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The intercellular adhesion molecule-1 (ICAM-1), known as CD54, is a transmembrane cell
surface glycoprotein that interacts with two integrins (i.e., LFA-1 and Mac-l) important for
trans-endothelial migration of leukocytes. The level of ICAM-1 expression is upregulated in
response to some inflammatory stimulations, including pathogen infection and
proinflammatory cytokines. Yet, to date, our knowledge regarding the functional role of
ICAM-1 in teleost fish remains largely unknown. In this study, we cloned and characterized
the sequence of ICAM-1 in rainbow trout (Oncorhynchus mykiss) for the first time, which
exhibited that the molecular features of ICAM-1 in fishes were relatively conserved
compared with human ICAM-1. The transcriptional level of ICAM-1 was detected in 12
different tissues, and we found high expression of this gene in the head kidney, spleen,
gills, skin, nose, and pharynx. Moreover, upon stimulation with infectious hematopoietic
necrosis virus (IHNV), Flavobacterium columnare G4 (F. columnare), and Ichthyophthirius
multifiliis (Ich) in rainbow trout, the morphological changes were observed in the skin and
gills, and enhanced expression of ICAM-1 mRNA was detected both in the systemic and
mucosal tissues. These results indicate that ICAM-1 may be implicated in the mucosal
immune responses to viral, bacterial, and parasitic infections in teleost fish, meaning that
ICAM-1 emerges as a master regulator of mucosal immune responses against pathogen
infections in teleost fish.

Keywords: intercellular adhesion molecule-1, rainbow trout, infectious hematopoietic necrosis virus,
Flavobacterium columnare G4, Ichthyophthirius multifiliis, mucosal immune response
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INTRODUCTION

Intercellular adhesion molecule-1 (ICAM-1), an inducible
transmembrane glycoprotein, belongs to the immunoglobulin
superfamily. Unlike ICAM-2 (1), which has only two
immunoglobulin-like (Ig-like) domains in mammals, ICAM-1
consists of five distinct Ig-like domains, a transmembrane domain,
and a short cytoplasmic tail (2, 3), and therefore its structure is more
similar to ICAM-3 (CD50) (4). Additionally, the existence of
cysteine residues located close to the cell membrane contributes to
the formation of intermolecular disulfide bonds (3), implying that
ICAM-1 exists as a dimer (2). Previous studies have demonstrated
that ICAM-1 mainly binds to lymphocyte function-associated
antigen 1 (LFA-1, CDlla/CD18) (5) and macrophage antigen 1
(Mac-l, CDllb/CD18) (6, 7) (i.e., two integrins belonging to the b2
subfamily) as receptors that are essential for cell–cell and cell–matrix
adhesive interactions and activation of signal-transduction into the
cell pathways (8). Although LFA-1 is the common receptor of
ICAM-1, ICAM-2, and ICAM-3, the affinity of LFA-1 to bind the
ICAM-1 is higher than that of ICAM-2 and ICAM-3 (9). Integrins
are expressed by leukocyte and specifically bind to different Ig-like
domains of ICAM-1. For instance, LFA-1 primarily binds to the first
Ig-like domain, and Mac-1 binds to the third Ig-like domain of
ICAM-1 (8), suggesting that ICAM-1 has the potential to bind both
LFA-1 andMac-1 simultaneously. CD43, also known as sialophorin,
a lesser-known membrane receptor for ICAM-1, facilitates the
adhesion of Th17 cells to ICAM-1 and modulates apical and
trans-endothelial migration (10). In addition, the interaction
between ICAM-1 and CD43 plays an important role in the
adhesion and invasion of tumor cells to peritoneum (11). Of note,
ICAM-1 also serves as pathogen receptors, such as a sequestration
receptor for malarial parasite Plasmodium falciparum (12), human
rhinovirus (13), andCoxsackievirusA21 (14, 15) and as a coreceptor
for human immunodeficiency virus-1 (HIV-1) (16).

ICAM-1 is expressed at low basal levels in numerous cell types
including immune cells, endothelial cells, and epithelial cells, but it
is upregulated under inflammatory conditions (8, 17). The level of
ICAM-1 expression can be highly induced by various
proinflammatory cytokines, such as tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), and interferon-g (IFN-g), and
inhibited by glucocorticoids (18). Interestingly, the degree of
ICAM-1 expression induced by cytokines differs depending on
cell types. For instance, a robust upregulation of ICAM-1 in
intestinal endothelial cells was induced by TNF-a or IL-1b;
however, in epithelial cells, IFN-g could induce a high expression
of ICAM-1, but not TNF-a and LPS (8). ICAM-1 actively
participates in leukocytes trans-endothelial migration to sites of
inflammation and as a costimulatory molecule for T-cell activation;
thus, ICAM-1 plays an important role in both innate and adaptive
immune responses (19). Under inflammatory conditions, increased
expression of ICAM-1 resulted in enhanced polymorphonuclear
neutrophil (PMN) binding to the intestinal apical epithelium, which
increases epithelial cell proliferation and promotes intestinal
mucosal wound healing (20). Moreover, recent studies have
demonstrated that ICAM-1, as a costimulatory molecule, delivers
a costimulatory signal into T cells and eventually leads to the
activation of T cells (5, 19, 21). In addition to the cellular adhesive
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function, ICAM-1 is known to transmit outside-in signals by cross-
linking ICAM-1 on the cell surface, which can affect the
permeability of endothelial cells. Many studies show that ICAM-1
cross-linking on the B cell surface contributes to the activation of
src-kinase family members p53/p56lyn (22). Overall, ICAM-1 is
involved in many physiologic processes, which include regulating
leukocyte trafficking, promoting pathogen and dead cell clearance,
and activation of T cells and B cells (8, 19, 21, 23).

To date, ICAM-1 has been cloned in many mammals, such as
human (2), chimpanzee (24), and canine (25). Moreover, the
roles played by ICAM-1 in defense against pathogens including
virus, bacteria, and parasite have been largely investigated in
mammals. In mouse airway epithelial cells, ICAM-1 acts as a
critical regulator in clearance of H. influenzae assistance with
neutrophil-mediated bacterial killing (26). The crucial role of
ICAM-1 in resisting M. avium infection and granuloma
formation has been confirmed in the spleen and liver of mice
(27). ICAM-1 induced by human bronchial epithelial cells plays
a critical role in modulating the influenza virus survival (28).
Also, the role of ICAM-1 has been clarified in dendritic cell–
mediated HIV-1 transmission to CD4(+) T cells (29). ICAM-1-
mediated dependent cytoadherence is essential for construction
of the model of malarial parasite P. falciparum (30). In teleost,
the molecular characteristics of ICAM-1 and trans-endothelial
migration of leukocytes were only studied in grass carp
(Ctenopharyngodon idella) (31). Thus, compelling evidence for
the existence of ICAM-1 and its roles in response to different
pathogens are important to be investigated. Rainbow trout
(Oncorhynchus mykiss) is a salmonid belonging to Salmonidae
Oncorhynchus and is one of the most widely cultivated cold-
water fish in the world. However, several pathogens such as virus,
bacteria, and parasite invade frequently, thus posing a serious
risk to the profitability and the development of trout aquaculture.

In this study, we cloned and characterized the sequence of
ICAM-1 in Oncorhynchus mykiss for the first time. Moreover, the
differential expression of ICAM-1 mRNA was assessed in different
tissues of trout including mucosal tissues, non-mucosal tissues,
and systemic tissues. Additionally, we investigated ICAM-1-
mediated immune responses in rainbow trout challenged with
viral, bacterial, and parasitic infections. Morphological changes
were observed in the skin and gills of organisms infected with
infectious hematopoietic necrosis virus (IHNV; i.e., a virus),
Flavobacterium columnare G4 (F. columnare; i.e., a bacterium),
and Ichthyophthirius multifiliis (Ich; i.e., a parasite), which
coincided with changes in ICAM-1 gene expression in both
systemic and mucosal tissues. Therefore, our findings provide
important insights into the predominant role of ICAM-1 genes in
the mucosal immune responses to viral, bacterial, and parasitic
infections in teleost fish.
MATERIALS AND METHODS

Fish Maintenance
Healthy rainbow trout (average body weight: 10–15 g) used for
the experiment were purchased from Shiyan Green
August 2021 | Volume 12 | Article 704224
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Agricultural Science and Technology Company (Hubei
Province, China) and were kept in aerated aquarium tanks
(temperature 15°C) and fed with commercial diet twice a day
(9:00 a.m. and 5:00 p.m.). Fish were allowed to adjust to the
holding tanks for 2 weeks prior to treatment. To minimize the
effects of feeding on the level of gene expression, fish of control
and infected groups were both terminated feeding for 48 h
prior to sampling.

Full-Length cDNA Cloning of ICAM-1 and
Sequence Analysis
Cloning the Full-Length cDNA of ICAM-1
To obtain a cDNA amplification template for ICAM-1, we first
extracted the total RNA from rainbow trout spleen using
TRIzol reagent (Invitrogen, USA), and then 1 mg of total
RNA was subjected to reverse transcription using a 5× All-
In-One MasterMix with AccuRT Genomic DNA Removal
Kit (Abm, Canada) according to the standard protocol.
Based on obtained sequence of ICAM-1 from Oncorhynchus
mykiss transcriptome database (accession number XM_
021557903.2), gene-specific primers were designed to amplify
the internal region of ICAM-1. The amplified DNA fragments
were firstly isolated using a Gel Extraction Kit (Sangon Biotech,
China) and determined by sequencing (TSINGKE, China).
Full-length cDNA sequences of ICAM-1 were amplified
by 3′-RACE and 5′-RACE using the SMARTer RACE
cDNA Amplification Kit (Clontech, USA) following the
manufacturer’s instructions. All primers mentioned above
are listed in Supplementary Table 1.

Sequence Analysis
Nucleotide and deduced amino acid sequences of ICAM-1 were
conducted with the Basic Local Alignment Search Tool (BLAST)
of the National Center for Biotechnology Information (http://
www.ncbi.mlm.nih.gov.blast/BLAST.cgi). The predicted amino
acid sequences of ICAM-1 were performed using the DNASTAR
software. Protein analysis and positions of the signal peptide
were identified with ExPASy online tools (http://us.expasy.org/
tools) and SMART online website (http://smart.embl-heidelberg.
de/), respectively. Different species of ICAM cDNAs were
obtained from Genbank databases, then the DNAMAN
software was used to perform multiple alignments. The
phylogenetic trees were constructed from the amino acid
sequences of the ICAM-1 by MEGA7.0 using the neighbor-
joining method. Next, the exon and intron organization of
ICAM-1 in different teleost fishes and human was analyzed by
comparing the coding sequences or mRNA sequences of
ICAM-1 to associated genomic sequences.

Challenge Experiment
Virus Enrichment and Infection
The EPC cell line was generously gifted by Prof. Xueqin Liu
(College of Fisheries, Huazhong Agricultural University, Wuhan,
China) and was maintained at 28°C in 5% CO2 atmosphere and
maintained in minimum Eagle’s medium (MEM, Gibco, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco, USA),
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100 mg/ml streptomycin, and 100 U/ml penicillin. The IHNV
kindly provided by Prof. Hong Liu (Shenzhen Entry-Exit
Inspection and Quarantine Bureau) was propagated in EPC
cells cultured in MEM medium with 2% FBS at 15°C. After the
extensive cytopathic effect (CPE), the EPC cells with IHNV were
collected and repeated freezing and thawing three times for virus
suspension. As for the viral titer, viral supernatant was made 10-
fold serial dilutions (10−1–10−10), and then each dilution was
added to six replicated wells in a 96-well plate bespread with EPC
cells. The 50% tissue culture infectious doses (TCID50/ml) were
calculated through the Spearman and Kärber algorithm (32). For
the infection experiment, trout were immersed with a dose of
6 ml IHNV (1 × 109 PFU ml−1) in 10 L aeration water for 2 h at
15°C. Then trout were transferred to the aquarium containing
new aquatic water. As a control, the same number of trout were
same treated with the MEM. After that, trout were randomly
sampled for the collection of head kidney, spleen, skin, and gills
at 1, 4, 7, 14, 21, and 28 d after challenge, respectively. Samples
from control fish were taken at the same time intervals with
same methods.

Trout Challenged With F. columnare
Flavobacterium columnare G4 strain labeled with a green
fluorescent protein (GFP) was kindly gifted from Prof. Pin Nie
(Hydrobiology Chinese Academy of Sciences) and routinely
cultured in Shieh broth as described previously (33). For
challenge, fish (~3–5 g) were bathed with F. columnare G4

strain at a final concentration of 1 × 106 CFU ml–1 for 4 h at
16°C and then migrated into the aquarium containing new
aquatic water. For control group, trout were immersed with
Shieh broth using the same methods. Tissues including head
kidney, spleen, skin, and gills were sampled at 1, 4, 7, 14, 21, and
28 d after challenge from infection and control groups.

Ich Parasite Isolation and Infection
Isolation of Ich parasite was performed as previously reported
by us (34, 35). Fish were exposed to a single dose of ~5,000
theronts per fish for 3 h, and then migrated into the aquarium
containing new aquatic water to obtain infected fish. Mock-
infected (uninfected) fish were exposed to the same tank water
but without the parasite. At 1, 4, 7, 14, 21, and 28 d after
infection, fish were euthanized with an overdose of tricaine
methanesulfonate (MS-222, Syndel), and tissue samples
consisting of head kidney, spleen, skin, and gills were collected
from infected and mock-infected fish.

RNA Isolation and Quantitative Real-Time
PCR Analysis
To study the mRNA expression pattern of ICAM-1 in different
tissues, healthy rainbow trout were anesthetized with MS-222,
and then tissues including the head kidney, spleen, gills, muscle,
gut, stomach, skin, liver, nose, buccal mucosa, pharynx, and eye
were collected. Total RNA was extracted from the tissues and
then subjected to reverse transcription with the SuperScript
first-strand synthesis system for RT-qPCR (Yeasen, China).
August 2021 | Volume 12 | Article 704224
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The expression levels of elongation factor 1a (EF-1a,
housekeeping gene) and ICAM-1 were detected by RT-qPCR
using the EvaGreen 2× qPCR Master mix (Yeasen, China) by a
7500 qPCR system (Applied Biosystems), 10 ml qPCR reaction
mixture containing 5 ml EvaGreen 2× qPCR Master mix, 1 ml
of the cDNA, 0.15 ml each of forward and reverse primer, and
3.7 ml H2O was performed for amplifications. The qPCR
conditions were: 95°C for 5 min, followed by 40 cycles at 95°C
for 10 s and at 58°C for 30 s. Primer sequences can be found in
Supplementary Table 1.

Histology, Light Microscopy, and
Immunofluorescence Microscopy Studies
To assess the morphological changes of skin and gills after
infection of virus, bacteria, and parasite, histopathological
examination was used in this experiment. Briefly, after
dissected, the gills and skin of rainbow trout were fixed in 4%
neutral buffered formalin overnight at 4°C, and then transferred
to graded ethanol for dehydration and dimethylbenzene for
vitrification. After that, the tissues were embedded in paraffin
and cut in 5 mm thick sections with a rotary microtome
(MICROM International GmbH, Germany). After being
stained with conventional hematoxylin and eosin (HE), the
sections were examined under the microscope (Olympus,
BX53, Japan) using the Axiovision software to acquire and
analyze images. For the immunofluorescence of Flavobacterium
columnare labeled with a green fluorescent protein (GFP), the
gill tissues were sampled and then embedded in optimal cutting
compound (OCT, SAKURA, USA) for frozen sections with
the freezing microtome (Leica). Then the sections were fixed
in 4% neutral buffered formalin and stained with DAPI (4’, 6-
diamidino-2-223 phenylindole; 1 mg/ml: Invitrogen) before
mounting. All images were acquired and analyzed
using an Olympus BX53 fluorescence microscope (Olympus)
and the iVis ion-Mac scient ific imaging processing
software (Olympus).

Statistical Analysis
Data were expressed given as the mean ± SEM and checked for
normality and homogeneity of variances before statistical
analysis. The statistical analysis was performed using an
unpaired Student’s t-test (Prism version 6.0; GraphPad). P <
0.05 was considered statistically significant.
RESULTS

Identification and Analysis of ICAM-1
Gene From Oncorhynchus mykiss
The full-length sequence of ICAM-1 was of 1,958 bp and
contained an open reading frame (ORF) of 1,095 bp, which
encoded a predicted protein of 365 amino acids (Figure 1A).
Analysis of sequence structure and multiple sequence alignment
reveals that ICAM-1 contained signal peptide, Ig-like domain,
transmembrane domain, and free cysteine residues similar with
Oncorhynchus tshawytscha and Salvelinus alpinus (Figure 1B).
Frontiers in Immunology | www.frontiersin.org 4
Phylogenetic Analysis of ICAM-1 Gene
Multiple alignments analysis showed that the deduced amino
acids of ICAM-1 from Oncorhynchus mykiss had high similarity
identities to other fish reported ICAM-1. The similarity of
ICAM-1 went from 69 to 89% in teleost fish, but only 25–30%
in mammals. To further clarify the location of ICAM-1 in
phylogenetic evolution, we used NJ methods to construct a
phylogenetic tree using NJ method. As expected, trout ICAM-1
represented the highest similarity with Oncorhynchus
tshawytscha (89%), followed by Salvelinus alpinus (85%), but
low identities to ICAM-1 of Ctenopharyngodon idella (49%)
(Figure 2). However, as to mammal clade, Oncorhynchus
mykiss ICAM-1 showed limited similarity to the mammalian
ICAM-1 (Figure 2). Furthermore, the exon and intron
organization of ICAM-1 was analyzed in four teleost fishes and
human, which showed that rainbow trout existing 12 exons and
11 introns shared more similar with Oncorhynchus tshawytscha
and Salvelinus alpinus (Supplementary Figure 1).

ICAM-1 Differential Expression in Different
Tissues of Rainbow Trout
Using RT-qPCR, the expression of ICAM-1 was analyzed in
different tissues including liver, stomach, gut, eye, muscle, buccal
mucosa, skin, nose, pharynx, gills, spleen, and head kidney. The
ICAM-1 mRNA was extensively and differently expressed in
various tissues (Figure 3). The lowest expression level of ICAM-
1was shown in the liver, followed by the stomach. Importantly,
the highest expression of ICAM-1 was detected in the spleen and
head kidney when compared to that of liver. Interestingly, in
some other mucosal tissues including gills, pharynx, nose, skin,
buccal mucosal, eye, gut, and non-mucosal tissue (muscle), the
relatively high expression was also detected in comparison with
that of the liver (Figure 3).

Morphological Changes and ICAM-1
mRNA Expression After IHNV Infection
To assess the differential expression of ICAM-1 after viral
challenge, we successfully developed the infected model of
IHNV represented by the obvious appearance of pathological
changes characterized by darkening of the skin, pale gills,
exophthalmia, and petechial hemorrhage (Supplementary
Figure 2A). Moreover, RT-PCR analyses detected the
expression of the IHNV-G gene in gills, skin, spleen, and head
kidney at 4 and 7 d after IHNV infection, which further indicated
that fish were successfully invaded with IHNV (Supplementary
Figure 2B). Furthermore, histological studies were implemented
to show morphological changes in trout gills and skin after
infected with IHNV. Here, upon IHNV infection, extremely
significant changes of gills’ histology were detected at 4, 7, and
14 d post infection, and moderate changes of gill damage were
observed at 21 and 28 d after infection, when compared with that
of control fish, as evidenced by wider and shorter secondary
lamellae with edema (Figures 4A, B). In addition, the thickness
of skin epidermis was decreased obviously at 4, 7, 14, and 21 d
after IHNV infection, whereas recovered at 28 d post infection
(Figures 4C, D). Similarly, significant tissue damage could be
August 2021 | Volume 12 | Article 704224
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FIGURE 1 | The nucleotide and deduced amino acid sequences (A) and multiple sequence alignment of deduced amino acid sequences (B) of ICAM-1 chain in
rainbow trout and other teleost fish. Signal peptide is illumed with light gray. Cysteine is circled with the pane. The Ig domain is shaded in dark gray. The
transmembrane is marked in black. *Indicates the similarity of the sequence.
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observed in the head kidney and spleen after IHNV infection in
comparison with the control group (Supplementary Figure 2C).

With regard to the expression level of ICAM-1 after
challenge, by RT-qPCR, there were significant changes detected
in all four tissues including the gills, skin, head kidney, and
spleen at different time points post IHNV infection. Similarly,
significantly upregulated expression was shown in the gills (~2.5
Frontiers in Immunology | www.frontiersin.org 6
fold), skin (~1.8 fold and ~3 fold), and head kidney (~2.8 fold
and ~3.4 fold) at days 4 and 7 post infection, but in the spleen
(~1.8 fold) only at 4 d after infection compared to control fish
(Figures 4E–H). In addition, although moderate change, the
expression of ICAM-1 mRNA was also upregulated in the skin
(~2 fold) at 28 d and in the head kidney at 14 d (~2 fold) after
IHNV challenge, respectively (Figures 4F, G).
August 2021 | Volume 12 | Article 704224
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Morphological Changes and ICAM-1
mRNA Expression After
F. columnare Infection
We next assessed whether bacterial infection triggered
prominent changes of ICAM-1 mRNA expression; thus, trout
were immersed with F. columnare G4 strain marked with GFP.
Immunofluorescence results demonstrated the successful invasion
of F. columnare into the trout gills after bath infection when
Frontiers in Immunology | www.frontiersin.org 7
compared with that of control trout (Figures 5A, B). From the
lapping liquid supernatant of infected gills, the F. columnare was
clearly observed by immunofluorescence microscopy (Figure 5C).
Thereafter, the ratio of length to width of secondary lamellae was
detected from control and infection gills based on the invasion of
F. columnare, which showed remarkable changes characterized by
shorter and thicker of secondary lamellae at 4, 7, 14, and 21 d after
infection (Figure 5D and Supplementary Figure 3). Otherwise,
the tissue homogenates of trout skin from infected fish were
cultured on Shieh agar. After incubation for 48 h, a large
number of colonies were found on the Shieh agar plate, which
were root-like, flat, and yellow in the center (Figure 5E). Then, a
single colony from the plate of homogenates was selected and
cultured on fluid Shieh medium at a 28°C incubator, F. columnare
was observed under immunofluorescence microscopy (Figure 5E).
By HE staining, morphological changes were observed in the skin
on the basis of F. columnare invasion, which showed a significant
decrease of the thickness of the skin epidermis, especially at 14 and
21 d post infection, and then recovered at 28 d post infection
(Figure 5F and Supplementary Figure 3).

Next, we detected the ICAM-1 mRNA expression level in four
tissues after F. columnare invasion, which showed moderately
upregulated expression after infection in the mass. In this regard,
the expression of ICAM-1gene was significantly increased in the
skin, head kidney, and spleen at 21 and 28 d after bacterial
infection (Figures 5H–J). Although no significant expression of
ICAM-1 in the gills was detected after challenge at all time
points, mildly increased expression of ICAM-1 gene was detected
at 28 d post infection (Figure 5G). Taken together, these results
FIGURE 2 | Phylogenetic trees of ICAM-1 gene from Oncorhynchus mykiss and other vertebrates were constructed using MEGA7.0 with the neighboring-
joining (NJ) method.
FIGURE 3 | The expression pattern of ICAM-1 mRNA in different tissues of
Oncorhynchus mykiss. Relative expression of ICAM-1 was detected in
different tissues compared to the liver (n=8).
August 2021 | Volume 12 | Article 704224
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indicated that ICAM-1 might play an important role in mucosal
immune response to bacterial infection.

Morphological Changes and
ICAM-1 mRNA Expression After
I. multifiliis Infection
Then, to evaluate the ICAM-1 response to parasitic challenge,
fish were exposed to I. multifiliis. After that, I. multifiliis were
clearly observed in the gills, skin, and fins of infected fish
manifested as little white dots (Figure 6A). Using histological
studies, Ich parasites were easily detected in the secondary
lamellae of gills and the skin epidermis of trout at 7, 14, and
21 d after infection (Figure 6B).

Similarly, we tested the ICAM-1 mRNA expression in the
gills, skin, head kidney, and spleen after I. multifiliis infection.
Our results showed that the ICAM-1 gene was upregulated after
infection in the four tissues (Figures 6C–F). Similar tendencies
to increase in expression of ICAM-1 were observed in all tested
tissues. However, the most significant increased expression of
ICAM-1 gene was detected in the gills and skin at 14, 21, and
28 d after challenge (Figures 6C, D). When compared to the gills
and skin, the expression level of ICAM-1 was lower increased
after infection (Figures 6E, F). When compared to the viral and
bacterial infections, the higher expression level of ICAM-1 was
Frontiers in Immunology | www.frontiersin.org 8
detected in skin and gills after parasitic infection. Our finding
demonstrated increased ICAM-1 expression levels in the tested
tissues after parasitic infection.
DISCUSSION

ICAM-1 is a critical molecule that allows cells to adhere to each
other, as well as to extracellular matrix molecules, thereby
regulating leukocyte recruitment to inflammation sites during
pathogen invasion. Several studies have characterized the
sequence of the ICAM-1 gene in mammals (e.g., human,
murine, and canine models) (8, 25, 36, 37), and the cloned
sequences exhibit limited similarity to the human sequence (55–
65%). However, very few studies have characterized the structure
and functions of ICAM-1 in teleost fish, as well as its role in
regulating the mucosal immune response against pathogens. In
this regard, our study was the first to clone the sequence of
ICAM-1 in rainbow trout, a teleost species, after which we
analyzed the differential expression of the ICAM-1 gene in
different tissues. Moreover, our study investigated the
morphological changes of the gills and skin tissues and the
expression levels of the ICAM-1 gene in rainbow trout upon
infection with IHNV, F. columnare, and I. multifiliis.
A B C D

E F G H

FIGURE 4 | Morphological changes of skin and gills and the expression level of ICAM-1 mRNA responses to IHNV in different tissues. (A) Hematoxylin and eosin
(HE) stains of gills from mock-infected fish, and 4, 7, 14, 21, and 28 d after IHNV challenge, respectively. Red line indicates length or width of the secondary lamellae
of (SL) gills. Scale bar, 40 mm. (B) The length-width ratio of gill SL from control and infected fish (n=6 per group). (C) Histological examination by HE staining of skin
from trout infected with IHNV after 4, 7, 14, 21, and 28 days and uninfected fish. Red line represents the thickness of the skin epidermis. Ep, epidermis; Sc, Scales;
De, dermis. Scale bar, 40 mm. (D) The statistics of the skin epidermis thickness including uninfected and infected fish (n=6 per group). (E–H) Fold change of ICAM-1
mRNA expression in gills (E), skin (F), head kidney (G), and spleen (H) at 1, 4, 7, 14, 21, and 28 d post infection compared to control group (n=6 per group).
Statistical analysis was performed by unpaired Student’s t test. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Data are representative of at least three
independent experiments (mean ± SEM).
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The predicted amino acid sequence of ICAM-1 indicated that
the coding sequence consisted of a signal peptide, free cysteine
residues, an Ig-like domain, and a transmembrane region, which
shared a high degree of similarity with other predicted ICAM-1
sequences of other teleost fish, including Oncorhynchus
tshawytscha (89%) and Salvelinus alpinus (85%). However,
when compared to ICAM-1 sequence of Ctenopharyngodon
idella first characterized in fish (31), there was only 49%
similarity in the sequence identity. Additionally, analysis of the
exon and intron organization of ICAM-1 indicated that rainbow
trout had a high similarity with Oncorhynchus tshawytscha and
Salvelinus alpinus compared to that of human and grass carp
(31). This may be because Oncorhynchus mykiss belongs to
the Salmoniformes order and is more closely related to the
Salmonidae family. In contrast, when compared with the
mammalian ICAM-1 structure (2), there are several regions,
including the signal peptide and transmembrane region, that
followed conserved principles in the evolution process, whereas
the number of Ig-like domains related to the ICAM-1 function
was different, suggesting that the function of ICAM-1 might have
gradually improved throughout vertebrate evolution. Previous
studies cloned and analyzed the ICAM-1 gene in several
vertebrate species (2, 24, 25, 36, 37). Here, the BLAST search
algorithm was used to analyze the similarity between the
Frontiers in Immunology | www.frontiersin.org 9
predicted sequence of ICAM-1 amino acids based on cDNA
sequences of rainbow trout with those of other species. Our
results indicated that rainbow trout ICAM-1 sequences had a
higher degree of similarity with those of Oncorhynchus
tshawytscha (89%) and Salvelinus alpinus (85%) compared to
other teleost fish.

It is worth noting that ICAM-1 is expressed in immune,
endothelial, and epithelial cells in mammals (8), suggesting the
extensive distribution of ICAM-1 in different tissues. To support
this hypothesis, our study conducted RT-qPCR to detect the
differential expression of ICAM-1 mRNA in different tissues of
rainbow trout including skin, gills, gut, stomach, eye, buccal
mucosa, nose, pharynx, liver, spleen, head kidney, and muscle.
Among these, the ICAM-1 was most abundantly distributed in
the spleen and head kidney, whereas lower expression levels were
identified in the liver and stomach. This was consistent with
previous report that not all endothelial and epithelial cell types
expressed ICAM-1 in vivo, for example, hepatic portal veins and
arteries (38) and gastric epithelial cells (39). Mucosal tissues
including skin, gills, gut, eye, buccal mucosa, nose, and pharynx
also exhibited relatively high expression levels of ICAM-1 in
rainbow trout, implying that ICAM-1 might play an important
role in immune sites. However, further research is needed to
clarify the function mechanism played by ICAM-1 in mucosal
A B

C

D E F

G H I J

FIGURE 5 | Morphological and molecular differences after challenge with F. columnare. (A) Immunofluorescence staining of gills infected by F. columnare labeled
with GFP (green fluorescent protein). Green represents F. columnare; blue indicates nuclei. SL, secondary lamellae; PL, primary lamellae. (B) Partial enlarged view of
(A). (C) F. columnare were detected in the infected gill mucus. (D) The length-width ratio of gill SL from fish uninfected and infected with F. columnare (n=6 per
group). (E) F. columnare in the infected skin mucus propagated in the culture plate and monoclonal colony were selected to authenticate the present of F. columnare
(green). (F) The thickness of skin epidermis at 4, 7, 14, 21, and 28 d post infection (n=6 per group). (G–J) ICAM-1 gene was modulated by F. columnare infection in
the gills (G), skin (H), head kidney (I), and spleen (J) at days 1, 4, 7, 14, 21, 28 post infection (n = 6 per group). Data are expressed as mean fold increase in
expression. Statistical analysis was performed by unpaired Student’s t test. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001. Scale bar, 40 mm. Data are
representative of three independent experiments (mean ± SEM).
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immune tissues. However, the highest expression of ICAM-1 was
detected in the liver of grass carp, while low expression was noted
in head kidney, spleen, and gills (31), which was in contrast with
that of rainbow trout in the present study. The reason might be
that different diet and habitat were present in the two fishes.
Rainbow trout is carnivorous cold-water fish, while grass carp is
herbivorous warm-water fish. Moreover, in the ICAM-1
sequence identity, low similarity was found between grass carp
and rainbow trout, which might lead to the differential
expression of ICAM-1 in the two fishes.

Infectious hematopoietic necrosis virus (IHNV) is an
economically important pathogen causing infectious
hematopoietic necrosis and high mortalities in salmonid fishes
such as Atlantic salmon and rainbow trout (40). When fish were
infected with IHNV, the virus primarily proliferates into the
hematopoietic tissues such as the spleen and head kidney of fish,
and then some typical clinical signs and symptoms, including
darkening of the skin, pale gills, exophthalmia, petechial
hemorrhages, empty gut, and ascitic fluid, were induced (40).
As expected, the same symptoms were observed in rainbow trout
infected with IHNV in our studies. RT-PCR analyses detected
the expression of the IHNV-G gene in gills, skin, spleen, and
head kidney at 4 and 7 d after IHNV infection. Moreover, the
morphology of the spleen, head kidney, skin, and gills in trout
exhibited evident lesions after IHNV challenge. Thus, our
Frontiers in Immunology | www.frontiersin.org 10
morphological analyses demonstrated the occurrence of serious
necrosis in the spleen and head kidney, which was coupled with a
decreased length and increased width of gills’ secondary lamellae
(SL) in the infected trout compared to the control fish.
Additionally, epidermis thickness was also decreased after
IHNV infection. Overall, morphological changes observed
herein were interpreted as direct evidence of disease onset
caused by IHNV infection in rainbow trout. Moreover, ICAM-
1-deficient mice exhibited a normal development but displayed
abnormal inflammatory and immune functions (41).
Furthermore, Orf virus (42) and influenza virus (28) infection
enhanced the expression of ICAM-1 in mammals. Based on the
IHNV infection model, ICAM-1 mRNA expression was similarly
upregulated in gills, skin, spleen, and head kidney, suggesting
that ICAM-1 might be involved in the immune response against
IHNV. Importantly, significantly higher expression levels of
ICAM-1 were detected in mucosal tissues such as the skin and
gills, especially at the early stages (i.e., 4 d and 7 d) of the
infection. Interestingly, similar results were found at 4, 7, and
14 d in the head kidney and at 4 d in the spleen, which might be
the reason that IHNV targets the head kidney and spleen for
propagation. Numerous inflammatory factors might be induced
at 4 and 7 d after IHNV infection, which further affect the
expression of ICAM-1 and histopathologic changes in the gills
and skin. In conclusion, these results indicated that ICAM-1
A B

C D E F

FIGURE 6 | Changes induced by I. multifiliis infection. (A) The phenotype of an infected rainbow trout. Red arrowheads point to Ich trophonts. Details were shown
in the gills, skin, and fin. (B) Hematoxylin/eosin staining of gills and skin from infected fish at different days. Ep, epidermis; ICH, I. multifiliis. Scale bar, 40 mm.
(C–F) The ICAM-1 mRNA expression level of the gills (C), skin (D), head kidney (E), and spleen (F) at 1, 4, 7, 14, 21, and 28 days from infected and control trout
(n = 6 per group). Data are expressed as mean fold increase in expression. Statistical analysis was performed by unpaired Student’s t test. *P < 0.05, **P < 0.01,
***P < 0.001. Data are representative of three different independent experiments (mean ± SEM).
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might play an important role in mucosal immune response to
viral infection in teleost fish. Unexpectedly, we found that
ICAM-1 expression level in infected fish was much lower than
that in control fish on the 1st day of IHNV infection in the gills.
Compared to that of other tissues, the reason might be that the
gills, as the respiratory organ, were easily affected by aquatic
environmental factor.

Similarly, we constructed a bacterial infection model of
rainbow trout using F. columnare G4 marked with a green
fluorescent protein. Our immunofluorescence analyses
identified F. columnare in the gills’ mucus sections of infected
trout. Moreover, the tissue homogenates of trout skin from
infected fish were cultured on Shieh agar, where F. columnare
colonies were detected. The GFP-marked F. columnare cultured
in fluid Shieh medium from the colony was then detected using
immunofluorescence microscopy. Overall, all data indicated
that trout were successfully infected with the F. columnare G4

strain. Afterward, we analyzed the morphological changes of
gills and skin upon F. columnare infection, which showed
similar results to those of IHNV-infected fish. In mammals,
previous studies have shown that LPS cannot induce ICAM-1
expression in the intestinal epithelial cells (8), but enhanced
ICAM-1 expression in the abnormal cells, such as senescent
endothelial cells and cancer cells (43, 44). Importantly, ICAM-1
plays a vital role in airway inflammation and bacterial clearance
(26). In the present study, we found that the expression level of
ICAM-1 was upregulated after F. columnare challenge,
especially in the skin, but moderate increased expression in
the head kidney and spleen. Interestingly, we found that
specifically downregulated expression was detected on day 7
of infection in the spleen. One reason similar with I. multifiliis
infection is that innate immune response was gradually
decreased and adaptive immune response was induced from
7 d after bacterial infection. Additionally, it has previously been
reported that the absence of ICAM-1 seems to protect mice
against lethal septic shock (45). Thus, the downregulated
expression of ICAM-1 at 7 d might play a role in protecting
fish from septic shock, but this hypothesis warrants to be
determined by further research. In conclusion, an induction
of ICAM-1 expression by bacterial infection might indicate an
important mucosal immune role of this receptor during
bacterial infection, but the mechanism played by ICAM-1
remains to be understood.

Rainbow trout were also challenged with I. multifiliis to detect
the differential expression of the ICAM-1 gene in response to
parasitic infection. Clinical manifestations (e.g., white spots)
appeared on the surface of the fins, gills, and skin, and
histological analyses suggested a successful parasitic infection
in rainbow trout. As to the expression of ICAM-1, Toxoplasma
gondii results in increased ICAM-1 expression in the jejunum of
rats after infection (46), and ICAM-1 expression increased in the
skin of mice after vaccination with Schistosoma mansoni (47).
Similarly, we also found an enhanced expression of ICAM-1 in
the gills, skin, head kidney, and spleen of trout infected with
I. multifiliis. It is worth noting that the higher expression level of
ICAM-1 was observed in the gills and skin after parasitic
Frontiers in Immunology | www.frontiersin.org 11
infection compared to that of viral and bacterial infections.
The reason might be that I. multifiliis firstly invaded and
damaged the mucosal tissues such as gills (48, 49), skin (50),
buccal mucosa (34), and nose (35) after infection. Interestingly,
we found that the expression of ICAM-1 was periodic after Ich
infection. The main reason might be that I. multifiliis, as a
mucosal pathogen, could easily invade mucosal tissues of fish,
such as gills and skin, and ICAM-1 acts as a receptor for
pathogens; thus, a higher expression of ICAM-1 and innate
immune responses could be induced at a short time. Over
time, ICAM-1 was upregulated at 14 d to induce adaptive
immune response by recruiting immune cells. Then, with the
enhancement of adaptive immunity, I. multifiliis was gradually
expelled from the body, which resulted in the expression of
ICAM-1 gradually decreasing from 14 d to 28 d. Unexpectedly,
we found expression of ICAM-1 decreased significantly in spleen
and head kidney at day 14, which could be explained by the
immune response of spleen being hysteretic compared to that of
gills. Yet, similar to virus and bacteria, ICAM-1 is also critical for
mucosal immune response against parasitic infection in
teleost fish.

In conclusion, our study was the first to characterize the full-
length cDNAs of ICAM-1 from Oncorhynchus mykiss, which
shared similar characteristics with their mammalian
counterparts. Tissue differential expression analysis indicated
that this gene was most highly expressed in the spleen and
head kidney, followed by a few mucosal tissues such as the gills
and skin. In contrast, the liver and stomach exhibited
lowest ICAM-1 expression level. Furthermore, to investigate
the role of ICAM-1 in the immune response of rainbow trout,
three infection models including virus (IHNV), bacteria
(F. columnare), and parasite (I. multifiliis) were successfully
constructed, represented by pathological changes of tissues and
typical clinical manifestations in the present study for the first
time. Further, our pathogen challenge experiments revealed that
the expression of the ICAM-1 gene was significantly upregulated
not only in the head kidney and spleen but also in the gills and
skin after IHNV challenge. In contrast, almost all remaining
tissues examined herein exhibited an enhanced ICAM-1
expression in response to bacterial and parasitic infections. Of
note, our results showed that ICAM-1 expression was lower after
bacterial infection when compared to that of viral and parasitic
infection, indicating bacteria might not trigger as strong immune
response as those of virus and parasite induced by ICAM-1,
which could be explained that bacterial LPS might not induce the
strong expression of ICAM-1. Combined, our results in this
study demonstrate that ICAM-1 plays an important role in the
mucosal immune response to viral, bacterial, and parasitic
infections in teleost fish.
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