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ABSTRACT A majority of adults in Finland are seropositive carriers of herpes sim-
plex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which viri-
ons enter innervating nerve endings, eventually establishing lifelong infection in
neurons of the sensory or autonomic nervous system. Recent data have highlighted
the genetic diversity of HSV-1 strains and demonstrated apparent geographic pat-
terns in strain similarity. Though multiple HSV-1 genomes have been sequenced
from Europe to date, there is a lack of sequenced genomes from the Nordic coun-
tries. Finland’s history includes at least two major waves of human migration, sug-
gesting the potential for diverse viruses to persist in the population. Here, we used
HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny,
genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 iso-
lates separated into two distinct phylogenetic groups, potentially reflecting historical
waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a
distinct set of phenotypes in cell culture, including differences in the amount of
virus production, extracellular virus release, and cell-type-specific fitness. Importantly,
the phylogenetic clusters were not predictive of any detectable pattern in pheno-
typic differences, demonstrating that whole-genome relatedness is not a proxy for
overall viral phenotype. Instead, we highlight specific gene-level differences that
may contribute to observed phenotypic differences, and we note that strains from
different phylogenetic groups can contain the same genetic variations.

IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data
have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent
genomic relatedness between strains from the same geographic regions. We used
HSV-1 clinical isolates from Finland to test the relationship between viral genomic
and geographic relationships, differences in specific genes, and characteristics of
viral infection. We found that viral isolates from Finland separated into two distinct
groups of genomic and geographic relatedness, potentially reflecting historical pat-
terns of human and viral migration into Finland. These Finnish HSV-1 isolates had
distinct infection characteristics in multiple cell types tested, which were specific to
each isolate and did not group according to genomic and geographic relatedness.
This demonstrates that HSV-1 strain differences in specific characteristics of infection
are set by a combination of host cell type and specific viral gene-level differences.
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Human herpes simplex virus 1 (HSV-1; family Herpesviridae, genus Simplexvirus,
species Human herpesvirus 1) has been recognized as a cause of major human

disease since the era of Hippocrates (1), and to this day there is no effective vaccine (2).
Approximately 50% of adults in Finland are seropositive for HSV-1 (3–5), and 13% are
seropositive for HSV-2 (3, 6). HSV infects via epithelial or mucosal surfaces, after which
it is taken up by nerve endings and establishes a lifelong infection in neurons of the
sensory or sympathetic nervous system. From these neuronal sites the virus can
reactivate, transit via nerve endings back to the skin surface, and reinitiate skin or
mucosal shedding at the same site as the original infection. In addition to recurrent
epithelial lesions, HSV also causes infectious keratitis, worsens acquisition and shedding
rates for human immunodeficiency virus (HIV), and can progress to cause rare but
life-threatening encephalitis (1).

Recent comparative genomics studies of HSV-1, from our lab and other labs, have
demonstrated that HSV-1 strains from unrelated individuals can differ in 2 to 4% of the
viral genome (7–13). HSV-1 has a large DNA genome of �152 kb, encoding �75
proteins (14, 15). Prior comparisons of HSV-1 strains based on single-gene or whole-
genome sequencing have found at least three major clades that cluster geographically,
with evidence of recombination between these groups (9, 16–18). However, these
studies have focused almost exclusively on the quantification of sequence diversity,
without connecting these observations to experimental measures of viral fitness and/or
virulence. Several recent examples have demonstrated the usefulness of comparing
closely related virus strains to explore the effects of minor sequence differences on
phenotypic outcomes (10, 19–22). To date, publications examining the genome-wide
diversity of HSV-1 in diverse clinical isolates have not connected these observations to
any classic measures of viral fitness, such as viral replication in cells, or antiviral drug
resistance (12, 13, 23). Based on the decades of prior research leading to all current
antiviral approaches for HSV-1, we anticipate that a connection between viral genetic
data, cell-based measures of viral fitness, and in vivo measures of viral pathogenesis will
be crucial to drive the next generation of viral therapeutics. Examining the phenotypic
differences displayed by HSV-1 strains in culture provides an opportunity to explore the
scope of these differences and test whether or not they are linked to previously
observed patterns of geographic diversity.

Finland has a unique history that has led to a relatively homogeneous and stable
population (24–26), providing a unique view on the evolution of viruses that are
persistent in the population. There has been gene flow contributing to the human
population of Finland, both from the east and from the south (southwest) (24–26). The
eastern migrations from Siberia began over 3,500 years ago, and allele sharing with
modern East Asian populations can be observed even in present day Finns (25, 26).
Finland also has one of the best genealogical databases in the world, which, in
combination with computerized medical records and a high rate of patient participa-
tion, has led to many recent advances in human medical genetics (27, 28). This may
enable future studies to explore the coevolution of human and viral genetic variation
in this population.

We have characterized 10 HSV-1 strains isolated from a random subset of Finnish
clinic visits and compared their growth properties, drug resistance, and other pheno-
typic features. Full-genome sequences of these viruses were compared to each other
and to other previously described strains of HSV-1 to reveal patterns of interhost and
intrahost variability. While two phylogenetic subgroups were detected at a genomic
level, these subgroups were not predictive of any detectable pattern in the observed
phenotypic differences, demonstrating that whole-genome relatedness is not a proxy
for viral phenotype. We anticipate that these data will aid in efforts to develop
improved sequence-based antiviral therapies by providing additional data on con-
served versus divergent areas of the HSV-1 genome and contribute to development of
a vaccine against HSV infections based on attenuation of these or related clinical
isolates (29). These data present an opportunity to explore the diversity of chronic
herpesviruses in the Finnish population and to lay the foundation for future studies that

Bowen et al. Journal of Virology

April 2019 Volume 93 Issue 8 e01824-18 jvi.asm.org 2

https://jvi.asm.org


explore the connections between viral genetic differences, host genetic predisposi-
tions, and their potential relationship(s) to clinical outcomes of HSV-1 infection.

(This article was submitted to an online preprint archive [30]).

RESULTS
Comparison of growth properties of Finnish HSV-1 strains in vitro. A random set

of 10 circulating Finnish HSV-1 isolates was selected from residual laboratory diagnostic
specimens (Table 1). We first examined in vitro phenotypic characteristics of these
HSV-1 isolates by comparing their overall titers and rates of intracellular virus versus
extracellular (released) virus production at 24 h postinfection (hpi) in a range of cell
types (Fig. 1). These included nonhuman primate kidney-derived epithelial (Vero) cells
(Fig. 1A), human keratinocyte (HaCaT) cells (Fig. 1B), and human neuroblastoma (SH-
SY5Y) cells in a mixed, undifferentiated state (Fig. 1C) as well as in a differentiated,
neuronal state (Fig. 1D). Compared to production levels in epithelial and keratinocyte
cells, overall viral production was markedly reduced in neuronal precursor cells and
differentiated neuronal cells (compare Fig. 1A and B to C and D). The wild-type HSV-1
reference strain 17� replicated to significantly higher titers than any of the circulating
clinical isolates in Vero cells, which are routinely used for HSV propagation, and, to a
lesser extent, strain 17� replicated at a higher titer in keratinocytes as well (Fig. 1) (P �

0.05; 10- to 100-fold-higher viral amounts). Different clinical isolates excelled at pro-
ducing virions in each cell type, with no clear patterns of most- or least-efficient viral
production or release across all cell types. The amount of extracellular released virus
was less than 10% of the total virion production in all cell types except the undiffer-
entiated neuronal precursor cells (Fig. 1, insets). Each virus strain was also tested for
acyclovir (ACV) resistance. Despite some variation in ACV susceptibility (50% inhibitory
concentration [IC50] values), none of the circulating Finnish viruses was considered
resistant to ACV (Table 1). There were also no significant differences among the 10
clinical isolates in the plaque morphologies or the types of cytopathic effect induced in
Vero cell cultures (data not shown).

Genetic and genomic analysis of Finnish HSV-1 strains. Based on prior data
suggesting the effects of successive waves of migration on the human population in
Finland (31, 32), we next assessed the overall genetic diversity of these 10 HSV-1
isolates. We first performed a restriction fragment length polymorphism (RFLP) analysis
on viral genomic DNA, which revealed at least two broad patterns of variation (Fig. 2).
The diversity of bands led us to examine these genetic differences with greater
precision using high-throughput, deep genome sequencing (HTS) and comparative
genomics analysis (see Materials and Methods for details). A previously described
bioinformatics pipeline was used to de novo assemble a full-length consensus genome
for each strain (Table 2). A viral consensus genome represents the most common
nucleotide detected at each nucleotide position in that viral population. All viral
genomes had an average coverage depth between 1,000� and 2,800�, with �96% of
the genome covered at a depth exceeding 100� (Table 2). As observed in prior

TABLE 1 Finnish HSV-1 strains used for genome sequence comparisons

Sample no. Gender of donor Strain code Age of donor (yr) Lesion type or diagnosis Acyclovir sensitivity (IC50 [�g/ml])a

H1211 Female F-11 21 Blister 0.25
H1215 Male M-15 5 Blister 0.03
H12113 Female F-13 29 Blister 0.11
H12114 Female F-14g 23 Genital blister 0.50
H12117 Female F-17 57 Blister 0.15
H12118 Female F-18g 19 Genital blister 0.13
H1311 Female F-11l 59 Blister (lip) 0.31
H1312 Male M-12 39 Blister 0.13
H1412 Female F-12g 28 Genital lesion 0.09
H15119 Male M-19 36 Blister 0.15
aThe IC50 value was 8.08 �g/ml for the HSV-1 Δ305 strain (a thymidine kinase-negative, ACV-resistant control) and 0.13 �g/ml for the reference strain HSV-1 (17�).
The limit of resistance was �2.0 �g/ml.
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publications, the few areas with �100� coverage correlated with regions of high G�C
content and/or highly repetitive sequences (9, 10, 33). An average coverage depth of
�1,000� enabled us to compare the full genetic complement of the viral genome for
each strain, to analyze differences both between and within each viral strain popula-
tion, and to compare them to previously described viral genomes.

Genetic relatedness of Finnish HSV-1 samples. First, we used the viral consensus
genomes to compare how overall variation in these 10 Finnish HSV-1 genomes related
to the patterns observed by RFLP analysis (Fig. 2). Whole-genome alignments were
created using the 10 Finnish HSV-1 genomes, as well as these 10 in conjunction with
a diverse set of previously published HSV-1 genomes (see Materials and Methods; see
also Table S1 for a full list [10, 34–38]). We then used SplitsTree to create a phylogenetic
network that revealed the relatedness of the 10 Finnish viral genomes to each other
(Fig. 3A) and to previously described HSV-1 genomes (Fig. 3B). This approach revealed
that the Finnish HSV-1 genomes separated into two subgroups, which appear to relate
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FIG 1 Comparison of growth properties of Finnish HSV-1 strains reveals the uncoupling of phenotypic and geographic
variation. Histograms comparing virus production for 10 Finnish strains of HSV-1, compared to the HSV-1 reference strain
17�, in different cell types, as indicated. Vero monkey kidney cells are defective in interferon signaling. For ease of
comparison, the strains are color coded and divided into the genomic subgroups used in later figures (illustrated in Fig.
3). Viruses are plotted in descending order based on their viral production levels within each cell type and subgroup. Each
histogram bar plots infectious virions in the cell-associated fraction versus those released from cells (extracellular).
Horizontal lines indicate the median (solid green) and the average (dashed green) amounts of virus production for the 10
Finnish HSV-1 strains in each cell type. The green box on the y axis highlights the multi-log decrease in viral production
in panels C and D versus that in panels A and B. The inset in each graph shows a plot of extracellular released virus as a
percentage of total virus production. Viruses in each inset are plotted in the same order as the matched panel graph. Bar
shows standard errors of the means. *, P � 0.05; **, P � 0.001, for comparison of results for the total virus amount
(cell-associated plus extracellular) for each clinical isolate to that produced by the HSV-1 (17�) reference strain.
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to previously recognized Asian and European/North American clades. These data echo
those of the initial RFLP analysis.

Protein-coding variation in Finnish HSV-1 samples. Next, we examined these
HSV-1 isolates for more fine-scale genetic differences which are invisible at the level of
RFLP analysis. Here, we examined DNA and amino acid alignments for each protein-
coding region of the HSV-1 genome (Tables S2 and S3). We found that from 0 to 8% of
each coding region differed at the amino acid level between the 10 Finnish viral
genomes (Fig. 4). Only a few small coding regions (UL20, VP26 [UL35], UL49A, and
UL55) showed no amino acid variation between viral isolates. Consistent with previous
findings (9), gL (UL1), UL11, UL43, gG (US4), and gJ (US5) were among the most
divergent proteins. Together, these interstrain genetic differences in 70 HSV-1 proteins,
shown in Fig. 4, provide ample opportunities to generate the phenotypic diversity
observed in the data of Fig. 1. Overall, these levels of amino acid coding diversity reflect
those seen in previous analyses (9) and between other known HSV-1 genomes.

F-
11

F-
14
g

F-
18
g

M
-1

9

M
-1

5
F-

13
F-

17
F-

11
l

M
-1

2

F-
12
g

La
dd

er

La
dd

er

10kb

8kb

6kb

5kb

4kb

3.5kb

3kb

2.5kb

17
+

FIG 2 RFLP comparison reveals at least two subgroups of Finnish HSV-1 strains. Viral genomic DNA was
digested with SalI and separated via electrophoresis to distinguish overall genetic patterns. Classically defined
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of SalI fragment G, while diamonds indicate variations in the SalI Q fragment. For ease of comparison, the
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TABLE 2 Sequencing statistics for Finnish HSV-1 strains

Sample no. Strain code
% viral
genome >100� Avg coverage

No. of raw
sequence reads

No. of reads used
for assembly

Input DNA purity:
% viral DNA

GenBank
accession no.

H1211 F-11 96 1,027� 4.2 million 2.8 million 66 MH999843
H1215 M-15 99 2,808� 5.5 million 3.8 million 70 MH999846
H12113 F-13 98 2,354� 3.8 million 2.4 million 64 MH999842
H12114 F-14g 98 2,078� 5.9 million 3.8 million 66 MH999844
H12117 F-17 98 1,976� 4.1 million 2.7 million 66 MH999845
H12118 F-18g 98 1,678� 4.2 million 2.9 million 69 MH999847
H1311 F-11l 99 2,541� 4.6 million 3.0 million 65 MH999848
H1312 M-12 98 2,415� 6.0 million 3.7 million 61 MH999849
H1412 F-12g 98 1,524� 4.5 million 3.1 million 69 MH999851
H15119 M-19 99 1,536� 4.8 million 3.0 million 64 MH999850
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Minor allelic variants in Finnish HSV-1 viral populations. Each viral consensus
genome represents the most common nucleotide detected at each position in the viral
genome. In contrast, minor variants (MVs) within each viral population are rare alleles,
present in �50% of the sequenced reads. These MVs may rise to greater prevalence
during viral spread to new niches or hosts or under selective evolutionary pressure. For
each viral genome, we examined the number of MVs detected in each genome.
Stringent quality control criteria were used to reduce the number of false-positive MVs
(see Materials and Methods), and only those MVs detected at �2% prevalence were
used in this analysis. MVs were found dispersed across each genome (Fig. 5A), mostly
in intergenic regions, and were mostly of low frequency (Fig. 5B). A concentration of
MVs was found in the internal repeat region, which may result from stochasticity in
tandem repeat alignment in this area and/or from the reduced selective pressures on
intergenic sequences found in this region. The MVs detected in US7 (gI) occur at the
same tandem repeat site as the consensus-level amino acid variations in this gene (Fig.
6). Taken together, these results define the level of interhost (Fig. 4) and intrahost (Fig.
5) variation seen in the Finnish HSV-1 strains described here.

Patterns of variation in Finnish HSV-1 strains. Finally, we considered whether any
of the observed patterns of genomic or phenotypic variation could be linked to
fine-scale coding variations in these 10 Finnish HSV-1 isolates. The genomic subgroups
detected by RFLP (Fig. 2) and phylogenetic network analysis (Fig. 3) were reflected in
several coding variations that correlated with phylogenetic group. For example, coding
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differences in the secreted and virion surface glycoprotein G (gG; US4) (Fig. 6A)
correlated with the two Finnish phylogenetic subgroups (Fig. 3). Other impacts on
coding variation may result from changes in copy number at tandem repeats. Variation
in tandem repeat length in glycoprotein I (gI; US7) leads to changes in the length of a
repeating tract of mucin-type O-linked glycosylation sites (Fig. 6B), akin to that previ-
ously described in clinical isolates of HSV-1 (16, 39). Finally, there are detectable
patterns of amino acid variation that correlate with phenotypic differences in viral
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fitness in specific cell types. Coding differences in the nuclear egress complex protein
NEC2 (UL34) (Fig. 6C) were observed in the two strains (F-12g and M-15) that showed
no detectable extracellular virion release in differentiated neuronal cells (Fig. 1D). The
terminally differentiated and nondividing state of these neuronal cells may constitute
a sensitized background to detect impacts on virion egress. Taken together, these
examples illustrate the type and degree of variation present in these strains and
highlight potential genetic insights into viral phenotype.

DISCUSSION

In this study, we described for the first time HSV-1 genomes from Finland. Two
distinct subgroups or clades were observed in the 10 Finnish clinical isolates, with four
strains clustering in one clade and six clustering in another. These groups were
detectable using both classical RFLP approaches (Fig. 2) and deep-sequencing methods
for whole-genome analyses (Fig. 3). These data appear to correlate with previous
findings on the colonization of Finland, with migration from Europe in the south/
southwest and from Asia in the northeast (24–26). However, we found that phenotypic
differences between these isolates were uncoupled from the overall genomic patterns
that grouped them into two geographic clades. While plaque morphology was con-
sistent across isolates (data not shown), the amounts of virus production, extracellular
virion release, and acyclovir sensitivity differed between isolates and across cell types
(Fig. 1 and Table 1). We detected gene-specific patterns of genetic variation that may
impact protein function. Future studies will need to dissect individual genetic variations
in each viral isolate in order to test their precise impact(s) on viral fitness.

When analyzing the replication capabilities of these recently isolated clinical sam-
ples in multiple cell types, we found that they replicated to lower overall titers and
produced fewer extracellular virions than the lab-adapted HSV-1 strain 17�, regardless
of cell type (Fig. 1). This difference was more pronounced in nonhuman primate
epithelial and human keratinocyte cells and was subtler in neuronal precursors and
differentiated neuronal cells. There did not appear to be any clear differences in titers
or extracellular virus production levels between geographic clades. There also seemed
to be no noticeable differences in plaque morphologies among these samples, with
plaque sizes and cellular cytopathic effects being similar across all samples (data not
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shown). Although we report findings in a number of cell lines in this study, it will be
important for future studies to examine each virus and cell type pairing separately since
these data demonstrate that maximal viral fitness in one cell type is not generally
predictive of fitness in another.

We observed several potential connections between genetic differences and phe-
notypic differences. For instance, we detected an amino acid difference in the UL34
(NEC2) binding domain that is shared by F-12g and M-15 (Fig. 6C). Previous work has
shown that the viral proteins UL31 (NEC1) and UL34 (NEC2) form a nuclear egress
complex that localizes to the perinuclear space and plays a critical role in egress of viral
capsids from the nucleus (40, 41). In these two clinical isolates (F-12g and M-15), there
was no measurable amount of extracellular virus produced in differentiated neuronal
cells (Fig. 1D). Further studies will be needed to examine whether this phenotype is
linked to a disruption of NEC1 and NEC2 binding and impaired nuclear egress for
isolates F-12g and M-15. Variation in the copy number of tandem repeats is yet another
way that HSV-1 isolates can generate genetic and potential phenotypic variation (9, 16,
42–44). Glycoprotein I (gI; US7) contains a mucin-like domain with repeating units of
serine, threonine, and proline (Fig. 6B). This domain varies in length across these
isolates. This domain has been previously shown to serve as a site of O-linked glyco-
sylation, with longer tracts (e.g., 8 repeating blocks of 7 amino acids each) being more
heavily glycosylated than short tracts (e.g., 2 repeating blocks) (16, 39). A prior study of
over 80 Swedish HSV-1 isolates found roughly equal distributions of isolates with two,
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three, or four repeating blocks in this mucin-like gI domain (16, 39). Half of the Finnish
HSV-1 isolates analyzed here have at least four repeating units, suggesting the potential
for gI to be more heavily glycosylated in these isolates. These data generate hypotheses
for future investigations of genotype-phenotype links in these and other new clinical
isolates.

This study provides one of the first combinations of phenotypic analyses that span
multiple cell types, alongside full comparative genomic analyses that span both
phylogenetic and gene-specific analyses. One comparison not yet explored in this or
prior studies is the specific pairing of each virus with cells derived from the human
source of each isolate. This approach is now technically feasible, using induced pluri-
potent stem cell technology to generate specific cell types from a single source such as
a buccal swab. The rich genealogical databases in Finland suggest an opportunity not
only to pair these analyses at the human cell and virus level but also to link observed
phenotypes of cellular infection to each patient’s clinical, genetic, and/or familial history
of herpesvirus disease. Future studies may also seek to link human interaction data, for
instance, contact networks and/or travel history, to infer how human movement and
interaction patterns influence pathogen spread and population dynamics. We antici-
pate that in the future this approach would not only yield fruitful insights into direct
clinical outcomes of herpesvirus disease but also generate hypotheses about herpes-
virus comorbidities.

MATERIALS AND METHODS
Virus isolates and virus stock propagation. Clinical isolates were obtained from anonymous coded

diagnostic samples from herpes lesions representing currently circulating viral strains in Finland (Table
1). The virus diagnostic unit of the Turku University Hospital receives viral culture samples from the whole
country except for the Helsinki-Uusimaa region (capital Helsinki area and southeastern Finland). Recent
immigrations to Finland were not represented in the sample material. Approval for the study of
anonymous HSV isolates was provided by the Turku University Central Hospital (permit number J10/17).

An immunoperoxidase rapid culture assay (45) was used to type the viruses as HSV-1, which was
confirmed by an HSV type-specific gD (US6) gene-based PCR test (46). Viruses were initially propagated
on Vero cells (African green monkey kidney cells; ATCC), maintained in Dulbecco’s modified Eagle’s
medium (DMEM) with 2% fetal calf serum and gentamicin. A stock was made by addition of 3 ml of 9%
autoclaved skimmed milk (Valio, Finland) onto 5 ml of the culture medium and subsequent freezing. The
cells and the medium were collected and combined upon thawing and were frozen and thawed for two
further rounds before aliquoting. The viral titer was determined by plaque titration on Vero cells as
described before (47). Parallel aliquots were used for further viral culture studies and for preparation of
viral nucleocapsid DNA.

Statistical methods. For viral production data, SPSS Statistics, version 20 (IBM, Armonk NY, USA),
software was used to perform statistical analyses. A nonparametric Mann-Whitney U test was used to
calculate statistical significances. The threshold for significance was set to P value of �0.05.

Viral genomic DNA isolation. The viral genomic DNA was prepared from isolated viral nucleocap-
sids as described previously (7, 48). In brief, viral stock collected from the first or second passage in Vero
cells was used to infect �1 � 108 HaCaT cells (Department of Dentistry, University of Turku [49]) at a
multiplicity of infection (MOI) of 0.1 to 1 PFU/cell, and the infection was allowed to proceed to
completion at �35°C (1 to 3 days). The cells were collected, washed with phosphate-buffered saline
(PBS), and suspended in LCM buffer (0.125 M KCl, 30 mM Tris, pH 7.4, 5 mM MgCl2, 0.5 mM EDTA, 0.5%
Nonidet P-40, with 0.6 mM beta-mercaptoethanol). After two successive extractions with Freon (1,1,2-
trichloro-1,2,2-trifluoroethane; Sigma-Aldrich), the extracts were added on top of the layers in LCM buffer
with 45% and 5% glycerol and ultracentrifuged at 77,000 � g for 1 h at �4°C (SW41Ti rotor; Beckman
Coulter). Viral nucleocapsids were recovered from the bottom of the ultracentrifuge tube, and the DNA
was prepared by treatment with proteinase K and SDS, followed by repeated extractions with phenol-
chloroform and ethanol precipitation. The DNA content and purity were observed by spectrophotometry
and by agarose gel electrophoresis after restriction enzyme digestions.

Cell culture. Vero cells (ATCC, Manassas, VA) were propagated in M199 medium supplemented with
5% fetal bovine serum and gentamicin. HaCaT cells (Department of Dentistry, University of Turku [49])
were propagated in DMEM with HEPES buffer, supplemented with 7% fetal bovine serum and genta-
micin. SH-SY5Y neuroblastoma cells (K. Åkerman, Åbo Akademi University, Turku, Finland) were propa-
gated in DMEM (high glucose) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and
gentamicin. Initial differentiation of SH-SY5Y cells involved culture for 10 days in DMEM/F-12 medium
containing 5% fetal bovine serum, 10 �M all-trans retinoic acid (Sigma), 2 mM L-glutamine, and
gentamicin. Thereafter SH-SY5Y cells were transferred on Matrigel-coated (BD) 96-well plates, and the
medium was changed to serum-free DMEM/F-12 medium containing 10 �M all-trans retinoic acid
(Sigma), 0.5 �g/ml of brain-derived neurotrophic factor (Millipore), 2 mM L-glutamine, and gentamicin.

Acyclovir resistance testing. The sensitivity of each HSV strain to acyclovir was tested in a
microplate format. Vero cells grown on 96-well cell culture plates were treated with cell culture medium
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(DMEM with 5% fetal bovine serum) supplemented with acyclovir (ACV; Sigma), in concentrations of
128 �g/ml to 0.03125 �g/ml (1:4 serial dilutions). Duplicate wells containing each ACV dilution and wells
without ACV were infected with 100 PFU of each virus. As a control, the HSV-1 Δ305 virus was included;
it is resistant to ACV due to deletion of its thymidine kinase gene (50). Infected cells were incubated at
�37°C in 5% CO2 for 72 h before fixation with methanol and staining with crystal violet. The reduction
of plaque numbers at each ACV dilution was observed in comparison to levels in wells infected without
ACV. A logistic fit curve was used for determination of IC50 values. A virus with an IC50 value of over
2 �g/ml (of ACV) was considered resistant (51).

Image acquisition. Photomicrographic images of viral plaques were obtained using a Zeiss Primo-
vert inverted microscope with Plan-Achromat 4� and 10� objectives, recorded using an AxioCam ERc
5s camera, and analyzed using Zeiss ZEN 2012 software.

Next-generation sequencing. Viral nucleocapsid DNA was sheared on a Covaris M220 (parameters:
60-s duration, peak power of 50, 10% duty cycle, 4°C). We used an Illumina TruSeq DNA sample prep kit
to prepare barcoded sequencing libraries, according to the manufacturer’s protocol for low-throughput
sample handling. Libraries were quantified and assessed by Qubit (Invitrogen, CA), Bioanalyzer (Agilent),
and library adapter quantitative PCR (qPCR) (KAPA Biosystems). Illumina MiSeq paired-end sequencing (2
by 300 bp) was completed according to the manufacturer’s recommendations, using a 17-pM library
concentration.

A consensus viral genome for each strain was assembled using a de novo viral genome assembly
(VirGA) workflow (10). This approach begins with quality control, including removal of contaminating
host sequences, adapters from library preparation, and imaging artifacts. Next, VirGA iterates through
multiple de novo assemblies using SSAKE, and these are then combined into longer blocks of sequence
(contigs) using Celera and GapFiller. VirGA uses Mugsy alignment to match these contigs to the HSV-1
reference genome (strain 17; GenBank accession JN555585). The best-matched contigs are stitched into
a single consensus genome, which is then annotated and subjected to additional quality control
measures. These include an examination of coverage (sequence read) depth, detection of minor variants
within each consensus genome, and manual inspection of gaps and low-coverage areas. GenBank
accession numbers are given below and in Table 2.

Intrastrain minor-variant detection. Minor-variant (MV) positions within each de novo-assembled
genome were determined using VarScan, version 2.2.11, as previously described (19, 52). Conservative
variant calling parameters to eliminate sequencing-induced errors were set as follows: minimum allele
frequency, �0.02; base call quality, �20; read depth at the position, �100; independent reads support-
ing minor allele, �5. MVs containing �90% unidirectional strand support were excluded from further
analyses (53, 54), as were those occurring within 10 bp of one another. MVs passing quality control were
mapped to respective genomes and assessed for mutational effect using SnpEff and SnpSift (55, 56).

Phylogenetic and recombination analyses. DNA sequences were aligned using the Kalign algo-
rithm included in eBioTools. To avoid inferences caused by false phylogenetic signals, all gap and repeat
regions were excluded prior to this analysis. Repeat regions not leading to gaps were also excluded since
these may contain single nucleotide differences that have been shuffled into new positions by random
aspects of tandem repeat alignment. Furthermore, nucleotides that were identified as Ns in GenBank-
derived strains were excluded, along with the corresponding aligned nucleotides in remaining se-
quences. Complete genomes in GenBank harboring long stretches of Ns were not included in the analysis
(e.g., strain B3x_1_5). The network is based on an alignment of 116,610 nucleotides, which is more than
75% of the entire HSV-1 genome.

The phylogenetic network was constructed by using SplitsTree4. The network is based on the
Neighbor-Net method with ordinary least squares variance depicted as a rooted equal-angle SplitsTree.
A recombination test on the complete data set was performed by using the Phi test for recombination
implemented in SplitsTree4. Bootstrapping values greater than 80 are shown for clades with three or
more strains.

Restriction fragment length polymorphism (RFLP) analysis. A cytoplasmic viral DNA preparation
was modified from the protocol described by Igarashi et al. (57). Subconfluent Vero cell cultures were
infected at an MOI of 0.1 and incubated at �34°C for 2 days until the cytopathic effect was complete. The
cells were collected in 150 mM NaCl, 10 mM Tris, pH 7.6, and 1.5 mM MgCl buffer, with 0.1% Nonidet
P-40. The nuclei were pelleted, and DNA was extracted from the supernatant by two successive
extractions with phenol-chloroform. DNA was recovered by ethanol precipitation. Each viral DNA sample
(12.5 �g) was diluted in 15 �l of solution containing sterile H2O, FastDigest 10� green buffer, and
FastDigest BamHI or SalI restriction enzyme (Thermo Scientific). Electrophoresis was run in 0.8% Tris-
borate-EDTA (TBE)-agarose gels, with GeneRuler mix DNA ladder, for 24 h at 45 V before imaging. In order
to separate large DNA fragments after SalI digestion, electrophoresis was continued for an additional
36 h at 30 V.

Data availability. Data have been deposited in GenBank under accession numbers MH999842 to
MH999851.
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