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Small non-coding RNAs have been significantly recognized as the key modulators in many biological

processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed

in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes,

and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS)

technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on

a genome-wide scale and has become the preferred approach for the discovery and quantification of non-

coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for

analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific

RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization.

An analysis tool that allows for maximum control of different software is essential for drawing concrete

conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA

analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small

RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of

comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small

RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions

on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.
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S
mall RNAs (B250 nucleotides in length) are a class

of non-coding RNAs that modulate translation

of target RNAs through RNA�RNA interactions

in normal physiological conditions and in the disease

state (1�3). One type of small RNAs is the microRNA

(miRNA), which can mediate either translational repres-

sion or mRNA degradation by binding to the 3? UTRs of

target sites (4,5). Potentially, a single miRNA may target

many protein-coding genes, resulting in the perturbation

of different biological processes (6,7). Recent studies have

extensively documented that these miRNAs and other

small RNAs can be packaged in exosomes, which are

small extracellular vesicles released from many biotypes,

contributing to pathogenesis during disease state (8,9).

The role of exosomes as potential carriers of small RNAs

during the disease progression includes spreading of

cancer (10�12) and neurodegenerative diseases (13�15).

The advances in small RNA profiling using next-

generation sequencing (NGS) technology have enabled

the interrogation of genome-wide expression at a higher

throughput and lower cost (16�18). To date, there are

several NGS platforms and protocols for small RNA

sequencing, including Illumina HiSeq systems and Life

Technologies Ion Torrent/Proton sequencing (19). Despite

the different sequencing platforms, the analysis of gen-

erated data follows a common analytical workflow for

small RNA sequencing that includes 3?-adapter trim-

ming, sequence alignment, read counting, normalization,
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expression profiling and other downstream analyses to

address relevant biological questions (20). To perform

this procedure, several open-source tools have been

established, such as mirTools (21,22), miRNAkey (23),

miRDeep (24,25), DSAP (26), E-miR (27), miRanalyzer

(28), MIReNA (29), miRExpress (30), miRspring (31),

iMir (32) and CAP-miRSeq (33). These tools differ in the

methods and algorithms used for various processing steps

such as adapter trimming, sequence alignment and nor-

malization of expression level (Supplementary Table I).

Most of them have high performance with respect to

accuracy, sensitivity and visualization for conducting

expression analysis. However, only some tools provide

sequence quality assessment and differential expression

analysis for small RNAs, while the majority of these tools

are for miRNA profiling. In addition, optimized para-

meters employed in the pipeline with various considera-

tions may not be suitable for data analysis of all small

RNA studies, particularly to experiments with a wide

variety of conditions including drug exposure, exosome-

derived nucleic acids and specific genetic alterations, such

as gene deletions/insertions and siRNA knockdown (34,35).

Thus, existing pipelines that do not allow configuration

of argument parameters may not be appropriate for a

complex study design (36). It is difficult to reach a co-

herent consensus on how the software parameters should

be applied for a specific study and the chosen methodol-

ogy for subsequent analyses due to the dynamic nature of

biological studies. Therefore, analysis tools that include

the convenient options of customization will be desirable

for analysing different types of small RNA data.

Of these analysis methods, the standalone tools are

becoming more appealing due to their flexibility and

reliability for data processing and analysis (37). Advan-

tages include having no limit in the argument options

provided by the software and the choice of selecting ap-

propriate small RNA references from respective species.

As compared to graphical user interface (GUI) or web

browser tools, the standalone tools have no issues of

uploading hundreds of samples and encountering server

down or the missing web-link. These attributes signifi-

cantly accelerate the analysis of sequencing projects with

numerous samples and complex study designs.

The initial processing step for expression profiling is

mainly the sequence alignment and normalization of

small RNA counts (38,39). Although there are different

aligners for small RNA, the choice of alignment software

depends on the compatibility of sequencing instrument as

well as the balance of speed and accuracy because increased

alignment speed will affect the alignment quality (40).

Therefore, several sequencing companies provide their

specific aligner tool that can promptly and reliably per-

form sequence alignment. For instance, the Ion Torrent

platform from Life Technologies incorporates TMAP

aligner into the Torrent Suite Software for performing

alignment after base calling, eliminating the inconveni-

ence of adapter trimming and sequence alignment using

third-party tools (41,42). After sequence alignment, the

recovered small RNA counts need to be normalized to

remove variations in the data that are caused by experi-

mental procedure such as RNA extraction, sequence

library construction and sequencing (43,44). Several

normalization methods for small RNA data have been

proposed, including total count-based or quartile-based

scaling and linear or non-linear regression (45). These

normalization methods are adopted from mRNA or

whole transcriptome analysis (46,47). The selection of

appropriate normalization method for small RNA data

has led to several studies in evaluating the effect of dif-

ferent normalization methods (48,49). Despite the effort

of comparing the existing methods, common conclusions

have not been drawn from these studies. The evaluation

results from Garmire and Subramaniam recommended

the use of quantile and Lowess normalization methods

for small RNA-seq data, in particular for miRNA, and

showed that the poor performance of trimmed mean

of M values (TMM) was due to the abnormal results

from the test of differential expression of miRNA (50).

In contrast, with the correct implementation of TMM

for small RNA data, Zhou et al. demonstrated the po-

tential of TMM method in improving the total-depth

normalization by re-analysing the data from the afore-

mentioned study (51). In addition, Dillies et al. had

demonstrated a comprehensive evaluation of normal-

ization methods and had suggested the use of DESeq

and TMM for RNA sequencing data (48). Thereafter,

testing different normalization methods for small RNA-

seq analysis can facilitate the selection of an optimal

method for expression profiling in various biological

data sets.

Since sequence alignment and expression normaliza-

tion will affect the accurate quantification of small RNA

abundance, there is a demand for tools to provide flexible

and practical usage for data analysis. Here, we developed

an integrated Small RNA Analysis Pipeline (iSRAP) for

comprehensive analysis of small RNA sequencing data

derived from exosomes and the disease state. iSRAP is

presented with a one-step command which maximises the

performance of integrated tools automatically, providing

visualization and real-time evaluation of analysis run

for transcriptomic data. In this study, data sets retrieved

from public databases were used to demonstrate the

pipeline’s usage in quantification and discovery of a wide

spectrum of small RNAs, including but not limited to

miRNA, small nucleolar RNA (snoRNA), small nuclear

RNA (snRNA), piwi-interacting RNA (piRNA) and

transfer RNA (tRNA).
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Materials and methods

Test data sets
Three data sets were used to demonstrate the capability of

iSRAP and the descriptions of each data set were detailed

in the following.

a. Data set 1: miRNA sequences from the prefrontal

cortex Brodmann Area 9 of the frozen brain

tissue (52) of 12 Huntington’s disease (HD) patients

and 9 healthy individuals (Sequence Read Archive

[SRA]; accession no. ERP004592). Samples were

sequenced using the Illumina HiSeq 2000 sequencing

platform.

b. Data set 2: Mouse GT1-7 neuronal cell-derived

exosomes. These neuronal cell and exosome data

sets were previously generated in-house to investigate

the different exosome isolation methods for small

RNA profiling. Exosomes were isolated from GT1-7

neuronal cell line using differential ultracentrifuga-

tion (UC), and OptiPrepTM (OP) velocity gradient

UC where exosomes were predominantly found in

Fractions 8 and 9 (53). Small RNAs were extracted

from exosomes prepared by UC and Fractions 8

and 9 of OP gradient, as well as GT1-7 neuronal

cells for comparison. Samples were sequenced using

Ion Torrent Personal Genome Machine at 200 base

sequencing. The sequencing data consisted of 5 re-

plicates of OP exosomes and 3 replicates of respective

UC exosomes and cells. The full details of the experi-

mental work were described previously. Sequence

data can be downloaded from European Nucleotide

Archive database (accession no. PRJEB9472).

c. Data set 3: Experimental procedures for small RNA

sequences from human plasma-derived exosomes were

previously reported (54). The study consisted of 14

size-selected sequencing libraries from 7 individuals

(SRA accession no. SRP034590), and these libraries

were sequenced using an Illumina HiSeq 2000

sequencer (55).

Reference databases and annotation
Several reference databases were used to identify miRNA

and other small RNAs. Genomic coordinates were inter-

sected between query and known transcripts in miRBase

database (56). Subsequently, additional intersection to

the other classes of small RNAs was also performed with

respect to their specific databases, including Genomic

tRNA database (57), piRNA Bank (58) and Ensembl (i.e.

snoRNA, snRNA and rRNA) (59).

Implementation of iSRAP pipeline
The outline of the pipeline is illustrated in a schematic

diagram (Fig. 1). This is a pipeline implemented with

Ruffus, a lightweight computation pipeline manage-

ment library for Python, which allows for multistage

processing of computational tasks (60). Each tool in the

pipeline is executed as defined in the configuration file.

Results

Workflow of iSRAP
iSRAP provides automated execution of a range of

tools for small RNA expression analysis as shown in

Fig. 1. The main components are listed in Table I. For

full details of the pipeline, refer to Supplementary file for

explanations and key parameters of each tool.

Key features of iSRAP
The followings are the main features of iSRAP.

a. Sample management: The flexibility of input files and

data management is important for analysing different

types of studies. The text file is provided to specify

the processing steps and file locations. The pipeline

recognized raw FASTQ or BAM alignment files, in

which multiple data sets are processed in parallel for

each computational task.

b. Result output management: All results are saved in

each respective folder based on the computational

task. Results are saved in PDF and HTML files,

which allow portability of analysing data between dif-

ferent operating systems (e.g. MAC, Windows, Linux,

iOS and Android), facilitating convenient collabora-

tion and sharing of data. In addition, the statistically

significant miRNAs are tabulated in HTML format,

providing links to miRBase (56) for ease of literature-

based analysis.

c. Flexible specifications: A configuration YAML file is

provided to allow different degrees of analysis options

to be modified, allowing optimization of small RNA

profiling in different data sets. The common para-

meters used in the tools such as BEDTools (66),

Bowtie2 (62) and Trimmomatic (61) are provided in

the configuration for modifications. The options in-

clude the number of allowed mismatches, nucleotide

length for sequence alignment, threshold of over-

lapping reads and memory usage. The computational

task can be selected based on the specific run analysis.

d. Publication-ready graphics: Outputs are presented in

2 basic types of visualization, either in tabular- or

graphical-based manner. The results are presented in

several figures (Fig. 2a�f) that include but not limited

to box plot, variance/dispersion plot, p-value distri-

bution graph, MA plot, heat map and histogram.

Digital information, such as raw or normalized

transcript counts and log expression values, from

each sample is displayed in table format.
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Differential expression analysis of Huntington’s
disease patients from data set 1
To examine the presence of altered miRNA expression in

Hoss et al. (52) study (data set 1), the sequencing files were

subjected into iSRAP for data analysis. A wide variety of

result output was obtained and stored in the directories

specified in the configuration file. The result output in-

cluded normalization plot, transcript dispersion, p-value

histogram, MA plot, bar plot and heatmap.

Prior to differential expression analysis, the sequence

quality (Supplementary Tables II and III) of each sample

was checked to ensure that sequence reads were well

trimmed and aligned. From Fig. 2a�e, the biological var-

iation in each condition was observed and the normalized

read counts were subjected to differential expression

testing using DESeq function, displaying the presence

of expression changes of miRNAs. Similar to the results

published by Hoss et al., one of the most significant

differentially expressed miRNA, miR-196a-5p, was ex-

pressed consistently higher in HD patients according to

the fold change value of 4.57 (adjusted p-value�2.952E-

16; Fig. 2f). Additionally, in concordance with the Hoss

et al. published results (52), the heat map (Fig. 2g) high-

lighted the reported 5 miRNAs (miR-10b-5p, miR-196a-5p,

miR-196b-5p, miR-615-3p and miR-1247-5p) that were

significantly up-regulated (adjusted p-valueB0.001;

log2 fold-change�1.03-4.57) in HD. The tabulated top

differentially expressed miRNAs in the HTML file

Fig. 1. A schematic diagram of iSRAP workflow. The analysis steps involve pre-processing (sequence trimming and alignment),

alignment and data quality check, and differential expression profiling. Input files are either BAM alignment or raw FASTQ sequencing

data. iSRAP will determine the analysis steps required for raw sequence or alignment files. Different types of tabular and graphical

outputs are generated automatically in iSRAP. The solid arrow represents the flow of the analysis. The computational tasks and analysis

tools are, respectively, underlined and bolded.
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(Supplementary Table IV) provided links to miRBase for

downstream analysis of these miRNAs, and the table was

sorted by p-value. As iSRAP automatically extends the

analysis of small RNA-seq data beyond miRNAs, the

summary of differential expression analysis on other

species of small RNAs was generated. There were several

small RNAs that were highly expressed in disease;

however, none of them were significantly differentially

expressed in healthy individuals with adjusted p-value

threshold 0.05 (Supplementary Fig. 1).

Profiling of various small RNA species from
exosomal data sets 2 and 3
To demonstrate small RNA profiling, iSRAP identified

and quantified a comprehensive range of small RNAs

from both data set 2 and data set 3. The results from

neuronal cell-derived exosomes (data set 2) showed a

comprehensive panel of small RNAs that was detected in

the exosome samples (Supplementary Table V), including

miRNA (0.6490.33%), piRNA (0.6390.26%), snoRNA

(0.04390.0096%), snRNA (0.1190.019%) and rRNA

(0.3490.14%). Approximately 42% of sequences from each

of the exosome library were composed of fragments of vari-

ous tRNA species. The heatmap of miRNA (Fig. 3a) and

other small RNAs (Fig. 3b) expression is distinct between

cells and exosome samples. Similar analysis was performed

for the data set of plasma-derived exosomes (data set 3).

The fraction of small RNA counts (Supplementary

Table VI) to the total mapped reads comprised miRNA

(76.5997.26%), piRNA (19.9896.22%), rRNA (1.639

0.99%), snoRNA (0.0290.01%), snRNA (1.2590.36%)

and tRNA (0.5390.28%). The 10 most abundant

miRNAs (Fig. 4a, Supplementary Table VII) were pre-

viously reported to have functional roles in target cells (54).

To assess the variation of small RNA contents that may

be produced by potential biological variability or experi-

mental procedures, a correlation coefficient analysis using

normalized reads from exosome data sets was performed

in iSRAP. The correlation plot illustrated that the overall

reproducibility was high in both cell-derived (Fig. 3c)

and plasma-derived (Fig. 4b) exosome samples, with an

average Pearson correlation coefficient r of 0.90 (Supple-

mentary Tables VIII and IX). In contrast, the correlation

coefficient r was much lower at �0.56 between neuronal-

derived exosome samples and cell-line samples. Taken

together, the results showed that the small RNA profiles

were unique in exosomes, as compared to the parental

cells that released the exosomes.

Discussion
NGS technologies have increasingly been recognized as

the standard for global transcriptome analysis, owing

to their attributes in identification of all RNAs without

any prior knowledge of transcripts to be quantified (71).

The routine practice of NGS has resulted in the genera-

tion of large volumes of data, which makes web-based

tools or applications that require manual processing of

samples impractical. Here, iSRAP is described as a stand-

alone package that compiles essential tools for the

identification, quantification and differential expression

analysis of small RNAs with one-touch process by a

single command.

Table I. Description of tasks in iSRAP

Task Description

Sequence pre-/post-processing

and alignment

Filtering input sequences and sequence alignment against reference genome

� Input: FASTQ or BAM files

� Tools: (a) Trimmomatic (61) for 3?-adapter removal and quality-trimming; (b) Bowtie2 (62) for

sequence alignment (not applicable when input is BAM files); (c) SAMtools (63) for sorting, indexing

and reporting of alignment results

� Output: Trimmed sequence files, aligned sequences and summary of alignment results

Sequence and library quality

check

Evaluation of input sequence read quality and sequence library quality/contamination

� Input: FASTQ or BAM files

� Tools: (a) FastQC (64) for checking nucleotide quality of the sequence and (b) RNA-SeQC (65) for

assessing sequence alignment

� Output: Sequence quality report generated from FastQC for sequence base quality scores, over-

represented sequences and nucleotide biases; library quality report using RNA-SeQC for sequence

yield, rRNA content, library counts and alignment regions (exon, intron and intragenic)

Count-based expression profiling

and differential expression

analysis

Counting aligned reads for each annotated small RNAs and normalization of read-counts across

samples

� Input: BAM files.

� Tools: BEDTools (66), DESeq2 (67), edgeR (68) and voom (69,70)

� Output: Raw read-count table using BEDTools; normalized read-count and differential expression

testing using DESeq2, edgeR and/or voom
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Although iSRAP has many similar analysis features

with existing small RNA analysis tools either web-based

or standalone, it augments the flexibility and broadens

the spectrum of analysis. As the configuration document

specifies the tools to run and the parameters for each

tool, users have full control on the choice of tools and

the way to run the tools. iSRAP is capable of not only

profiling all known small RNAs of any classes but also

carrying out the differential expression analysis, which is

not offered by any existing small RNA analysis tools to

our best knowledge. Other important benefits of iSRAP

are as follows: (a) Better time management: The auto-

mated feature of iSRAP will allow researchers to focus

on interpretation of biological meaning. There are no

requirements to re-format the raw sequencing data as

standard FASTQ and BAM format are accepted for data

processing. The configuration file provides concise in-

formation for running the pipeline, allowing the record-

ing of analysis details for future downstream work. The

manual preparations of file formats are eliminated by a

single command. (b) High-throughput capability: Hand-

ling of numerous sequencing samples for data analysis is

executed by parallel processing in iSRAP. Unlike web-

based or GUI-based tools, there are no limitations on

the sample file size or facing the problem of uploading

time. (c) Reliability: iSRAP can be downloaded into the

local computer, eliminating the issue of downtime due

to software upgrade or maintenance. The pipeline will

thus provide a practical environment for researchers to

learn more about the data and fulfil the requirements

for analysing large sequencing data independently. (d)

Infographics: Visual representations of data allow com-

plex digital information to be presented quickly and

clearly, so that biologists can explore and interpret bio-

logical relationships. The result documents are portable

and thus allow the independent use of web servers and

convenience of analysing data between different operating

systems (e.g. MAC, Windows, Linux, iOS and Android).

Furthermore, the flexibility of iSRAP allows research-

ers to choose any tool that is compatible with their

Fig. 2. Illustration of result outputs from iSRAP using Huntington’s disease data set. (a) Boxplot depicting the read counts

normalization. The y-axis shows the normalized log2 counts per million values of miRNA in each sample. (b) Dispersion plot estimates

the biological variation showing the gene-wise estimates (black), the fitted values (red) and the final maximum posteriori estimates

(blue). (c) The p-value distribution plot shows the frequency of differentially expressed miRNA against the p-values obtained from

DESeq2 analysis. The observed distribution shows a peak at near 0. (d) The MA plot shows the log2 fold-changes between disease and

healthy individuals over the mean of normalized counts. Each dot represents individual miRNA. The red line at y �0 indicates no

expression changes between the conditions. The red dots on the plot represent miRNAs that have significant expression changes. (e)

Heatmap of unsupervised hierarchical clustering of miRNA profiles across all samples. The degree of low to high miRNA expression is

represented from blue to red. (f) Bar plot showing one of the top differentially expressed miRNAs (miR-196a-5p). The pink and green

bars indicate the respective control and disease samples. (g) Heat map showing the 20 most significant differentially expression miRNAs

between disease and healthy individuals. The ranking table details the chromosome, start and end of chromosome, and followed

by the miRBase accession number of each miRNA. The shade of blue indicates degree of down- and up-regulated miRNAs in the

disease state.
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system for data analysis. This is one of the key advantages

of iSRAP over Galaxy, a cloud-based tool that provides

simple interfaces for different NGS data analysis (72,73).

Although Galaxy and iSRAP have similar analysis fea-

tures, the main drawback of Galaxy is the limitation of

tools available in Galaxy instance. This flexibility greatly

extends differential expression analysis within iSRAP,

including tools for miRNA target prediction or target

identification through integrative analysis with differen-

tial (protein-coding) gene expression analysis results. The

flexibility of iSRAP allows not only a selection of analysis

tools but also fine-tuning the settings for normalization.

The normalization is important for differential expres-

sion analysis, because the performance of normalization

methods can be dependent on the nature of the data

sets. As most tools are established for general purpose

of small RNA profiling, they may not be suitable for

complex study design, particularly on exosome data sets.

The potential issue posed by some tools is that they use

library sizes calculated from mapped reads to specific

RNA biotype (e.g. miRNA, piRNA or snRNA) as a nor-

malization factor, which in some experimental designs is

not appropriate. In the case of exosome study, exosome

production and content may be influenced by their par-

ental cells due to environment conditions (e.g. hypoxia)

or by the fluid of origins (74,75). When RNA extraction

was performed from low production of exosomes, nor-

malization to the total genomic alignment library size

was used to improve the overall expression, as shown

when the workflow is applied to the current exosome data

sets 2 and 3. Similarly, the concept is also applied in the

published study of Dicer knock-down in breast cancer

cell line, which resulted in the reduction of miRNA (33).

When normalization was performed using the low

number of miRNA library size, the subset of differen-

tially expressed miRNAs were not accurately defined due

to the globally reduced miRNA library read counts. To

obscure the true differences, the whole genome align-

ment library size was used for normalization. Therefore,

iSRAP considers this biological nature of experimental

Fig. 3. Heatmap of unsupervised hierarchical clustering and correlation matrix of neuronal-derived exosome and GT1-7 neuronal cell

samples. Heatmap of expression level of microRNAs (a) and other small RNAs (b), including transfer RNA, piwi-interacting RNA,

ribosomal RNA, small nucleolar RNA and small nuclear RNA. (c) Distance mapping of small RNA expression using Euclidean

distance metric of OptiPrepTM exosomes, ultracentrifugation exosomes and GT1-7 neuronal cells. Exosomes prepared by both methods

are closely related to each other, but distantly related to neuronal cells. Abbreviations: ‘‘GTcell’’ denotes GT1-7 mouse neuronal cell

line; ‘‘OPexo’’ refers to exosomes isolated from OptiPrepTM velocity gradient ultracentrifugation; ‘‘UCexo’’ refers to exosomes isolated

from differential ultracentrifugation; ‘‘RP’’ denotes sample replicate.
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design and provides the convenient options for selecting

the library size for normalization.

In summary, iSRAP provides a flexible and integrated

environment for small RNA expression analysis using

a single command. The flexible and powerful features of

iSRAP enable a comprehensive analysis of small RNAs,

which covers from quality assessment of input data

to differential expression analysis and visualization of

results with the ease of use. iSRAP can potentially serve

as a platform for rapid analysis of transcriptomic data

so that a better-informed decision can be made on the

downstream analyses.

Availability
The iSRAP pipeline is freely available for use at www.

israp.sourceforge.net/ according to the GNU Public License.

The step-by-step manual and technical documents are

provided through the web site, and the source code for

iSRAP is included in Supplementary file 1.
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