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Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet
only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively
compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population,
Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and
BP preferentially located in promoters 3-UTRs and 5-UTRs of genes. Distinct patterns of aberrant methylation of promoter
sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands
(CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant
promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric
disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation
is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter
CGIs hypermethylation with gene repression and (2) CGI 3-shore hypomethylation with increased gene expression. Finally, we
constructed a specificmethylation analysis platform that facilitates viewing and comparing aberrant genomemethylation in human
neuropsychiatric disorders.

1. Introduction

Schizophrenia (SZ) and bipolar disorder (BP) are complex
mental diseases. Similar to cancer or diabetes, these neu-
ropsychiatric disorders aggregate in families but do not
segregate in a strictly Mendelian manner [1, 2]. Over the past
decades, numerous genetic association and linkage studies

have shed light onmolecular pathways involved in SZ and BP
[3–5]. However, limitations of replication and identification
of risk alleles having only small effect sizes suggest that
nongenetic factors are also important in these disorders [6,
7]. Recently, increasing emphasis is being focused on the
potential roles of epigenetic variation in the etiopathogenesis
of SZ and BP.
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DNAmethylation is a key epigeneticmechanism in devel-
opmental regulation of gene expression. Evidence indicates
thatDNAmethylation is important in several neurobiological
and cognitive processes [8], including neurogenesis and brain
development [9], neuronal activity [10], and learning and
memory [11]. Prompted by these observations, it is plausible
that aberrantDNAmethylation, frequently implicated in can-
cers, also may be a contributor in a spectrum of psychiatric
disorders including SZ and BP [12].

Increasingly, investigation of epigenetic variation in psy-
chiatric disorders [13] is uncovering aberrant methylation
states in several genes identified from genetic association
studies. Disease-associatedmethylation variants inReelin [14,
15], Sox10 [16], and Foxp2 [17] have been identified from post-
mortem brain and peripheral blood specimens. The advent
of genome-wide DNA methylome analysis now facilitates
exploring aberrant DNA methylation in psychiatric disor-
ders. Mill et al. performed the first epigenome-wide charac-
terization of DNA methylation in individuals having major
psychosis; they surveyed 12,000 GC-rich regions, including
CpG islands (CGIs), obtained from prefrontal cortical brain
tissue [18]. This study identified several dozen aberrant DNA
methylation sites in genes known to be involved in brain
development and neurotransmitter signaling.

Investigation of monozygotic twins who are discordant
for psychiatric disease is another powerful strategy for uncov-
ering disease-associated epigenetic changes. Petronis et al.
found Drd2 was differently methylated in a twin pair discor-
dant for SZ [19]. In two twin pairs discordant for BP, Kuratomi
et al. found increased methylation upstream of the Sms gene
and decreased methylation upstream of Ppiel [20]. At the
time of this writing, the most comprehensive twin study
using systematic genome-wide analysis of DNA methylation
differences employed whole blood DNA microarray-based
profiling; several of the aberrantly methylated genes identi-
fied have been implicated in psychiatric disorders including
SZ and BP [21].

As a consequence of a focus on specific genes of interest
and genomic regions of suspected functional relevance, for
example, promoters and related CGIs, only a small fraction
of human CpGs has been interrogated. To date, unbiased
methylome-wide approaches for studying the global genomic
distribution of aberrant methylation sites in SZ and BP
have been limited [22]. Fortunately, the development of
next-generation sequencing now facilitates assessment of
genome-wide epigenetic changes without the limitations of
probe-based microarray platforms. Methyl-DNA immuno-
precipitation in association with high-throughput sequenc-
ing (MeDIP-Seq) is a genome-widemapping strategy that has
been successfully used to profile DNA methylation patterns
in several human cancers [23, 24].

In this study, we used MeDIP-Seq to investigate the
whole-genome distribution of aberrant DNA methylation
in six schizophrenia samples and three bipolar disorder
samples and compared these with the methylation patterns
of a normal sample.We observed distinct patterns of aberrant
DNA methylation around transcriptional start sites (TSS)
frequently occurring not in CGIs, but rather in sequences up
to 2 kb distant from a CGI, termed “CpG island shores” [25],
as well as in promoters that lack CGIs. In addition, this study
has uncovered several hundred novel SZ- and BP-associated

aberrantly methylated genes. These gene functions include
long-term potentiation, metabolism, and signaling pathways.
The comprehensive psychiatric disorder methylome map
here generated specifies precise genomic locations that
undergo methylation changes, which should be a valuable
resource for understanding epigenetic regulation of the
psychosis disease genome.

2. Materials and Methods

2.1. Clinical Peripheral Blood Samples. All subjects had ances-
try from Mexico or Central America and were medication-
free. Genomic DNA was extracted from blood as detailed
previously [26]. Subjects were designated as affected if they
met best estimate consensus diagnoses for either BP or SZ
using DSM-IV-TR criteria; the control sample had no history
of an Axis I disorder. These studies were approved by the
Institutional Review Board of TTUHSC and participating
institutions in the United States, Guatemala, and Mexico.
Written informed consent was obtained from all participants.

2.2. MeDIP-Seq. Genomic DNA was fragmented into 100–
500 bp by sonication. DNA ends were repaired to over-
hang a 3-dA, and then adapters were ligated to the DNA
fragment ends. Double-stranded DNA was denatured and
DNA fragments were immunoprecipitated using a 5-mC
antibody. Real-time PCR was used to validate immunopre-
cipitation quality. DNA fragments of proper size (usually
200–300 bp, including adaptor sequence) were selected after
PCR amplification. Finally, the resultant libraries were used
for sequencing. All raw sequencing data have been submitted
to the NCBI SRA database (Accession: SRP046293).

The human genome sequence and mapping information
were downloaded from the University of California Santa
CruzGenomeBioinformatics Site (UCSC, http://genome.ucsc
.edu/). MeDIP-Seq data were mapped to the reference
genome using SOAP2 software [27]. Only unique alignments
having no more than 2 mismatches were considered in
further analysis.

2.3. Genomic Features Annotation. The genomic coordinates
for the investigated human genomic features were down-
loaded from the UCSC public database. RefSeq gene promot-
ers were defined as ±2 kb of sequence flanking transcription
start sites, as in previous studies. In addition, in order to
investigate the methylation patterns of miRNA promoters,
we defined putative miRNA promoters as the 2 kb upstream
of miRNA precursors. Table CpGislandext (UCSC) was used
for the set of CpG islands. We excluded CGIs with “random”
chromosome location. Following Irizarry et al., the CpG
island shores are defined as the 2 kb regions nearby CGIs [25].

2.4. Global DNA Methylation Analysis. The genome was
divided into 10 kb segments. The read depth (AM) for each
segment was calculated and the read count of each segment
was normalized with this formula:

AM = RC × 10
6

URC
, (1)

where RC is read count of the distinct 10 kb length segment
and URC is the number of unique mapped reads in the
sample.
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2.5. Peak Scanning. Whole genome peak scanning was based
on a defined analysis model [28]. Dynamic Poisson distribu-
tions were used to calculate the 𝑃 value of a specific region
based on the number of unique mapped reads. A region with
a 𝑃 value < 1.0𝑒 − 5 is defined as a peak.

2.6. DMR Identification between Multiple Samples Based on
Peak. Peaks of two samples identified as above were merged
as candidate differentially methylated regions (DMR). For
each candidate DMR, the number of reads for each sample
was calculated.Then, numbers of reads were assessed by Chi-
square tests to obtainDMRs. For a candidate region, the value
of Chi-square is calculated as follows:

𝜒
2
=
(|𝑎 ∗ 𝑑 − 𝑏 ∗ 𝑐| − 𝑛/2)

2
∗ 𝑛

(𝑎 + 𝑏) ∗ (𝑐 + 𝑑) ∗ (𝑎 + 𝑐) ∗ (𝑏 + 𝑑)

, (2)

where “𝑎” and “𝑐” are the number of reads mapped to the
specific region in the normal and affected samples and “𝑏”
and “𝑑” are the number of reads mapped to other regions;
“𝑛” is the total number of reads in normal and affected
samples. The resultant regions had a FDR less than 5% and
the difference of reads numbers was more than twice that
considered as DMRs.

To explore whether DMRs were enriched in certain
chromosome or structural genomic features, the epitools
R-package was used to compute odds ratios for specific
genomic features (e.g., promoters) against all other features.
The significance of odds ratio values was calculated using
Fisher’s exact test. The enriched chromosome bands were
identified in the same way.

2.7. Identification of Aberrant Promoter Methylation Patterns.
To investigate the methylation patterns of aberrant methy-
lated gene promoters in SZ and BP, each promoter region
was first divided into forty windows. Whenever a window
was covered bymethylation peaks, we considered thewindow
“methylated” andmarked it as “1”; otherwise, the windowwas
regarded as unmethylated and marked as “0.” We focused on
two types of gene promoters: (a) those specifically aberrantly
methylated in SZ samples and (b) those methylated only
in the normal sample. Aberrant methylation patterns were
analyzed in the context of CGIs. Finally, five methylation
patterns were identified for promoters showing specifically
aberrant methylation in at least four of the SZ samples: (1)
methylation was mostly confined to CGIs and the number
of overlapped windows between “methylated” and “covered
by CGIs” was larger than half of the number of methylated
windows or half of those covered by CGIs; (2) methylation
was positioned 5 to the CGIs; (3)methylationwas positioned
3 to the CGIs; (4)methylation overlapped with CGIs; and (5)
the aberrantly methylated promoters lacked CGIs.

2.8. Gene Expression Analysis. RNA-Seq was performed
to profile gene expression in the one normal and three
schizophrenia samples. Oligo (dT) beads were used to isolate
poly(A) mRNA from total RNA from these samples. Frag-
mentation buffer was added and the resulting 200∼300 bp
fragments were used as templates for random hexamer-
primer synthesis of first-strand cDNAs. Second-strand cDNA

was synthesized using buffer, dNTPs, RNase H, and DNA
polymerase I. Fragments were purified with a QIAquick PCR
extraction kit and resolved with EB buffer for end reparation
and adding poly(A). Based on the results of agarose gel
electrophoresis, fragments were connected with sequencing
adaptors; PCRwas performed by selecting suitable fragments
as templates. The library was sequenced as paired-end 90 bp
reads using IlluminaHiseq 2000. Clean reads were mapped
to the reference genome and respective gene sequences using
SOAP2.Mismatches of nomore than two baseswere accepted
in the alignments. Reads per kilobase of model per million
base pairs sequenced (RPKM) were used to quantify the gene
expression level as described in detail byMortazavi et al. [29].
For genes having more than one transcript, the longest one
was used to calculate the expression level.

2.9. Gene Set Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) is a computational method that determines
if a set of genes defined a priori shows statistically significant,
concordant differences between two biological states (e.g.,
phenotypes) [30, 31]. Gene expression in the normal and SZ
samples was profiled by RNA-Seq and the data uploaded to
GSEA. Enrichment analysis was performed using aberrant
methylation target gene lists, such as aberrantly methylated
high CpG content promoters (HCPs), intermediate CpGs
(ICPs), low CpGs (LCPs), or gene sets having distinct aber-
rant methylation patterns.

2.10. Functional Pathways Identification. KEGG analysis was
performed to find enriched pathways usingGene Set Analysis
Toolkit V2 (http://bioinfo.vanderbilt.edu/webgestalt/), which
is based on hypergeometric tests. 𝑃 values were derived from
multiple tests corrected in order to reduce false-positive rates.
KEGG pathways having adjusted 𝑃 values of < 0.05 and with
at least two interesting genes were considered significant.

3. Results

3.1. The Landscape of DNA Methylation in SZ and BP. We
performed comprehensive blood DNAmethylation profiling
of one control, six SZ, and three BP subjects usingMeDIP-Seq
(Table 1). A total of 73.5 million paired-end reads per sample
were generated and 71.8% of reads were uniquely aligned to
the human genome.Within the 1 kb genomic DNAwindows,
we observed different densities of CpGs and found that most
reads for the SZ samples clustered in regions containing a low
number of CpGs (Figure 1(a)). This result indicates that the
MeDIP coverage was not low, even for regions of low CpG
density, and that we successfully recovered a considerable
fraction of methylated regions. In addition, we found that the
distributions of methylation levels around the CGIs and TSSs
were similar to that found in previous studies [32] (Figures
1(b) and 1(c)). These internal validations collectively support
the sequencing strategy and results.

To obtain an overview of the methylation maps and
to explore correlations of methylation among samples, we
divided the entire genome into 10 kb segments and counted
the number of reads mapped to each segment. To compare
the methylation levels among samples, the read count of
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Table 1: The characteristics of normal and schizophrenia patients used in the study.

Type Sample ID Age Sex Mapped reads Mapping rate (%) Unique mapped reads Unique mapping rate (%)
Control Control 31 F 63,705,306 86.71 53,558,678 72.90

SZ

SZ1 19 M 65,222,408 88.77 52,602,686 71.60
SZ2 19 M 64,775,113 88.17 51,767,805 70.46
SZ3 32 F 64,938,918 88.39 54,367,331 74.00
SZ4 32 F 64,702,407 88.07 54,361,897 73.99
SZ5 — F 64,963,538 88.42 53,367,930 72.64
SZ6 20 F 64,881,310 88.31 53,296,535 72.54

BP
BP1 39 F 63,027,119 85.79 51,944,268 70.70
BP2 55 M 64,279,707 87.49 51,104,038 69.56
BP3 — M 64,499,638 87.79 51,049,294 69.48

Note: samples SZ1 and SZ2 are monozygous twins; samples SZ3 and SZ4 are monozygous twins.

each segment was normalized against the total number of
reads in corresponding samples. Pairwise comparison of
genome-wide methylation across all samples showed a high
correlation among all six SZ samples (𝑅 > 0.972), but
not with the control, suggesting broadly altered methylation
levels in SZ (Figure 1(d)).We observed similar findings for BP
(Supplementary Figure 1 in SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2015/201587).

3.2. Genomic Distribution of Aberrant DNA Methylation in
SZ and BP. Despite global similarities, specific methylation
changes were evident in SZ and BP samples. In order to
identify the nature of the differences among SZ, BP, and
control and to identify DMRs, we carried out pairwise
comparisons of six SZ and three BP methylomes with one
control methylome. A total of 32,282 DMRs for SZ and
34,933 for BP with a FDR of 5% were identified. They
were further subdivided into 13,463 hypermethylated and
18,819 hypomethylated DMRs for SZ (Figure 2(a)) and 10,898
hypermethylated and 24,036 hypomethylated DMRs for BP
(Supplementary Figure 2A). To exclude individual variations
and to identify “ultraDMRs” (defined as genomic regions that
are hyper- or hypomethylated in more than half of samples),
we first explored the distribution lengths of all DMRs.
Interestingly, nearly 95% of all DMRs were larger than 500 bp
(Figure 2(b) and Supplementary Figure 2B). Therefore, we
divided the genome into 500 bp segments to identify the
ultra DMRs. A total of 5,338 (6%) and 9,291 (21%) ultra
hypermethylated DMRs were identified in SZ and BP, respec-
tively; 13,630 (14%) for SZ and 28,410 (36%) for BP ultra-
hypomethylated DMRs were identified and explored further
(Figure 2(c) and Supplementary Figure 2C). In agreement
with reports for several cancers [24, 33], we observed that
the number of hypomethylated DMRs is greater than that of
hypermethylatedDMRs, indicating a global hypomethylation
and local hypermethylation in psychiatric disorders.

We next examined the genomic distributions of these
ultra DMRs. Hypomethylated and hypermethylated regions
were distributed throughout the entire genome. However,
9.49% and 11.10% chromosome loci were enriched with
hyper- and/or hypomethylated DMRs. In particular, some

ultra DMRs were clustered at specific loci, including chro-
mosomal loci for SZ (Figure 2(d)) and BP (Supplementary
Figure 2D) and loci shared between the disorders (20q13.33
and 5p31.3). These ultra DMR regions span several known
SZ- and BP-associated genes including Smarca2 [34] and
Comt [35]. The Smarca2 gene, located on chromosome 9, is
a member of the SWI/SNF complex and has been implicated
in regulation of gene expression, cell cycle control, and
oncogenesis. An association between SZ and three SNPs in
two linkage disequilibrium blocks of the Smarca2 gene has
been reported in a Japanese population [36]. In addition, SZ
risk alleles have been associated with low Smarca2 expression
levels in postmortem prefrontal cortex. The current analysis
identified two hypermethylatedDMRs near Smarca2, provid-
ing additional evidence for its epigenetic regulation in SZ.
The Comt gene, located on 22q11.2, is involved in inactivation
of catecholamine neurotransmitters (dopamine, epinephrine,
and norepinephrine). It has been proposed that an inherited
variant of Comt carries a predisposition to schizophrenia in
later life [37].

3.3. Target Positioning of Aberrant Methylation in SZ and
BP. The discovery of aberrant DNA methylation in complex
diseases, especially in cancer, has focused investigation on
specific genes of interest and on genomic regions assumed
to be important functionally, such as promoters and CpG
islands [38, 39]. In order to provide a more systematic
landscape of methylation in SZ, we mapped all DMRs to
their nearest genomic features and performed an enrichment
analysis on those genomic elements that are associated with
DMRs. Analysis of the methylation level of these genomic
features showed the promoters and CGIs having increased
methylation. Consistent with previous studies in cancer, we
also observed global hypomethylation in repeat elements,
such as SINE, LINE, and LTR (Supplementary Figure 3
and Supplementary Figure 4A). Although the majority of
differentially methylated DMRs occur outside CGIs, we also
identified promoters, CGI, and CGI shores significantly
associated with hyper- and hypomethylated DMRs (adjusted
𝑃 < 0.01), emphasizing roles of DNA methylation in these
genomic features. Although the observed numbers of repeat
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Figure 1:TheDNAmethylation landscape of schizophrenia. (a) Distribution of genome varies density of CpG.The 𝑥-axis indicated the range
of number of CpGs in 1 kb and the𝑦-axis indicates the proportion of reads in each specific range. After dividing the genome into 1 kbwindows,
we calculated the distribution of DNA methylation windows, which showed various CpG densities. Most reads cluster in regions that have a
low number of CpGs. (b) Distribution of reads around CpG islands.Themethylation level of CGIs is higher than of CGI shores.The upstream
and downstream 2 kb of CGIs were divided into twenty equal regions, and CGIs were divided into forty equal regions, respectively. For each
region, the normalized read number was calculated. (c) Distribution of reads around TSSs, which reflects the TSS hypomethylation and gene
body methylation. (d) Pairwise similarity of DNA methylation among six schizophrenia subjects and a normal control. Pearson correlation
coefficients of genome-wide methylation are displayed according to the color scale.

elements did not statistically differ, functional relevance can-
not be excluded (Supplementary Figure 5 and Supplementary
Figure 4B).

CGIs in the human genome vary ∼30-fold in length.
Lengths of CGIs have functional consequences; genes con-
taining long CGI genes are preferentially associated with
developmental and regulatory functions [40]. We found
that CGIs associated with DMRs were significantly over-
represented in long CGIs, indicating potentially important

roles in SZ (Figures 3(a) and 3(b)) and BP (Supplementary
Figures 6A and 6B) and confirming previous observations
in SZ [41]. Despite a modest bias of aberrant methylation
toward long CGIs, the distribution of promoters’ CpG con-
tent is bimodal, revealing two distinct populations having
high or low CpG frequency (Figure 3(c) and Supplementary
Figure 6C).

To explore further relationships betweenmethylation and
promoter CpG frequency, promoters were divided into three
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Figure 2: Genomic distribution of DMRs in schizophrenia (SZ). (a) The number of differentially methylated regions was counted for each
SZ sample.The red bar indicates hypermethylated DMRs and the green bar indicates hypomethylated DMRs. (b)The cumulative distribution
of lengths of DMRs for hyper- or hypomethylated DMRs. Red lines indicate hypermethylated and green lines hypomethylated DMRs. (c) Pie
chart representing the proportions of DMRs in SZ samples. The darker the color shade, the greater the number of samples. A segment is
regarded as differentially methylated if the overlap length was larger than 250 bp. (d) Chromosome band enrichment of ultra DMRs. Red
stars indicate hypermethylated chromosome bands and green circles indicate hypomethylated bands. The bands indicated in the upper right
panel show FDR less than 0.01 and odds ratios greater than one.

groups based on their CpG ratios [42], that is, LCPs, ICPs,
and HCPs. We determined that hypermethylated promoters
exhibit an increased proportion of HCPs (Figure 3(d) and
Supplementary Figure 6D). The correlation between gene
activity andDNAmethylation suggests that promoter activity
frequency varies among promoter classes, dependent onCpG
content. Consequently, HCPs and ICPs are more prone to
differential regulation by DNA methylation than are LCPs
[42]. Furthermore, genes expressed in most tissues have been
reported to be biased toward HCPs [43], suggesting a key
role of HCPs in maintenance of basic cellular functions.
These results suggest, in SZ and BP, that cellular systems
might be regulated via selectively aberrantly methylated
genes associated with long CGIs or with high CpG content.

On genomicmethylation scanning,we observed amodest
number of genes with aberrant promoter methylation occur-
ring in both disorders (Supplementary Figure 7A), including
MPO on 17q23.1 associated with SZ [44] and SZ/BP [45].
RIMS1 [46] and SLC30A8 [47] have been associated with
the antipsychotic response. These gene products directly
interact in a protein interaction network (Supplementary
Figure 7B), suggesting functional associations. Our topo-
logical analysis indicates that the aberrantly methylated
genes in SZ/BP tend to occur at hubs and bottlenecks
in protein networks (Supplementary Figures 7C–7E). These
results suggest selective methylation of hub and bottle-
neck genes may be a regulatory mechanism in complex
diseases.



BioMed Research International 7

All Hypomethylated Hypermethylated
0

50

100

150

200

250

300
Th

e l
en

gt
h 

of
 C

pG
 is

la
nd

s (
bp

)
P = 4.063e − 9

P = 1.732e − 6

(a)

Hypermethylated Hypomethylated Reference
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C
G

Is
 co

ve
ra

ge
 (%

)

LCGI
SCGI

∗∗
∗∗

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CpG ratio (obs/exp)

D
en

sit
y

(c)

Hypermethylated Hypomethylated Reference
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 P

ro
m

ot
er

s c
ov

er
ag

e (
%

)

HCPs
ICPs

LCPs

∗∗

(d)

Figure 3: Ultra DMRs are associated with long CGIs and HCPs. (a) CGI length distribution for all CGIs, hypermethylated CGIs, and
hypomethylated CGIs. (b) Hyper- or hypomethylated ultra DMRs are enriched in LCGI promoters (𝑃 values < 0.01, Fisher exact test). (c)
The distribution of CpG ratios for aberrantly methylated promoters. (d) Hypermethylated ultra DMRs are enriched in HCPs.

3.4. Distinct Patterns of Promoter Aberrant Methylation in
SZ and BP. Promoter aberrant methylation is proposed to
contribute to tumorigenesis via repressing tumor-suppressor
gene transcription. Therefore, profiling genome-wide pro-
moter methylation would be expected to identify different
patterns of DNA methylation. Our analyses show that pro-
moter regions are enriched in both hyper- and hypomethy-
lated DMRs and imply that a predominance of promoter-
centric aberrant epigenetic regulatory effects occurs in SZ and
BP.

Next, we focused on the 955 gene promoters that are cov-
ered byDMRs in SZ and identified 476 promotersmethylated
only in SZ or normal control (Supplementary Tables 1 and 2).
Visualization of these methylation marks in the context of
CpG islands revealed the presence of several distinctmethyla-
tion patterns on gene promoters. Broadly, promoters fell into
two groups based on the presence or absence of a CpG island.
Although 41.8% of aberrantly methylated promoters lacked
CpG islands, they exhibited aberrant methylation around
the TSS. The remaining 58.2% of aberrantly methylated
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promoters hadCGIs spanning the TSS and showed four other
distinct methylation patterns (Figure 4(a)): (1) methylation
was mostly confined to the CGIs; (2) methylation was
positioned 5 to the CGIs; (3) methylation was positioned
3 to the CGIs; (4) methylation overlapped with CGIs.
Despite the observation that, in some promoters, aberrant
methylation was confined to the CGIs, the genome-wide
analyses of the promoter methylation patterns enabled us
to discover an unexpected physical relationship between
CGIs and aberrant DNA methylation in SZ; namely, 87.5%
of the hypermethylated and 86.9% of the hypomethylated
DMRs were located at the shore of CGIs in promoters or
in those promoters lacking CGIs (Figure 4(b)). Although we
determined 129/199 gene promoters overlapped with hyper-
or hypomethylated DMRs (Supplementary Table 3) in BP,
few of these gene promoters were specifically methylated in
BP. Aberrant methylated promoter patterns will be much
clearer with more BP samples in a future study.

The identification of these aberrantly methylated regions
suggests the need for further functional studies, such as the
mechanisms of how aberrant DNA methylation is targeted
to these regions and the role of aberrant methylation in CGI
shores.

3.5. Aberrantly Methylated Genes Are Enriched for Pathways
Relevant to SZ and BP. In order to determine potential
functional significance of the distinct DNA methylation pat-
terning observed above, we performed pathway enrichment
analyses (𝑃adjusted < 0.05). The results indicate hypermethy-
lated CGI genes are enriched for neuroactive ligand-receptor
interactions and genes aberrantly methylated in the shore of
CGIs are preferentially involved in long-term potentiation
and the Jak-STAT signaling pathway in SZ (Figure 4(c), Sup-
plementary Table 4). In contrast, hypomethylation in CGI
shores showed enrichment for genes involved in infection,
while genes lacking CGIs were enriched in metabolism, cell
adhesion, and axon guidance (Figure 4(d), Supplementary
Table 5). These results suggest that genes with distinct aber-
rant methylation patterns might affect several pathophysio-
logical pathways in SZ.

Neuroactive ligand-receptor interactions [48] and long-
term potentiation [49] are directly associated with neu-
rodevelopment and SZ. The long-term potentiation path-
way is critical in synaptic plasticity and is associated
with SZ. Interestingly, we found aberrantly hypermethylated
genes clustered in the Rhodesian-like amine GPCR family
(Figure 4(e)). In particular, ADRB1 and HTR1a were hyper-
methylated in 5/6 SZ samples. Associations between HTR1a
and SZ, implicating a role in SZ pathophysiology, have been
reported [50]. Moreover, we found that the olfactory trans-
duction pathway is enriched in hyper- and hypomethylated
genes lacking CGIs and is enriched at several locations of
this pathway in SZ (Figure 4(f)), again indicating potential
for multiple aberrations in this pathway that may contribute
to SZ.

Although no genes with specific methylated patterns
were identified in BP, the genes that overlapped with DMRs
highlighted pathways associated with cell signaling and
metabolism (Supplementary Table 5). These results suggest

that aberrant methylation may have an impact on SZ
and/or BP pathophysiology, mainly by targeting key nodes of
involved pathways.

3.6. DNA Methylation Code and Transcriptional Regulation
in SZ. The relationship between promoter methylation and
transcriptional repression of downstream genes has been
established in some human diseases [51, 52], but not pre-
viously in SZ/BP. Consequently, we next inquired if pro-
moter methylation events are associated with transcriptional
changes. We found the relationship between DNA methy-
lation and gene expression in most hypermethylated genes
in this project showed lower levels of expression in SZ
(Figure 5(a)). By analyzing genes with distinct CpG content
or with distinct methylation patterns, we found that promot-
ers with high CpG ratios and that were hypermethylated in
SZ were significantly associated with gene repression (𝑃 <
0.045) using GSEA (Figure 5(b)) [30]. Several previously
well-characterized SZ-associated genes are also present in our
list (Supplementary Table 6). For example, Npas1, having a
CpG ratio of 0.64, was hypermethylated in 5/6 SZ samples
(Figure 5(c)) and its gene expression in these samples was
threefold lower than in the control (Figure 5(d)). Transcrip-
tion factors regulating Npas3 and Npas1 gene transcription
govern regulatory pathways relevant in SZ [53]. In contrast,
genes hypomethylated on a 3-shore of a promoter CGI
tended to be overexpressed (𝑃 < 0.040, Figure 5(e)),
including the Hnrnpa1 gene (Figure 5(f)), which is highly
expressed in the SZ samples (Figure 5(g)). Hnrnpa1 is a post-
transcriptional regulator of gene expression and represses
alternative splicing when associated with silencing elements
near splice sites. It is implicated in processing primaryMecp2
RNAs and it binds to telomeric DNA, where it may promote
telomere elongation [54]. Thus, aberrant expression of this
gene may cause extensive functional abnormalities, and it
may be a possible target in SZ diagnosis or treatment.

3.7. PDMeth: A Specific Methylation Platform for Human
Psychiatric Disorders. We have developed PDMeth, a spe-
cific methylation platform for human psychiatric disorders
(http://bioinfo.hrbmu.edu.cn/pdmeth). Its focus is the effi-
cient storage and statistical analysis of DNA methylation
data specifically related to psychiatric disorders. PDMeth
provides integrated gene methylation data based on cross
dataset analysis for disease and normal samples and includes
a user friendly and configurable genome browser in which
multiple genomic and epigenomic resources can be visualized
simultaneously. In addition, users can upload their own
datasets for comparison with the current SZ/BP samples. In
the future, we will continue to extend the database with new
methylation datasets.

4. Discussion and Conclusion

Although several studies have described specificDNAmethy-
lomic changes in psychiatric disorders, knowledge of how
changes in DNA methylation impact SZ and BP remains
largely limited to effects at several genomic loci. In this study,
we provide a comprehensive map of DNA methylation and
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Figure 5: DNA methylation code and gene expression. (a) The global view of DNA methylation code and gene expression. The heat map
is based on levels of gene expression and DNA methylation at each gene locus; a key to the color coding is presented below the map. The
table on the left designates the pattern of aberrant promoter methylation and the CpG ratios. (b) HCP methylation is associated with gene
repression. Gene Set Enrichment Analysis (GSEA) of HCPs hypermethylated in SZ was performed on expression data from RNA-Seq. The
correlation between gene expression and promoter methylation is 𝑃 < 0.045. (c) DNA methylation in the Npas1 gene promoter in 6 SZ and
normal samples. Promoter regions are marked with pink bars and CGIs with green. The blue rectangle with dashed lines indicates the DMR
regions: red, SZ samples; green, normal control. (d) Npas1 gene expression in normal (blue) and SZ (dark red) samples. (e) Hypomethylation
of promoter 3-shores of CGIs is associated with increased gene expression (𝑃 value < 0.040). (f) DNA methylation in the Hnrnpa1 gene
promoter. Promoter regions are marked with pink bars and CGIs with green. The blue rectangle with dashed lines indicates the DMR regions:
dark red, SZ samples; blue, normal control. (g) Hnrnpa1 gene expression in normal (blue) and SZ (dark red) samples.

characterize global genome-wide methylation patterns in SZ
and BP. These results support the assertion that epigenetic
dysregulation plays an important role in both SZ and BP
and provide new important insights into the biological
implications of DNA methylation.

First, comparative methylome analysis uncovers numer-
ous potentially important DMRs and methylation patterns,
in both intragenic and intergenic regions, associated with
SZ and BP. Despite comparable total number of genomic
regions methylated in all samples, thousands of specific
hypermethylated and hypomethylated DMRs are identified.
Consistent with prior studies, we found gene-related genomic
features are the predominant targets of aberrant methylation
in SZ, such as promoters 5- and 3-UTRs [19, 25]. An
important observation is that aberrant methylated genes
are enriched in promoters having high CpG ratios. Several
of these genes have been previously demonstrated to be
involved in development and cell regulation. In addition
to these gene-related features, the other major target for
aberrant methylation is CGIs and CGI shores. This finding
extends involvement of CGI shores from cancer [13] to
neuropsychiatric disorders.

Further visualization of gene promoter aberrant methy-
lation in the context of CGIs revealed the presence of several
distinct methylation patterns in SZ. We found patterns of
aberrant promoter methylation that span CGIs, but most
methylation events are positioned in the 5 and 3 regions
flanking CGIs. Emerging evidence suggests these “CGI
shores” may play a more important role in the regulation

of gene expression than do CGIs themselves. In support of
the functional role for CGI shores, GSEA analysis revealed
that the aberrant DNA methylation of CGI shores was
more strongly associated with gene expression than was
aberrant methylation of CGIs. Although the expression data
profiled with RNA-Seq correlates well with our methylation
data, the conclusions drawn from these integration analyses
must be interpreted cautiously since the two data sets were
derived from different individuals.We also note that aberrant
methylation additionally occurred on promoters that lack
CGIs. Previous studies have determined that some genes
can be repressed by promoter methylation, despite absence
of a CGI in the promoter region. In sum, the promoter
aberrant methylation patterns identified here likely regulate
the transcriptome in SZ.

Most importantly, we found that 23.8% of genes identified
in our study have been previously recognized as associated
with SZ. DNA hypo- or hypermethylation changes in 56
genes obtained from peripheral blood samples in our current
study are consistent with our recent findings [55] obtained
from postmortem brain samples from patients with SZ
and BP, including DNMT1, CACNA1S, PRAME, MYT1L,
and STAB1. Among these genes, CACNA1S on 1q32 [56] and
PRAME on 22q11.22 [57] are considered “hotspots” for SZ and
BP.Moreover, the findings of three SZ-associated genes in our
current study, including aberrant hypermethylated SMAD3,
hypomethylated ARHGAP26, and hypermethylated CREB,
have been confirmed in a recent study that usedmethyl-CpG-
binding domain protein-enriched genome sequencing of
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the methylated genomic fraction, followed by next-
generation DNA sequencing in 759 SZ and 738 controls
[58]. The results from our study demonstrate that specific
features of methylation profiles in patients with SZ and BP
capture signatures of environmental insults in peripheral
tissues and, as such, are an important step toward developing
diagnostic and therapeutic biomarkers for SZ, BP, and/or
other neuropsychiatric conditions [59].

Our findings also indicate that age- and/or sex-associated
DNA methylation differences occur within the SZ group.
Taking these factors into account and to exclude individual
variations, we focused on the ultraDMRs,whichwere defined
as genomic regions that are hyper- or hypomethylated in
more than half of samples. In addition, we found 95.6% of
hyper-DMRs and 89.9% of hypo-DMRs were identified by
comparison with samples similar in age and of the same sex
as the control. These results support a conclusion that the
majority of our identified DMRs are associated with SZ. An
important caveat is our reference to a single control subject.
Future investigations will extend the findings in more case
and control subjects.

In summary, we have used a high-throughput MeDIP-
Seq strategy to characterize the DNA methylome map of
schizophrenia and bipolar disease. We observed distinct pat-
terns of DNA methylation around TSSs and have uncovered
several hundred novel aberrantly methylated genes in SZ and
BP. By incorporating gene expression datasets, we also pro-
vide additional evidence that aberrant DNAmethylation dis-
turbs gene expression and affects biological pathways in SZ,
including neuroactive ligand-receptor interactions and long-
term potentiation. The comprehensive psychiatric disorders’
methylome map generated here provides precise genomic
locations that undergo methylation changes. It should prove
to be a valuable public resource for investigations aimed
at understanding epigenetic regulation of the SZ and BP
genome.
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