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Extracellular DNA traps (ETs) are evolutionarily conserved antimicrobial mechanisms
present in protozoa, plants, and animals. In this review, we compare their similarities in
species of different taxa, and put forward the hypothesis that ETs have multiple origins.
Our results are consistent with a process of evolutionary convergence in multicellular
organisms through the application of a congruency test. Furthermore, we discuss why
multicellularity is related to the presence of a mechanism initiating the formation of ETs.
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INTRODUCTION

Two of the evolutionarily conserved defense mechanisms in multicellular organisms are coagulation
(1, 2) and the formation of extracellular traps. We have reviewed the latter.

Brinkmann et al. (3) observed that, during inflammation and after stimulation with phorbol
myristate acetate (PMA), lipopolysaccharide (LPS) and interleukin 8 (IL-8), neutrophils form
decongestant chromatin structures studded with microbicidal proteins, mainly elastase and
histones. These structures are networks that trap and kill bacteria and are named Extracellular
Neutrophil Traps (NETs). In addition to neutrophils, certain cells form extracellular DNA traps
(ETs), for example, monocytes, mast cells, and also eosinophils in mammals, heterophils in birds
and hemocytes in arthropods, mollusks, and crabs (4, 5). In plants, root border cells form
extracellular root traps (RETs) (6), and in the protozoan, Dictyostelium discoideum, ETs have
been described in their multicellular aggregative phase (7).

Firstly, we review the findings on ETs in different organisms to compare their similarities.
Following this, we posit that ETs are a defense strategy that emerged early in the evolutionary
history of eukaryotes. We examine the current evidence to discern whether ETs have independent
origins in different taxa, or whether they are present in distant but related taxa and from a common
origin. Finally, we discuss the supporting evidence as to why ETs are a multicellular defense strategy.
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ORGANISMS THAT PRODUCE
EXTRACELLULAR TRAPS

Extracellular Traps in Protozoans
The amoeba D. discoideum (slime mold) is a protozoan that, in
its natural habitat, is free-living, however, under laboratory
conditions, food shortage induces the formation of aggregates
of approximately 10,000 cells. The aggregate ofD. discoideum is a
migratory structure or “slug” consisting of specialized groups of
cells. This stage of its development can be maintained under
controlled conditions for 48 h, until it experiences terminal
differentiation culminating in a fruiting body and a mass of
spores supported by a stem (8).

One group of specialized slug cells, are sentinels cells (S cells),
which perform immunological-like functions such as engulfing
bacteria and sequestering toxins (9). These cells were shown to
produce ETs following stimulation with bacteria and LPS in a
reactive oxygen species (ROS) dependent manner by the
activation of Nicotinamide Adenine Dinucleotide Phosphate-
Oxidases (NADPH oxidases) A, B and C (homologous to human
Nox2) (7). This signaling mechanism involves the TirA protein,
which contains a Toll/Interleukin-1 receptor domain. The
formation of ETs by S cells does not compromise cell viability
since they are formed from mitochondrial DNA (mtDNA). The
ETs trap particles and bacteria and can cause the death of the
bacterium Klebsiella pneumoniae (7).
Extracellular Traps in Plants
The defense of plants is comprised of various biochemical
interactions, many of which occur in the extracellular
environment as the apical zone of the roots is resistant to
multiple pathogens (10). This resistance mechanism seems to
involve a mucilaginous matrix of polysaccharides in separating
“border cells” (11, 12). Arabidopsis thaliana border cells
recognize molecular patterns of pathogens (PAMPs) such as
peptidoglycans and flagellin, and increase the production of ROS
(13, 14). The production of ROS is a common pathway of defense
against pathogens in many organisms (15)

Among the defense mechanisms used by the border cells to
combat possible pathogens, is the release of RETs (11). RETs
consist of an extracellular DNA matrix, which was demonstrated
by treating pea root tips (Pisum sativum ‘Little Marvel’) with
endonuclease DNase I. This increased the susceptibility of the
roots to infection by the fungus Nectria haematococca (6).
Although RETs are continuously released when border cells
disperse into the rhizosphere from root calyptra (16), their
release can be amplified in response to microbial infections.
For example, the border cells of P. sativum and tomato (Solanum
lycopersicum) release RETs in response to the plant’s pathogenic
bacteria, Ralstonia solanacearum and the fungus N.
haematococca. In contrast, non-pathogenic bacteria such as
Escherichia coli, Sinorhizobium meliloti, and Pseudomonas
aureofaciens do not lead to the formation of RETs (17). The
RETs of P. sativum and S. lycopersicum consist of extracellular
DNA (exDNA), derived from DNA strands, polysaccharides and
Frontiers in Immunology | www.frontiersin.org 2
microbicidal proteins such as histone H4 (90% similar in base
sequence to H4 histones of mammals) (17).

Like NETs, exDNA is a fundamental component of the
structure of RETs and renders stability to the proteins that are
released by the border cells (16). Together with the exDNA,
numerous molecules are released in the RETs, for example, the
glycosylated protein arabinogalactane (18), defensins (19),
extensins (20), and xyloglucan (21). One study showed that
more than 100 proteins are released by the cells of the root
boundary (22). However, it has not been established which of
these proteins are part of the RETs and which are released as part
of other secretion processes.

The presence of ROS has been suggested in RETs. In border
cells of A. thaliana and in Linum usitatissimum (flax), stimuli
with flagellin (flg22) and peptidoglycan increase the production
of ROS, for example hydrogen peroxide (H2O2) and singlet
oxygen (O−

2 ). In addition, expression of the RbohD gene
encoding a NADPH oxidase increases (23). Among the
extracellular root proteins secreted by A. thaliana and Brassica
napus, enzymes that produce ROS, such as copper-zinc
superoxide dismutases and class III peroxidase, have been
detected (24). In Zea mays the presence of superoxide
dismutases has also been reported in the mucilage secreted by
calyptra cells into the rhizosphere (25). However, further studies
are required to assess whether these enzymes are integrated into
ETs or are secreted by border cells in processes unrelated to RET
formation. In addition, an evaluation of the activation of
NADPH oxidases and the production of free radicals is
required to assess it as a mechanism by which the release of
RETs is stimulated, similar to NETs.

RETs perform similar functions to NETs, such as immobilizing
and eliminating bacteria and fungi and limiting the dispersion of
microorganisms within root tissues. They also maintain an
optimal concentration of the proteins secreted by preventing
their diffusion into the environment surrounding the root (12,
17). The presence of these RETs has been reported in a wide
variety of plants (Table 1). However, there are still several issues
that need to be evaluated. For example, it has been observed that
border cells are continuously produced in the root cap or calyptra
and are released toward the rhizosphere, but they have not been
shown to move toward sites of infection (21). Border cells have
been described as remaining viable when releasing RETs (16), but
it has not been established whether the DNA is nuclear or
mitochondrial, nor the mechanism by which it is released. RETs
and NETs share many structural and functional characteristics in
common. Driouich et al. (21) reviewed these similarities recently,
which we can confirm with the following sentence from the article:
“It is striking how remarkably similar RETs and NETs are in terms
of composition and functional convergence”.

Extracellular Traps in Invertebrates
Invertebrate animal cells can form ETs. Hemocytes are the cells
responsible for the immune response in arthropods. Shrimp
hemocytes, (Marsupenaeus japonicus and Litopenaeus
vannamei) form ETs with DNA and type C lysozymes in
response to PMA, LPS, peptidoglycan and E. coli (29, 30). The
February 2021 | Volume 12 | Article 621311
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crustacean, Carcinus maenas, forms ETs in response to LPS
and Listonella anguillarum, a pathogenic bacterium in
crustaceans (31). Hemocytes of the mollusk, Crassostrea gigas,
form ETs with DNA fibers and histone-like proteins, H5-like
and H1-like, in response to tissue damage and infection by
the pathogenic bacterium Vibrio tasmaniensis LGP32. This
mechanism depends on the accumulation of ROS by the action
of NADPH oxidase. In some experiments, the hemocytes of
C. gigas do not form ETs in response to PMA, as occurs in
vertebrates (27).

Coelomocytes are the immune defense cells in annelids.
Eisenia andrei coelomocytes form ETs both in vivo and in vitro
in response to PMA, Gram positive bacteria, Gram negative
bacteria, LPS and fungal polysaccharides. E. andrei ETs contain
DNA and histone H3, the formation of coelomocyte ETs in
response to PMA is ROS-dependent, although the formation of
ETs in response to Xenorhabdus bovienii is independent of
ROS (28).
Frontiers in Immunology | www.frontiersin.org 3
Extracellular Traps in Fish and Birds
Zebra fish (Danio rerio) neutrophils form ETs with DNA,
myeloperoxidase (MPO) and elastase in response to PMA, a
calcium ionophore and b-glucan, like mammalian neutrophils
(33). Scophthalmus maximus neutrophils form ETs containing
DNA and histones in response to LPS, and in vivo infection,
these ETs trap E. coli and Pseudomonas fluorescens. ETs kill E.
coli but not P. fluorescens (32). Carp neutrophils (Cyprinus
carpio) form ETs containing DNA and histones H2A, H2B
(47). The equivalent cells in birds are heterophiles. In birds,
these cells form ETs that contain DNA, histones and elastase in
response to hydrogen peroxide and PMA (36, 48).

Extracellular Traps in Mammals
ETs were first described in human cells, specifically from
neutrophils (3). Since Brinkmann’s study, several publications
have revealed that this defense mechanism is not exclusive to
neutrophils, as other immune cells are capable of ejecting either
TABLE 1 | Extracellular traps in reported species.

Phylum Class Reported
species

Cells who
produce
them

ROS production Components Reference

Amoebozoa Dictyostelia D. discoideum S cells NADPH oxidase-dependent mtDNA (7)
Tracheophyta Magnoliopsida P. sativum

Z. mays
A. thaliana
S.
lycopersicum

Root border
cells

Not determined exDNA, H4 histone, Cytoplasmic proteins
including antimicrobial proteins and
polysaccharides

(17, 21);
(26)

Mollusca Bivalvia Crassostrea
gigas

Hemocytes NADPH oxidase-dependent DNA, H1-like and H5-like histones (27)

Annelida Clitellata Eisenia andrei Coelomocyte NADPH oxidase-dependent
and NADPH
oxidase-independent

DNA, H3 histone (28)

Arthropoda Malacostraca Litopenaeus
vannamei

Hemocytes NADPH oxidase-dependent DNA, histones,
C-type lysozyme

(29)

Marsupenaeus
japonicus
Carcinus
maenas

(30, 31)

Chordata Actinopterygii Scophthalmus
maximus
Danio rerio
Pimephales
promelas
Cyprinus
carpio

Neutrophil NADPH oxidase-dependent DNA, H2A and H2B histones, elastase, MPO (32)
(33–35)

Chordata Aves Gallus gallus
domesticus

Heterophils NADPH oxidase-dependent DNA, histone, elastase (36)

Chordata Mammalia Mus
musculus
Bos taurus
Capra sp
Phoca vitulina
Canis sp.
Felis catus
Hommo
sapiens

Neutrophil NADPH oxidase-dependent
and
NADPH oxidase-independent

mtDNA, and nuclear DNA, H1, H2A, H2B, H3
and H4 histone, MPO, neutrophil elastase (NE),
lactoferrin, tryptase

(3, 37–39)
(40, 41)

Mast cell NADPH oxidase-dependent DNA, tryptase, histones (42)
Eosinophil NADPH oxidase-dependent mtDNA, nuclear DNA mitochondial proteins,

MBP
(43)

Basophils NADPH oxidase-independent Granule proteins, mtDNA (44)
Lymphocytes Not determined mtDNA (45)
Monocyte/
macrophage

NADPH oxidase-dependent
and
NADPH oxidase-independent

mtDNA, nuclear DNA, histones, MPO,
antimicrobial peptides

(46)
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nuclear or mitochondrial DNA from the extracellular space.
Traps, described as sticky fibers, are made up of DNA,
granular proteins and enzymes, and it is likely that ETs could
function as immune regulators for the inflammatory
response (49).

Neutrophil Extracellular Traps
Different antimicrobial processes are known in neutrophils, e.g.
phagocytosis, the killing of invading pathogens, and
degranulation (50, 51). Phagocytosis is a receptor-mediated
process that involves the internalization of particles and its
subsequent fusion with lysosomes to form a phagosome (52).
Another important anti-microbial mechanism is the release of
ETs. This was identified in 2004 (3). NETs are involved in the
immune defense against pathogens, inflammation (53),
thrombosis (54), autoimmunity (55), and cancer (56).

These NETs are fibers composed of nuclear or mitochondrial
DNA, microbicidal molecules such as histones (H1, H2A, H2B,
H3, and H4) (57), the antimicrobial peptide LL-37 (58),
neutrophil elastase, cathepsin G, proteinase 3, lactoferrin,
tryptase, gelatinase, MPO and cytoplasmic proteins such as
tubulin (59).

Several mechanisms have been identified in the formation of
NETs, which depends on experimental conditions. In vivo NET
formation (60), known as NETosis, involves neutrophil death
and the accumulation of ROS produced by NADPH oxidase. In
addition, there is disruption in internal membranes and cytosolic
mixing. Extrusion of NETs occurs in a manner dependent upon
the MPO and the necroptotic cell death effector “mixed lineage
kinase domain-like” (MLKL). The formation time of NETs in
this pathway is lengthy (2–3 h) (61).

In the vital formation of NETs, the neutrophil continues to
retain chemotactic and antimicrobial functions after extrusion of
the ETs. Several types of vital NET formation have been
described (62). In 2009, Yousefi et al. (63), showed that, at low
LPS concentrations, neutrophils appear to release NETs with
mtDNA, and these neutrophils survive longer than unstimulated
neutrophils. NETs are reported to form in response to saliva in L-
selectin dependent manner, independent of NADPH oxidase and
elastase. These NETs are more resistant to the action of DNases
(64). In the formation of NETs by the independent way of
NADPH oxidase, ROS come from the mitochondria and the
blockade of MPO does not inhibit the extrusion of NETs,
although it is partially dependent on MLKL (61, 65). Processes
such as vesiculation, DNA decondensation, release of nuclear
DNA into the cytoplasm and expulsion of extracellular DNA can
be observed in this pathway (66).

Platelets activated by bacteria induce the extrusion of NETs in
an integrin-dependent pathway with aIIbb3, P and L selectins.
This mechanism leading to the formation of platelet thrombosis.
The interaction of NETs and proteins from the coagulation
cascade generates a state known as thromboinflammation
(67, 68).

Ultraviolet radiation induces the formation of NETs
independently of NADPH oxidase, but at the same time, causes
apoptosis. Therefore, this process is known as “ApoNETosis”.
Histone citrulination does not occur in this mechanism (69). In
Frontiers in Immunology | www.frontiersin.org 4
some NET formation pathways, chromatin decondensation is
related to increased transcription (70) and histone citrulination by
peptidyl arginine deiminase 4 (PADI4). PADI4 is an enzyme that
converts arginine to citrulline in histones, reducing their positive
electrical charge and relaxing their bond to DNA to promote
chromatin decondensation. PADI4 has been shown to intervene
in the extrusion of NETs in both ionomycin, PMA and Candida
albicans stimulated neutrophils in mice and humans. However, its
involvement in NET formation is poorly understood (71).

Neutrophils of humans, rodents (72), bovines, ovines (38),
pinnipeds, canines (4, 73), and felines (41), can form NETs in
response to microorganisms, such as Leishmania amazonensis,
C. albicans, Toxoplasma gondii, and Plasmodium falciparum, or
in response to viruses such as respiratory syncytial virus, human
immunodeficiency virus 1 and influenza virus (74–77). In
addition, LPS, peptidoglycan, flagellin, the protein kinase C
activator, PMA, and gold and silver nanoparticles can induce
the formation of NETs (38, 78).

NETs’ principal function relies on its defense from pathogens,
which is strikingly effective due to the high number of antimicrobial
proteins. Moreover, pathogens enhance inflammation, affecting
migration and coagulation, and vessels’ properties. In some cases,
the formation of NETs can contribute to organic damage and
induce thrombosis, for example, in SARS-CoV-2 infection, patients
present elevated levels of cell-free DNA, DNA-associated MPO,
citrullinated histone H3 and NETs (79, 80). It has been suggested
that these NETs contribute to immunothrombosis in the acute
respiratory distress syndrome caused by SARS-CoV-2 (81, 82).
Furthermore, they hypothesize that the wrong clearance of
extracellular DNA could lead to autoimmune diseases (83, 84).

Eosinophil Extracellular Traps
Eosinophils are the cells of the immune system specializing in
defense against parasitic helminths. They are also associated with
allergic and autoimmune diseases (85). Eosinophil ETs consist of
nuclear or mtDNA and major basic protein (MBP) and
eosinophil cationic protein (ECP). Unlike NETs, intact
granules can be seen on Eosinophil ETs (86). The formation of
ETs in eosinophils depends on ROS and NADPH oxidase and
could end in cell death. ET release in eosinophils involves the
dissolution of its bilobed nucleus, the rupture of the nuclear
membrane, the mixing of cytosolic components and the rupture
of the cell membrane (87). Yousefi et al. (88) showed that
eosinophils form mitochondrial ETs a few seconds after
stimulation with LPS, eotaxin, complementary factor C5a and
Escherichia coli. In eosinophils primed with IL-5 or IFN-g, the
presence of the ATP-synthase gene subunit 6 (Atp6) in the
released DNA was observed, although no nuclear proteins
(43, 89).

Mast Cell Extracellular Traps
Mast cells are multifunctional cells of the mammalian immune
system. Most of the mast cells are found in the skin and mucosa
of the respiratory and gastrointestinal tracts, they modulate the
function of other cells and, in infections, they can exert direct
microbicidal functions (90). In 2008, mast cells were reported
to can form ETs (91). Mast cells can form ETs in response
February 2021 | Volume 12 | Article 621311
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to S. pyogenes, C. albicans, E. faecalis, L. monocytogenes,
P. aeruginosa, and Leishmania sp. (42, 92, 93). The ETs of
these cells contribute, along with other ETs, to atherosclerosis
plaques developing the disease rapidly (94). Mast cell ETs are
composed of DNA, histones, and tryptase, which is a specific
protein in mast cells (91). The cathelicidin-derived antimicrobial
peptide LL-37 (CRAMP/LL-37), mediators TNF-alpha, IL-17
and CXCL2 chemokine are all present in mast cell ETs, which
are key in inflammation (95). Mast cells, like other cells, also
need NADPH oxidase activation and the participation of the
transcriptional factor hypoxia- inducible factor 1a (HIF-
1a) (43).

Basophil Extracellular Traps
Basophils are cells associated with inflammation, immunoregulation,
allergic response and protection against parasites. Basophils release
mtDNA extracellular traps by an independent NADPH oxidase
mechanism (44). Basophil ETs contain mitochondrial, but not
nuclear DNA. The mechanism occurs in the absence of functional
NADPH oxidase; possibly the ROS necessary for the formation of
basophil ETs come from the mitochondria. After activation of
basophils by activation of the immunoglobulin E receptor or C5a
complement receptor, the mitochondria and granules are
concentrated at the extrusion site. While the nucleus remains in
place, the histones are not part of the basophil ETs (96).

Monocyte Extracellular Traps
Monocytes are antigen-presenting immune cells (APCs) which
contribute to immune defense with different mechanisms, such
as phagocytosis, cytokine secretion, antigen presentation and
tissue repair (97). Monocytes form ETs consisting of DNA,
elastase, lactoferrin, MPO and citrullinated histones (46, 98).
Peptidyl arginine deiminase 2 (PAD2) catalyzes the citrullination
of histones in both subpopulations of human monocytes, the
classical CD14+ CD16− and the non-classical CD14+ CD16+
(99). Citrullinated histones were observed in the nucleus and in
the released DNA strands (98).

PMA, calcium ionophore A23187, platelet activating factor
and zymosan have all been reported to trigger the release of ETs
in monocytes (98). In addition, in in vitro studies, it has been
observed that human sperm in the presence or absence of
uropathogenic E. coli stimulate the release of ETs into
peripheral blood monocytes (100). Similarly, Staphylococcus
aureus cell-free culture supernatant also stimulates the release
of ETs (101). Peripheral blood monocytes expel ETs within 10min
of exposure to supernatants containing NET components. This
stimulus appears to be mediated by proteins such as elastase and
citrullinated histones, and not by the DNA of neutrophil ETs
(101). In this study, monocytes had no nucleus after the formation
of ETs, and released cytoplasmic and nuclear components. The
release of ETs in the monocytes was carried out both by the
vesicular and the classical routes. The formation of monocyte ETs
in response to NETs has been related to their neutrophil-cleansing
function in apoptosis and NETs (101).

ET release in monocytes depends on the respiratory burst,
since the NADPH oxidase 2 inhibitor, diphenylene iodonium
chloride (DPI), inhibits ET release in PMA-stimulated
Frontiers in Immunology | www.frontiersin.org 5
monocytes. However, treatment with DPI has no effect on the
release of ETs in A23187-treated monocytes, suggesting an
alternative induction mechanism. Furthermore, inhibition of
MPO and actin filament polymerization does not affect the
release of ETs into monocytes (98). In studies conducted on
caprine monocytes, it was observed that Neospora caninum
stimulates the release of ETs. This process involves the
activation of extracellular-signal-regulated kinase 1 and 2 (ERK
1-2) and p38, in addition to the production of ROS, since the
inhibition of NADPH oxidase or MPO significantly reduced the
formation of monocyte ETs (102).

Macrophage Extracellular Traps
Macrophages are cells specializing in the maintenance of
hemostasis, regulation and tissue repair and immune response.
They may originate from monocytes or from precursors residing
in various tissues (103). Macrophage cell lines, monocyte derived
macrophages, and alveolar bovine macrophages form
macrophage ETs. Monocyte-derived macrophages release ETs
when exposed to MPO-derived oxidant hypochlorous acid
(HOCI), PMA, IL-8 or TNF-alpha (104, 105).

Some pathogens can stimulate the formation of ETs from
macrophages, for example, macrophages grown in the presence
of M. tuberculosis plus IFN-g can induce ET formation (106).
Cord-forming M. tuberculosis, which grows into organized
structures on which bacteria remain attached in cord form, can
also induce ET formation (107). The induction of ETs in
macrophages by cord-forming M. tuberculosis was dependent
on the virulence factor ESAT-6 (107). In addition, Aulik et al.,
demonstrated, in vitro, that bovine alveolar macrophages and
human macrophage cell lines TPH-1 and RAW 264.7 form
macrophage ETs in response to hemolysins of E. coli and the
leukotoxin of Mannheimia haemolytica (108).

C. albicans can simultaneously stimulate ET release and
phagocytosis in macrophages (109). In this study, it was
observed that the release of ET macrophages occurs before cell
death (109). In vitro, placental macrophages generate ETs in
response to Streptococcus agalactiae. These ETs contain
metalloproteases, which may contribute to a weakening of the
fetal membrane during infection (110).

The mechanisms by which ETs are induced in macrophages
are not clear. For example, in placental macrophages, ET
formation appears to be dependent on the production of ROS
and actin polymerization (106). However, another study showed
that inhibition of NADPH oxidase does not prevent ET
formation (107). It has been suggested that the formation of
ETs by NADPH oxidase independent mechanisms places
intracellular calcium influx in a higher position (110).

ETs of macrophages have been associated with pathological
processes such as autoimmunity and atherosclerosis. For
example, ETs of synovial fluid macrophages are a resource of
citrullinated histones that leading to formation of anti-
citrullinated protein/peptide antibody in a murine model of
autoimmune arthritis (111). In response to danger, ETs of
different immune cells, including macrophages, have been
reported to contribute negatively to making the plaque greater
in patients with atherosclerosis (94).
February 2021 | Volume 12 | Article 621311
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Lymphocyte DNA Webs
T and B lymphocytes release DNA in response to PMA,
ionomycin and serum from patients with Lupus or anti-
immunoglobulin M plus LPS (45). In T-lymphocytes,
activation with anti-CD3 and anti-CD28 antibodies triggers the
release of DNA webs in a manner dependent on the production
of ROS in the mitochondria (112). Another study reported that
B-, T- and natural killer lymphocytes produce DNA webs made
frommtDNA when stimulated with CpG oligonucleotide of class
C. This mechanism was independent of the generation of ROS,
cell death and signaling through the Toll 9 receptor. The DNA
webs were devoid of microbicidal proteins, and when E. coli was
cultured in the presence of B-cell DNA webs, no decrease in the
number of colony-forming units was observed. In addition,
B-cell DNA webs induce the release of type I interferon in
peripheral blood mononuclear cells (113). Key features of ETs
described in cells of the innate immune system, such as the
presence of antimicrobial peptides, citrullinated histones, or the
ability to trap bacteria or particles, have not been described in
lymphocyte DNA webs. Further studies are needed to determine
their similarity to ETs in other cells.
MULTIPLE ORIGINS OF
EXTRACELLULAR TRAPS

In the preceding sections we have reviewed the structural and
functional similarities of ETs in different organisms, which raises
the question as to whether this mechanism emerged early in the
evolutionary history of life and all these ETs had a common
evolutionary origin, that is, whether they are homologous.
Inferences about homology have been proposed as a two-step
process: first we look for a primary homology with the similarity
test and then we test the homology hypothesis with the
congruency test (114).

The similarity test states that structures should be
morphologically, ontogenetically, or functionally similar, as
well as exhibiting connectivity and structural correspondence
(115, 116). There is no standard method for similarity testing,
therefore, it is based on direct observation, conjecture and
common sense (114, 117). The consistency test indicates
whether the presumed homologous structures are consistent
with other characteristics showing phylogenetic relationships
between taxa (115).

We reviewed the evidence of ET formation in different groups
to assess whether they are homologous characters. First, we
proposed the primary homology from the review of the
characteristics described ascribed to ETs. As detailed in the
previous section, structural and functional similarities exist
between the ETs of organisms such as protozoa, plants,
invertebrates, and vertebrates, which has been noted previously
by other authors (21, 118). Therefore, we propose that there is
primary homology between ETs.

Second, we used the congruency test to assess whether ETs
could be considered a secondary homology. To perform the
congruency test, we mapped the groups in which ETs have been
Frontiers in Immunology | www.frontiersin.org 6
described in the eukaryotic consensus phylogenetic tree (119–
121). The phylogenetic tree shows that the presence of ETs is not
a shared characteristic and that there is no congruence with the
phylogenetic history of the groups, since the presence of ETs is
observed in separate taxa (Figure 1). This leads us to reject the
hypothesis of secondary homology. After phylogenetic analysis
and a review of congruence, any pattern of non-homology is
considered a result of homoplasy (when a trait has been gained
or lost independently in separate lineages over the course of
evolution) (122), Therefore, we contend that the formation of
ETs is the result of homoplasy, and that ETs have multiple
origins in the evolutionary history of living beings.

We determine that the formation of ETs may have originated
several times in the evolution of eukaryotes. However, we cannot
determine how many times they have originated due to two
reasons. Firstly, we do not know all of the organisms that release
ETs nor which ones do not release them within each group.
Secondly, we cannot be sure whether the conditions for releasing
ETs are ancestral or lost in some groups. However, it is unlikely
that ETs are found in groups of eukaryotic unicellular organisms
such as some species of unicellular fungi, choanoflagellates or
chlorophytes. We suggest that ET formation has had at least
three independent origins in embryophytes of the Plantae
kingdom, in amoebozoa of the Protozoan kingdom, and in
bilaterians. In the following paragraph we will discuss some of
the reasons why the development of ETs is likely to be linked
to multicellularity.
MULTICELLULARITY AND
EXTRACELLULAR TRAPS

The ability to release ETs has been closely linked to
multicellularity, since the strategy of releasing DNA in defense
against microorganisms is beneficial for a multicellular organism,
although not for a unicellular one, from an evolutionary point of
view (123). If a group of unicellular organisms were to develop
cooperative immune responses such as the formation of ETs,
unrelated organisms that do not contribute to defense would
benefit from mutual cooperation. This is known as the
“prisoner’s dilemma” (124). This population of opportunistic
organisms would have an advantage over the cooperating
organisms and their population would increase to a critical
point at which, the entire population would eventually collapse
(125). Therefore, the development of ETs must have originated
in the first multicellular organisms.

Multicellularity has multiple origins in the evolution of
eukaryotes, however, in order to determine the number of
independent origins we must distinguish between clonal
multicellularity and aggregative multicellularity. In clonal
multicellularity the whole organism originates from a single cell,
which divides mitotically, as in Metazoa and Embryophytes. In
aggregative multicellularity, a set of unicellular organism groups
form a multicellular organism at some stage of their development,
as in D. discoideum (126). Regarding aggregative multicellularity,
some authors suggest that the origins, have occurred between 16
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and 22 times (127, 128). We have taken into consideration the
groups that present a clonal multicellularity with more complex
characteristics, such as intercellular communication, cell
differentiation and tissue organization (in some cases), this had
six origins in the history of eukaryotes (129).

Heterotrophic eukaryotes separated from the lineage that
gave rise to Embryophytes and Chlorophylls more than 800
million years ago (129). Multicellularity in these groups appeared
much later, ~650 million years ago for the metazoans and ~450
million years ago for the embryophytes (126). The ability to form
ETs must have originated independently, after the groups were
separated and multicellularity was established.

Previously, it has been suggested that there was a relationship
between multicellularity and the presence of genes encoding for
NADPH oxidases because these enzymes had only been
identified in multicellular organisms (130). In addition, it was
suggested that the time of origin of NADPH oxidases and
multicellularity correlated with the time of origin of ETs, and
that the presence of genes for NADPH oxidases would serve as a
genetic signature in identifying which organisms may form ETs
(123). However, there are reports showing that almost all groups
of eukaryotic organisms, including single-cell protists, express
NADPH oxidases (131).

The fungus Saccharomyces cerevisiae, which was thought not
to express NADPH oxidases, expresses the yeast NADPH
oxidase 1 (132). NADPH oxidases have even been reported in
some prokaryotes, however, these NADPH oxidases are separate
from eukaryotic NADPH oxidases in the phylogenetic tree, and
have been suggested to be a subgroup of the NADPH oxidase
family (133). Therefore, the hypothesis supporting a correlation
between the presence of NADPH oxidases and ET formation
should be discarded, although the hypothesis of a correlation
between ETs and multicellularity still remains.
Frontiers in Immunology | www.frontiersin.org 7
The development of multicellularity allows the differentiation
of cells responsible for the defense of the organism, such as
border cells, S cells and neutrophils. In unicellular organisms,
defense mechanisms have been described as the secretion of
antimicrobial peptides, the production of antibiotics and the
interference of RNAs and restriction enzymes (134, 135).
However, the transition to multicellularity requires the
emergence of a more complex system of surveillance and
protection that would allow recognition between self and non-
self cells, as well as a tolerance of possible symbionts (136).

Now, we will make a brief review of the defense mechanisms
in the cells of the immune system of the metazoans to illustrates
the development of ETs is present in specialized cells for the
defense of the organism once multicellularity is established.

Among the first processes related to the defense of the
organism is phagocytosis, which appears in unicellular
organisms as a feeding mechanism (137). It has been suggested
that the origin of phagocytosis, similar to multicellularity, had
independent origins in several eukaryotic lineages (138). The first
cells specialized in the defense of the organism within the
metazoan lineage, appear in the poriferous, and are known as
amebocytes (139). These are responsible for phagocyting food
particles and cellular debris (136). Other groups of invertebrates
such as nematodes, annelids, mollusks, crustaceans and
echinoderms have cells known as non-grained hemocytes,
which phagocytize cells and foreign particles. These cells begin
to present other innate immune defense mechanisms such as the
secretion of antimicrobial peptides and the production of ROS,
and some secrete ETs (140).

In arthropods, protochordates and vertebrates, hemocytes are
present in granules containing enzymes and antimicrobial
peptides (139–142). In many species of these organisms, it is
already possible to distinguish between neutrophilic, eosinophilic
FIGURE 1 | Phylogenetic relationships of species that form extracellular traps. The phylogenetic tree shows the major groups of eukaryotes (119–121). The
positions of multicellular organisms and the positions of organisms that form extracellular traps (red) are shown.
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and basophilic granulocytes (140). In granular hemocytes, the
same mechanisms of the innate immune response, described in
mammals as phagocytosis, antimicrobial peptide secretion,
degranulation, ROS production, cytotoxicity and ET formation,
can be observed (139, 143, 144). Therefore, the development of
ETs occurs in specialized cells for the defense of the organism.

Fungi mainly present chemical defense responses such as
toxin secretions, secondary metabolisms, peptides, antimicrobial
proteins and ROS release (145–147). Although it has been shown
that the secretion of these chemical mediators may be inducible
through the detection of mechanical damage, bacterial
peptidoglycan or pheromones (148–151), whether there is
specificity in the detection of these signals, has not been
shown. In the complete known sequences of fungi,
homologous genes of the Toll-like receptors have not been
encountered (146), although NOD-like receptors (NLR) are
expressed. These last receptors perform hetero-incompatibility
functions between different strains (152), although whether NLR
receptors perform pathogen detection or damage signaling
functions has yet to be demonstrated (146, 153). Even though
there is no evidence of ETs in fungi, they are likely to be found
since fungi are multicellular organisms.
CONCLUSION

A defense against pathogens is essential for the survival of all
organisms for which evolution has developed some remarkable
mechanisms to combat different pathogenic microorganisms.
Perhaps the most noteworthy of these defense mechanisms is
the formation of ETs, in which bacteria, fungi and parasites are
immobilized. The importance of this function is shown in the
organisms of different, closely or distantly related taxonomic
groups (protozoa, plants, arthropods, birds, marine and
terrestrial mammals) in response to pathogens.

By means of the congruency test we have proved that the ETs
in these organisms are examples of homoplasy and have multiple
origins. Not all groups of organisms form ETs, and, of those that
Frontiers in Immunology | www.frontiersin.org 8
do not, the exact number of independent origins cannot be
established. Furthermore, from the earliest stages in the
evolution of ETs, the transition of organisms from the
unicellular to the multicellular has been extremely significant.
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