differences in overall survival (OS) in basal and luminal

tumors in the combined cohort of patients based on their NanoString BASE47 subtype and

did not see any difference in OS by molecular subtype (S5 Fig). Prior work has shown that

patients with basal-like tumors who are not treated with cisplatin-based neoadjuvant chemo-

therapy have shortened overall survival [4, 8]. In contrast, it appears that patients with basal-

like tumors treated with neoadjuvant chemotherapy have equivalent overall survival [8]. In

our cohort of patients, approximately 60% received neoadjuvant chemotherapy. This may

account for the relatively equivalent OS in patients with basal and luminal tumors.

Black patients with UC are not enriched in the basal subtype

Prior work in breast cancer has shown that black women are enriched in the basal subtype of

breast cancer [11]. Given the parallels between the molecular subtypes of breast and bladder

cancer [4, 5], we hypothesized that black patients might also be enriched in the basal subtype

of urothelial bladder cancer. We obtained a cohort of high-grade, muscle-invasive bladder can-

cer patients from Johns Hopkins (JHU) that were enriched for black patients (Table 1). RNA

was extracted from all 23 samples and successfully run on the BASE47 NanoString nCounter

assay (Fig 5A).

We examined NanoString BASE47 subtype calls from the compilation of our UNC-Train-

ing (n = 52), UNC-Validation (n = 30), and JHU (n = 23) datasets (UNC/JHU metadataset)

and found no significant enrichment of black patients in the basal-like subtype (13 of 21 [62%]

black patients were classified as basal-like [Fisher’s exact p = 0.24]) [Fig 5B]. An examination

of the TCGA BLCA dataset also found no significant enrichment of black patients in the basal

subtype (12 of 23 [52%], Chi-square p = 0.08). Therefore, at least in the cohorts examined

here, black patients with bladder cancer do not appear to have an increased prevalence of

basal-like bladder cancer.

Discussion

Here we have derived and validated a NanoString BASE47 classifier that accurately classifies

high-grade, urothelial bladder cancers using NanoString derived RNA expression values and

BASE47 centroid values distinct from our previously published Transcriptome BASE47 classi-

fier [5]. We also find no enrichment of black patients in the basal-like subtype in either the

TCGA BLCA dataset or our combined cohort.

The original BASE47 classifier was derived on microarray and RNAseq platforms. While

these platforms provide full transcriptomic expression data, the delayed time it takes to process

samples and the increased cost associated with sample processing make the combination of
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Fig 4. Validation of NanoString BASE47 classifier on UNC-Validation dataset. (A) UNC-Validation samples were profiled by both RNAseq (RNA Access)

and NanoString nCounter assay for the BASE47 probeset to generate RNAseq and NanoString expression matrices respectively. “True” biologic calls were

assigned by applying the previously published Transcriptome BASE47 classifier to the RNAseq data. NanoString BASE47 calls were determined by application

of the newly derived NanoString BASE47 classifier to NanoString expression data. (B) Application of the newly derived NanoString BASE47 classifier to

NanoString expression data resulted in only 6.7% misclassification error (relative to the “True” biologic subtype designations). (C) The basal centroid

correlation values derived from application of the Transcriptome BASE47 classifier to RNAseq data (X axis) and the NanoString BASE47 classifier applied to

NanoString expression data (Y axis) were significantly correlated, R = 0.90, p< 0.001. (D) Histogram of frequency of correlation coefficients of BASE47 genes

between basal centroid correlation values derived from application of the Transcriptome BASE47 classifier to RNAseq data and the NanoString BASE47

classifier applied to NanoString expression data. (E) Scatter plots of expression values of a representative luminal (UPK2) and basal (AHNAK2) BASE47 genes

derived from NanoString and RNAseq.

https://doi.org/10.1371/journal.pone.0243935.g004
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Fig 5. Black patients are not enriched in basal-like bladder cancer. (A) Workflow of analysis of the samples used to examine the molecular subtype

designations of bladder cancers in black patients. (B) Percentage of patients with each subtype by ethnicity in the UNC/JHU metadataset. (C)

Percentage of patients with each subtype by ethnicity in the TCGA BLCA.

https://doi.org/10.1371/journal.pone.0243935.g005
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RNAseq and Transcriptome BASE47 classifier cumbersome for clinical implementation. The

NanoString nCounter assay and the NanoString BASE47 classifier provide a faster turnaround

time, a lower cost per sample, and maintain the accuracy of the original subtype classifier. The

time to library prep (particularly from FFPE derived RNA) and sequence a sample on the orig-

inal BASE47 classifier takes upwards of a week, while a sample can be processed and classified

on the NanoString platform in as quickly as 24–48 hours. Furthermore, sequencing a sample

via RNAseq costs approximately 5 times the cost of the NanoString nCounter assay. Transi-

tioning to a NanoString platform therefore provides a faster and more cost-effective pathway

to subtype classification that can be incorporated into translational research efforts and in the

future, potential treatment decision-making.

Another key advantage of our new NanoString BASE47 classifier is the ability to classify

single samples into luminal-like and basal-like categories. The original Transcriptome BASE47

classifier was developed on a median-centered dataset and was originally designed to be used

to classify cohorts of patient sample data and as a result is not suitable for the classification of

individual patient samples. The Transcriptome BASE47 classifier requires each researcher to

select an appropriate, representative population and devise a method for gene centering in

order to normalize the population to the original published training population to minimize

bias and inaccuracy in subtype classification. In contrast, our NanoString BASE47 classifier

uses fixed expression values held stable across samples relative to the trained centroids with

no inter-sample processing or normalization. Therefore, no additional cohort or platform

normalization is required, providing a stable subtyping algorithm that can be applied to a

single patient regardless of biases in clinical characteristics, allowing for more widespread

clinical and translational use of the NanoString BASE47 classifier in decentralized laboratories.

Recently, given the multiple classification schemas for molecular subtypes in UC, efforts have

been made to define a consensus classifier. Our analysis is an important step forward to clinical

use of a Nanostring-based classifier, and opens the opportunity for further validation with

other classification schemes. In particular, a recently published consensus paper outlined six

molecular subtypes based on RNA transcriptome data, and a logical future extension of our

current work would be validation of a NanoString classifier for the consensus subtypes for

easy and wide clinical implementation.

It is pertinent to put our NanoString classifier in the context of other techniques and tools

for classification of molecular subtypes in UC. There are several other transcriptome based

classifiers including a consensus classifier that identified six subtypes and a method for single

sample classification [2]. Our analysis only validates the use of a NanoString classifier for the

two subtype transcriptome BASE47 classifier, but demonstrates a proof of principle that can

later be expanded to other classification schemes. There has also been recent interest in immu-

nohistochemical (IHC) subtype classification, which can provide an affordable, fast, and clini-

cally accessible results with similar advantages to the NanoString platform. Indeed, Guo et al.

demonstrated that IHC classification using GATA3 and KRT5/6 is a viable method of classifi-

cation for most tumors [18], although the accuracy was less than is described in our study with

NanoString.

We were surprised to not detect enrichment of black patients in the basal-like subtype of

bladder cancer given the similarities between breast and bladder cancer molecular subtypes

and the well documented enrichment of black women with breast cancer in the basal-like

subtype [11]. Our inability to detect enrichment of black patients in the basal-like subtype of

bladder cancer could represent a lack of statistical power to detect such a difference, as this

dataset also did not detect an enrichment in the basal subtype in females, which has been

shown previously [1]. However, we do feel that our sample size is sufficient to detect a clini-

cally meaningful difference in subtype distribution among races. For comparison, the Carolina
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Breast Cancer Study examined 496 women with breast cancer, of which 196 were black and

found an increased prevalence of basal-like breast cancer in black women [odds ratio (OR) of

2.1 (p = 0.004)] [11]. Alternatively, the lack of enrichment of black patients in the basal-like

bladder cancer subtype could certainly reflect a true difference in the molecular epidemiology

between breast and bladder cancer or a yet to be defined interaction between race, sex, and

molecular subtype (since our black patients included both males and females).

The enclosed analysis demonstrates feasibility and validation of a NanoString based classi-

fier in urothelial cancer but is not without limitations. While our sample size is adequate to

demonstrate accuracy of our classifier, our analysis is not sufficiently powered to demonstrate

association with survival, as has been done with prior classifiers in urothelial cancer. Addition-

ally, we were unable to demonstrate that the molecular subtypes have different response to

chemotherapy and differential survival given the heterogeneity of our patient population.

However, given the low classification error in our training and validation datasets, we feel this

classifier advances molecular subtype classification toward clinical utility in UC treatment.

Conclusions

The development of a fast, cost-effective, and accurate platform for BASE47 subtype classifica-

tion will now enable further translational research efforts and move the field forward toward

the incorporation of the basal and luminal molecular subtype classification into clinical use. It

also opens up the possibility of transitioning other urothelial cancer subtyping schemas for fur-

ther analysis to better inform the clinical care of the patients.

Supporting information

S1 Fig. Technical validation of the BASE47 NanoString probeset. (A) Coefficient of Vari-

ance of NanoString expression across technical replicates (n = 2) on a representative bladder

cancer sample. (B) Coefficient of Variance of NanoString expression across the UNC-Training

dataset (n = 52).

(PDF)

S2 Fig. Cross validation of a NanoString BASE47 PAM predictor. (A) Scatter plot of the cor-

relation to the basal centroid of Transcriptome BASE47 classifier applied to RNAseq expres-

sion (X axis) versus correlation to the basal centroid of the Transcriptome BASE47 classifier

applied to NanoString BASE47 expression (Y axis) demonstrating poor correlation (R = 0.25).

(B) Scatter plot of the correlation to the basal centroid of Transcriptome BASE47 classifier

applied to RNAseq expression (X axis) versus correlation to the basal centroid of the Nano-

String BASE47 classifier applied to NanoString BASE47 expression (Y axis) demonstrating

excellent correlation (R = 0.88).

(PDF)

S3 Fig. Association of clinical factors and molecular subtype. Tabulation of clinical charac-

teristics of patients in the UNC/JHU metadataset and molecular subtype as determined by the

NanoString BASE47 Subtype classifier demonstrates no association by Chi-squared testing of

subtype with (A) T stage, p = 0.45 (B) race, p = 0.52 (C) sex, p = 0.46 and (D) smoking status,

p = 0.37.

(PDF)

S4 Fig. Schematic of Monte Carlo cross-validation of the NanoString BASE47 classifier.

(A) The UNC-Training dataset was randomly split into a training matrix (2/3 patients) and

the resulting centroids were used to predict onto the remaining 1/3 of samples. The sampling

was run 10,000 times. (B) The confusion matrix denotes the percentage of the simulations that
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matched the ‘true’ subtype calls of each sample. There was a 16.2% classification error.

(PDF)

S5 Fig. Survival analysis stratified by subtype. Kaplan-Meier estimate of overall survival

(OS) stratified by molecular subtype based on NanoString BASE47 Subtype Classification

demonstrated no difference in overall survival in patients with basal and luminal tumors

(p = 0.61).

(PDF)
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6. Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for

urothelial carcinoma. Clinical cancer research: an official journal of the American Association for Cancer

Research. 2012; 18: 3377–3386. https://doi.org/10.1158/1078-0432.CCR-12-0077-T PMID: 22553347

7. Volkmer J-P, Sahoo D, Chin RK, Ho PL, Tang C, Kurtova AV, et al. Three differentiation states risk-

stratify bladder cancer into distinct subtypes. Proc National Acad Sci. 2012; 109: 2078–2083. https://

doi.org/10.1073/pnas.1120605109 PMID: 22308455

8. Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, et al. Impact of Molecular Sub-

types in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Che-

motherapy. European Urology. 2017. https://doi.org/10.1016/j.eururo.2017.03.030 PMID: 28390739

9. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizu-

mab in patients with locally advanced and metastatic urothelial carcinoma who have progressed follow-

ing treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016.

https://doi.org/10.1016/S0140-6736(16)00561-4 PMID: 26952546

10. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic

urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial.—

PubMed—NCBI. The lancet oncology. 2017; 18: 312–322. https://doi.org/10.1016/S1470-2045(17)

30065-7 PMID: 28131785

11. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer sub-

types, and survival in the Carolina Breast Cancer Study. JAMA. 2006; 295: 2492–2502. https://doi.org/

10.1001/jama.295.21.2492 PMID: 16757721

12. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised Risk Predictor of

Breast Cancer Based on Intrinsic Subtypes. Journal of Clinical Oncology. 2009; 27: 1160–1167. https://

doi.org/10.1200/JCO.2008.18.1370 PMID: 19204204

13. Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification

of the PAM50-based Prosigna breast cancer gene signature assay. Bmc Med Genomics. 2015; 8: 54.

https://doi.org/10.1186/s12920-015-0129-6 PMID: 26297356

14. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measure-

ment of gene expression with color-coded probe pairs. Nature Biotechnology. 2008; 26: 317–325.

https://doi.org/10.1038/nbt1385 PMID: 18278033

15. Reis PP, Waldron L, Goswami RS, Xu W, Xuan Y, Perez-Ordonez B, et al. mRNA transcript quantifica-

tion in archival samples using multiplexed, color-coded probes. 2011; 11: 46. https://doi.org/10.1186/

1472-6750-11-46 PMID: 21549012

16. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice: accurate mapping of

RNA-seq reads for splice junction discovery. Nucleic acids research. 2010; 38(18):e178. https://doi.org/

10.1093/nar/gkq622 PMID: 20802226

17. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a refer-

ence genome. BMC bioinformatics. 2011; 12:323. https://doi.org/10.1186/1471-2105-12-323 PMID:

21816040

18. Guo CC, Bondaruk J, Yao H, Wang Z, Zhang L, Lee S, et al. Assessment of Luminal and Basal Pheno-

types in Bladder Cancer. Sci Rep-uk. 2020; 10: 9743. https://doi.org/10.1038/s41598-020-66747-7

PMID: 32546765

PLOS ONE NanoString BASE47 bladder cancer gene classifier

PLOS ONE | https://doi.org/10.1371/journal.pone.0243935 December 17, 2020 16 / 16

https://doi.org/10.1016/j.cell.2017.09.007
https://doi.org/10.1016/j.cell.2017.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28988769
https://doi.org/10.1016/j.eururo.2019.09.006
https://doi.org/10.1016/j.eururo.2019.09.006
http://www.ncbi.nlm.nih.gov/pubmed/31563503
https://doi.org/10.1172/jci.insight.85902
https://doi.org/10.1172/jci.insight.85902
http://www.ncbi.nlm.nih.gov/pubmed/27699256
https://doi.org/10.1016/j.ccr.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24525232
https://doi.org/10.1073/pnas.1318376111
http://www.ncbi.nlm.nih.gov/pubmed/24520177
https://doi.org/10.1158/1078-0432.CCR-12-0077-T
http://www.ncbi.nlm.nih.gov/pubmed/22553347
https://doi.org/10.1073/pnas.1120605109
https://doi.org/10.1073/pnas.1120605109
http://www.ncbi.nlm.nih.gov/pubmed/22308455
https://doi.org/10.1016/j.eururo.2017.03.030
http://www.ncbi.nlm.nih.gov/pubmed/28390739
https://doi.org/10.1016/S0140-6736%2816%2900561-4
http://www.ncbi.nlm.nih.gov/pubmed/26952546
https://doi.org/10.1016/S1470-2045%2817%2930065-7
https://doi.org/10.1016/S1470-2045%2817%2930065-7
http://www.ncbi.nlm.nih.gov/pubmed/28131785
https://doi.org/10.1001/jama.295.21.2492
https://doi.org/10.1001/jama.295.21.2492
http://www.ncbi.nlm.nih.gov/pubmed/16757721
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.1200/JCO.2008.18.1370
http://www.ncbi.nlm.nih.gov/pubmed/19204204
https://doi.org/10.1186/s12920-015-0129-6
http://www.ncbi.nlm.nih.gov/pubmed/26297356
https://doi.org/10.1038/nbt1385
http://www.ncbi.nlm.nih.gov/pubmed/18278033
https://doi.org/10.1186/1472-6750-11-46
https://doi.org/10.1186/1472-6750-11-46
http://www.ncbi.nlm.nih.gov/pubmed/21549012
https://doi.org/10.1093/nar/gkq622
https://doi.org/10.1093/nar/gkq622
http://www.ncbi.nlm.nih.gov/pubmed/20802226
https://doi.org/10.1186/1471-2105-12-323
http://www.ncbi.nlm.nih.gov/pubmed/21816040
https://doi.org/10.1038/s41598-020-66747-7
http://www.ncbi.nlm.nih.gov/pubmed/32546765
https://doi.org/10.1371/journal.pone.0243935

