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Abstract

Despite important advances from Genome Wide Association Studies (GWAS), for most complex human traits and diseases, a
sizable proportion of genetic variance remains unexplained and prediction accuracy (PA) is usually low. Evidence suggests
that PA can be improved using Whole-Genome Regression (WGR) models where phenotypes are regressed on hundreds of
thousands of variants simultaneously. The Genomic Best Linear Unbiased Prediction (G-BLUP, a ridge-regression type
method) is a commonly used WGR method and has shown good predictive performance when applied to plant and animal
breeding populations. However, breeding and human populations differ greatly in a number of factors that can affect the
predictive performance of G-BLUP. Using theory, simulations, and real data analysis, we study the performance of G-BLUP
when applied to data from related and unrelated human subjects. Under perfect linkage disequilibrium (LD) between
markers and QTL, the prediction R-squared (R2) of G-BLUP reaches trait-heritability, asymptotically. However, under
imperfect LD between markers and QTL, prediction R2 based on G-BLUP has a much lower upper bound. We show that the
minimum decrease in prediction accuracy caused by imperfect LD between markers and QTL is given by (12b)2, where b is
the regression of marker-derived genomic relationships on those realized at causal loci. For pairs of related individuals, due
to within-family disequilibrium, the patterns of realized genomic similarity are similar across the genome; therefore b is close
to one inducing small decrease in R2. However, with distantly related individuals b reaches very low values imposing a very
low upper bound on prediction R2. Our simulations suggest that for the analysis of data from unrelated individuals, the
asymptotic upper bound on R2 may be of the order of 20% of the trait heritability. We show how PA can be enhanced with
use of variable selection or differential shrinkage of estimates of marker effects.
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Introduction

Many important human traits and diseases are moderately to

highly heritable. This, together with advances in genotyping and

sequencing technologies, brought the promise of genomic medi-

cine [1]. In the last decade genome-wide association studies

(GWAS) have uncovered an unprecedented number of variants

significantly associated with important complex human traits and

diseases [2]. However in most cases, the combined effects of

variants found to be significantly associated with various traits and

diseases explain such a small proportion of inter individual

differences in genetic risk that the usefulness of genomic

information in clinical practice remains limited. In part, this

reflects lack of power of standard GWAS to detect phenotype-

marker associations for small effect variants [3,4]. A number of

studies have shown that prediction accuracy can be increased by

including in the model variants that may not show significant

association at the marginal level (e.g., [5]. A few authors [6–8]

went further and suggested that the analysis and prediction of

complex traits may be improved with the use of Whole-Genome

Regression methods (WGR; [9]) where phenotypes are regressed

on hundreds of thousands of markers concurrently. For instance,

using G-BLUP (Genomic Best Linear Unbiased Predictor, one of

the most commonly used WGR methods) Yang et al. [7] found

that roughly 50% of the genetic variance of human height can be

explained by regression on common SNPs. Similar results were

confirmed for other complex traits [10].

The ability of a model to predict yet-to-be observed phenotypes

(hereinafter referred to as PA, for prediction accuracy) constitutes

one of its most important properties from the perspective of its

potential use for preventive and personalized medicine. The study

by Makowsky et al. [8] assessed PA of G-BLUP and, using family

data, reported a cross-validation R2 of 0.25. However, the R2

ranged from 0.36 for individuals having 3 or more close relatives

in the training data set to 0.11 for individuals with no close

relatives in the training data set. The result confirms previous

findings from the field of animal breeding [11] suggesting

important influences of close familial relationships on the PA of

G-BLUP methods. This raises an important question: what levels

of PA could be expected when G-BLUP is used to predict complex

human traits and diseases using data from unrelated individuals?

In this article, using theory, simulation and real data analysis we

study the factors that affect the extent of missing heritability and

the prediction accuracy of G-BLUP for the analysis of human
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data. The article is organized as follows. The methods section
begins with an overview of G-BLUP. We describe the

assumptions that define the model and derive analytical
expressions that relate genomic relationships to prediction
accuracy in two scenarios: (a) when the genotypes used for

analysis are those at causal loci (hereinafter referred to as analysis

under perfect LD between markers and QTL) and (b) under

imperfect linkage disequilibrium (LD) between the markers

used to compute genomic relationships and the genotypes at causal

loci. The derivation of the R2 formula under perfect LD between

markers and QTL follows from standard properties of the

multivariate normal density and similar results have been

presented before [12,13]. However, under imperfect LD the

model does not hold (because of misspecification of the covariance

function) and the standard formulas cannot be used. Based on a

few assumptions we derive a closed-form upper bound on

prediction R2 for the case of imperfect LD. Predictions from the

formulas derived in the methods section are validated in

simulated and real data analyses using data from related
(Framingham Heart Study [14]) and nominally unrelated (a

sub-study of GENEVA [15]) individuals. In the Discussion
section the analytical and empirical findings of our research are

discussed and put into context and various implications of our

results are considered.

Materials and Methods

Standard quantitative genetic models describe phenotypes

yi; i~1,:::,nð Þ as the sum of a genetic value (gi) plus an error

term dið Þ; that is yi~gizdi. For ease of presentation it is assumed

throughout this article that phenotypes and genetic values have

null mean (i.e., these are expressed as deviations from the sample

mean). Genetic values could be a complex function of the

genotypes (zi) of individual i at q causal loci, gi~g zi1,:::,ziq

� �
that

depends on the genetic architecture of the trait (i.e., the number

and exact set of causal loci and the types of interactions among

alleles within and between loci, and the distribution of effects). In

practice, the genetic architecture of the trait analyzed is unknown

and empirical models are built using regressions on marker

genotypes. In WGR models [9], phenotypes are regressed on

potentially hundreds of thousands of marker covariates

xi1,:::,xip

� �
concurrently using a regression function ui~

u xi1,:::,xip

� �
which could be parametric or not. The empirical

model becomes: yi~u xi1,:::,xip

� �
zei, where xil[ 0,1,2f g denotes

the number of copies of one of the alleles observed on the ith

individual at the lth marker and ei is a model residual that captures

the effects of non-genetic factors (di) as well as errors gi{ui which

may emerge either because of model misspecification (e.g.,

unaccounted interactions) or because of imperfect LD between

markers and genotypes at causal loci. In most applications,

u x1i,:::,xpi

� �
is structured using a parametric linear regression of

the form u x1i,:::,xpi

� �
~
Pp

l~1 xilbl where bl represents the

additive effect of the allele coded as one at the lth marker. Often

the number of markers (p) vastly exceeds the number of data points

(n) and implementing these large-p with small-n (p..n) regressions

requires shrinkage estimation or use of some form of variable

selection. Owing to developments in the field of penalized and

Bayesian regressions, there is a multiplicity of methods that can be

used to implement these p..n regressions [16]. Most of the

applications in plant and animal breeding and most of the studies

involving human data have used G-BLUP and we therefore focus

on this method.

Genomic Best Linear Unbiased Predictor (G-BLUP)
Genomic BLUP can be motivated in many different ways: as a

Ridge Regression (RR, [17]) on marker genotypes, as a Bayesian

Gaussian Regression on markers or as a random effects model. A

detailed description of this model is given in Supplementary

Methods. Here we briefly describe G-BLUP adopting the random

effects perspective where phenotypes are viewed as the sum of a

random effect representing genomic signal (ui) and a model

residual (ei ),

yi~uizei, ð1Þ

both of which are assumed to follow multivariate normal (MVN)

distributions. The vector of genomic values u~ u1,:::,unð Þ’ is

assumed to follow a MVN distribution with mean equal to zero

and variance-covariance matrix proportional to G~ Gij

� �
, a

marker-derived matrix of realized genomic relationships be-

tween pairs of individuals (Gij ). Model residuals, e~ e1,:::,enð Þ’
are regarded as independent of u and assumed to follow IID

normal distributions, centered at zero and with variance s2
e .

Therefore,

u

e

y

2
64

3
75*MVN 0,

Gs2
u 0 Gs2

u

0 Is2
e Is2

e

Gs2
u Is2

e Gs2
uzIs2

e

0
B@

1
CA

2
64

3
75, ð2Þ

where I denotes an identity matrix of dimension n. Importantly,

the ability of the model described by expressions (1) and (2) to

separate signal (u) from noise (e) depends completely on how

well G describes realized genetic relationships at unobserved

causal loci.

In empirical analyses, genomic relationships are usually

computed using crossproduct terms between genotypes. In such

cases, estimates derived from G-BLUP methods are equivalent to

those that can be derived by regressing phenotypes on marker

genotypes using a linear model, ui~
Pp

l~1 xilbl , with marker

effects treated as IID draws from a normal distribution,

Author Summary

Despite great advances in genotyping technologies, the
ability to predict complex traits and diseases remains
limited. Increasing evidence suggests that many of these
traits may be affected by a large number of small-effect
genes that are difficult to detect in single-variant associ-
ation studies. Whole-Genome Regression (WGR) methods
can be used to confront this challenge and have exhibited
good predictive power when applied to animal and plant
breeding populations. WGR is receiving increased atten-
tion in the field of human genetics. However, human and
breeding populations differ greatly in factors that can
affect the performance of WGRs. Using theory, simulation
and real data analysis, we study the predictive perfor-
mance of the Genomic Best Linear Unbiased Predictor (G-
BLUP), one of the most commonly used WGR methods. We
derive upper bounds for the prediction accuracy of G-BLUP
under perfect and imperfect LD between markers and
genotypes at causal loci and validate such upper bounds
using simulation and real data analysis. Imperfect LD
between markers and causal loci can impose a very low
upper bound on the prediction accuracy of G-BLUP,
especially when data involve unrelated individuals. In this
context, we propose and evaluate avenues for improving
the predictive performance of G-BLUP.

G-BLUP for Complex Human Traits

PLOS Genetics | www.plosgenetics.org 2 July 2013 | Volume 9 | Issue 7 | e1003608



bl *
iid

N 0,s2
b

� �
. See Supplementary Methods for further details

about the equivalence of G-BLUP and some linear regressions on

marker covariates.

Inferences. Estimation of variance parameters in G-BLUP is

possible only when G is different from the identity matrix. If that is

the case, variance parameters can be estimated from data using

Maximum Likelihood, Restricted Maximum Likelihood or Bayes-

ian Methods. The ratio of variance components l~s2
e s{2

u can be

viewed as a noise-to-signal ratio and controls the extent of

shrinkage of estimates in G-BLUP. Moreover, upon appropriate

standardization of G (See Supplementary Methods), the ratio

h2
G~

s2
u

s2
uzs2

e

, ð3Þ

(hereinafter referred as to ‘genomic heritability’) can be regarded

as the proportion of variance of phenotypes that is accounted for

by regression on the set of markers used to compute G. If G is

computed using genotypes at causal loci h2
G equals the heritability

of the trait, denoted as h2. However, when markers are in

imperfect LD with genotypes at causal loci, markers may not

account for 100% of the variance generated at causal loci and

h2
Gvh2. In this case, h2

G could be regarded as a measure of the

proportion of variance at causal loci that can be explained by

regression on markers using G-BLUP, in the training sample.

Predictions. G-BLUP methods can also be used to predict

yet-to-be observed phenotypes. For instance, using a set of n

phenotypes, denoted as Sn~ yif gn
i~1, the so called ‘training’ data

set (TRN), we may wish to predict the unobserved phenotypic

outcome of a new individual in the test or validation data set (TST;

hereinafter, and without loss of generality, denoted as ynz1). Using

standard properties of the MVN distribution we show in the

Supplementary Methods (see expression S9.b) that the expected

value of ynz1 given a TRN sample (Sn) is a weighted sum of the

TRN phenotypes; specifically:

E ynz1jSnð Þ~
Xn

i~1
Gnz1,i~yyi ð4Þ

where Gnz1,i denotes the genomic relationship between individual

n+1 in the TST data set and the ith individual in the TRN data set,

and ~yy~ ~yyif gn
i~1 represents a set of ‘smoothed’ phenotypes computed

by premultiplying the phenotypes of individuals in the TRN data

set by matrix T~ GzIl½ �{1
. That is: ~yy~ GzIl½ �{1

y, or, in scalar

notation, ~yyi~
Pn

j~1 Tijyj where Tij represents the ijth entry of

matrix T, which is proportional to the inverse of the phenotypic

(co)variance matrix of observations in the TRN data set.

The weights in this linear score (4) are given by the Gnz1,i’s

coefficients that quantify the realized genomic relationships between

the individual whose phenotype we wish to predict (typically, from

the TST data set) and those individuals available for training. The

expected value of the Gnz1,i’s coefficients equals twice the kinship

coefficient between pairs of individuals [11,18,19]. For example, in

absence of inbreeding and of assortative mating, the expected value

of Gnz1,i equals 0.5 for parent/offspring or full-sib pairs, or 0.25 for

grand-parent/grand-children or half-sib pairs.

Prediction Accuracy in G-BLUP
The predictive ability of a model is commonly assessed using the

variance of prediction errors (or prediction error variance),

PEV~Var ynz1{ŷynz1

� �
, where ŷynz1 represents a prediction,

for instance, ŷynz1~E ynz1jSnð Þ. The proportional reduction in

phenotypic variance accounted for by predictions (referred to as

R2 in this article) can be quantified using

R2
nz1,y~

Var ynz1ð Þ{Var ynz1{ŷynz1ð Þ
Var ynz1ð Þ

~1{
Var ynz1{ŷynz1ð Þ

Var ynz1ð Þ ~
Cov ynz1,ŷynz1ð Þ2

Var ynz1ð ÞVar ŷynz1ð Þ

where, Var ynz1ð Þ~s2
e zs2

uGnz1,nz1 represents the phenotypic

variance of individual n+1. Below we look at two scenarios: (i)

prediction accuracy when markers and QTL are in perfect LD and

(ii) prediction accuracy when markers and QTL are in imperfect LD.

Case 1: Prediction accuracy when markers and QTL are

in perfect LD. Formulas for PEV and R2 for the case when the

model holds have been derived elsewhere [12,13]. It is well known

that when the model defined by expression [2] holds prediction R2

in validation data sets is given by

R2
nz1,y~h2

nz1

Pn
i~1

Pn
j~1 Gnz1,iGnz1,jTij

Gnz1,nz1
,

(see the steps leading to expression (S.11) in the Supplementary

Methods for a detailed derivation of the above result). The first

term in the right-hand side of the above-expression,

h2
nz1~

s2
uGnz1,nz1

s2
uGnz1,nz1zs2

e

, can be interpreted as an individual-

specific heritability; in absence of inbreeding the expected value of

this term is h2. The second term of the right hand side of the above

expression represents the R2 of prediction of genetic values,

R2
nz1,u~1{

Var unz1{ûunz1ð Þ
Var unz1ð Þ ~

Pn
i~1

Pn
j~1 Gnz1,iGnz1,jTij

Gnz1,nz1

(see eq. (S.11) of the Supplementary Methods). When the model

holds, asymptotically, as n tends to infinity, R2
nz1,u approaches 1;

therefore, with perfect LD between markers and QTL, asymptot-

ically, R2
nz1,y approaches h2

nz1.

To get further insight on the role played by TRN-TST

relationships, assume for now that the off-diagonal elements of G
(i.e., all the Gij in the TRN data such that i,j[(1,:::,n); i=j) are

zero. In this case T is diagonal and the R2 formula reduces to

R2
nz1,y~

h2
nz1

Gnz1,nz1

Xn

i~1
G2

nz1,i:

The above expression gives interesting insights into the impact

of realized genomic relationships (at causal loci) between TRN and

testing (TST) samples on prediction accuracy. When individuals in

the TRN data set are genetically independent (i.e., when G is

diagonal) the individual contribution to each training data point to

prediction accuracy of TST phenotypes is proportional to the

squared genomic relationship existing between the individual we

wish to predict (n+1) and the ith individual in the TRN data set. If a

coefficient is small in absolute value (e.g., Gnz1,ij j~0:01) the

contribution of the ith observation to prediction accuracy of the

phenotype of individual n+1 will be minimal. In practice,

individuals in the TRN data set will have various degrees of

genetic similarity (i.e., G will not be diagonal). In this case, the

index
h2

Gnz1,nz1

Xn

i~1
G2

nz1,i represents an upper bound on

R2; specifically, under perfect LD between markers and QTL:

G-BLUP for Complex Human Traits
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R2
nz1,yƒ

h2
nz1

Gnz1,nz1

Xn

i~1
G2

nz1,i: ð5Þ

This happens because, all else being equal, the amount of

information provided by TRN data is maximized when these data

are genetically independent.

Case 2: Prediction accuracy when markers and QTL are

in imperfect LD. The set of causal loci is typically unknown

and in practice, marker genotypes are used to compute genomic

relationships. The patterns of realized genomic relationships at

different sets of loci (e.g., markers and causal loci) vary across the

genome [20]. Because of this, marker-derived genomic relation-

ships may provide a poor description of realized relationships at

causal loci, G, violating an important assumption of model (2).

When the empirical model does not hold, it is not possible to

derive closed-form expressions for R2. To circumvent this

problem, a closed-form expression for an upper bound to R2 is

obtained instead. The details of the derivation are given in section

2.2 of the Supplementary Methods. Briefly, to arrive at a closed-

form upper bound it is assumed that genomic relationships

realized at causal loci among pairs of individuals in the TRN data

set are known. Therefore, we consider only the impacts of

imperfect LD between markers and QTL that occur through

misspecification of genetic relationships at causal loci between

individuals in the TST and those in the TRN data set.

Prediction equations in GBLUP are given by
Pn

i~1 Gnz1,i~yyi.

Since by assumption genomic relationships at causal loci among

individuals in the TRN data set are known, inferences about the

~yyi’s, i.e., the entries of the vector ~yy~ GzIl½ �{1
y, are not affected

by imperfect LD between markers and QTL. Let

Gnz1,1,:::,Gnz1,nf g and �GGnz1,1,:::,�GGnz1,n

� �
represent the geno-

mic relationships between an individual (n+1) in the TST data set

and all the n individuals in the TRN data set, realized at causal loci

and at markers, respectively. Assume that the two sets of genomic

relationships can be related according to the following linear

model

�GGnz1,i~bnz1Gnz1,izjnz1,i i~1 , . . . ,nð Þ ð6Þ

where bnz1 represents the regression of genomic relationships

realized at markers �GGnz1,1,:::,�GGnz1,n

� �
on genetic relationships

realized at causal loci Gnz1,1,:::,Gnz1,nf g for individual n+1 and

jnz1,i, represents a residual term orthogonal to Gnz1,i. Later in

this study the validity of [6] is assessed by computing genomic

relationships at disjoint subsets of markers using real genotypes.

A regression similar to (6) was used by [7] to quantify the

proportion of unexplained variance (‘missing heritability’) due to

imperfect LD. However, the objectives of Yang et al. [7] and ours

are different, and consequently the methods used are different.

Yang et al. [7] focuses on quantifying effects of imperfect LD on

estimates of variance parameters; here we focus on quantifying

how misspecification of TRN-TST genomic relationships affects

prediction accuracy. Because the focus of the article by Yang and

colleagues [7] is on quantifying the effects of imperfect LD on

estimates of variance parameters, the regression of realized

genomic relationships at subsets of loci is computed using both

diagonal and off-diagonal terms of G. Here, since we focus on

effects of misspecification of TRN-TST relationships we apply the

regression of eq. [6] to off-diagonal terms only. These terms,

especially those with low expected value (i.e., those involving

distantly related pairs), are very sensitive to the effect of imperfect

LD [20].

Using (2) and (6) it can be shown (see eq. (S.14) of the

Supplementary Methods) that the R2 that can be attained using

markers that are in imperfect LD with genotypes at causal loci

(�RR2
nz1,y) satisfies the following inequality:

�RR2
nz1,yƒR2

nz1,y 1{ 1{bnz1ð Þ2
h i

ð7Þ

The right hand side of the above expression has two terms: the first

one, R2
nz1,y, is the R2 that could be obtained with the same TRN

sample if markers were in perfect LD with the QTL. The second

term, 1{ 1{bnz1ð Þ2
h i

, quantifies the reduction in prediction R2

that occurs due to imperfect LD between markers and QTL. The

term tnz1~ 1{bnz1ð Þ2 represents a minimum propor-
tional reduction on prediction R2 due to imperfect LD
between markers and QTL. This is so because the derivation

of (7) only considered the impact of imperfect LD between markers

and QTL on the computation of the genomic relationships

between the individuals in the TST data set and those used for

TRN. In practice, the relationships among individuals in the TRN

data set are also estimated from markers that are in imperfect LD

between markers and QTL. This will also have a detrimental

effect on PA, which is not accounted for by the right hand side of

expression (7). Asymptotically and in absence of inbreeding

R2
nz1,y?h2; therefore, with large samples 1{(1{bnz1)2

� 	
h2

becomes an upper-bound to prediction R2 under imperfect LD.

Figure 1 displays values of the minimum reduction factor, tnz1,

versus bnz1. In practice the set of causal loci is unknown and

computing bnz1 is not feasible. However bnz1 can be estimated by

computing genomic relationships at different sets of loci and

subsequently regressing the realized genomic relationships at

different sets of loci on one another. An example of this approach

is offered in the next section.

The principles used to derive expression (7) can also be applied

when predictions are computed from pedigree information as

opposed to markers. In this case �GGnz1,i should be replaced by the

pedigree based relationships. That is: Anz1,i~~bbnz1Gnz1,izjnz1,i

where now ~bbbz1 represents the regression of pedigree derived

relationships, Anz1,i, on realized genetic relationships at causal

loci. In this case, departure of ~bbbz1 from 1 reflects a deviation

between the pedigree based relationship and the realized genetic

relationship at causal loci.

Simulation and Real Data Analysis
To obtain further insight on the impacts of imperfect LD

between markers and QTL on the proportion of missing

heritability and on PA, a simulation study and real data analysis

were performed using data sets from related and from unrelated

individuals.

Data. We used two publically available data sets: one

involving family data (the Framingham Heart Study, hereinafter

denoted as FHS, [14]) and one (GENEVA, hereinafter denoted as

GEN, [15]) with nominally unrelated individuals– defined based

on available pedigree information. The data contained in GEN

was collected by the Gene-Environment Association Studies

consortia (https://www.genevastudy.org/). Here, we used the

type-2 diabetes case-control data sets which were drawn from the

Nurses’ Health Study and the Health Professionals Follow-up

study [15].

Ethics statement. The FHS data set required IRB approval

and this was done at the IRB of the University of Alabama at

G-BLUP for Complex Human Traits
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Birmingham (Protocol # X100712003). GEN did not qualify as

human subject data.

Individuals in the FHS were genotyped with a 500 K SNP

platform (K = 1,000) and those in GEN were genotyped with a

1,000 K SNP platform. We identified a set of 400 K SNPs which

were available both in GEN and FHS and passed quality control

criteria which consisted of removing markers with more than 10%

of uncalled genotypes and with minor allele frequency (MAF)

smaller than 0.5%. These 400 K SNPs were used for simulations

and for data analysis, as described next. In both data sets

individuals with unknown height, age or sex were removed in

order to allow comparison with analysis of the real data presented

in the next section.

In GEN, only nominally unrelated individuals of Caucasian

origin with less than 5% of missing genotypes were included. This

left 5,854 individuals out of which 5,800 were randomly sampled

for the analysis. In FHS individuals with no data from relatives

and subjects with more than 5% of uncalled genotypes were

removed. The 7,865 individuals that passed these criteria were

ranked using an index consisting of the sum of squares of the

additive relationships (computed from pedigree) of each individual

with the rest of the data set Ii~
P

j=iA
2
ij

� �
. And based on this

index, the highest 5,800 ranking individuals were kept for analysis.

With this strategy, the sample size of both data sets was matched

and at the same time, the degree of relationships existing among

individuals in FHS was maximized. This generated a maximally

contrasting scenario between the two data sets.

Simulation. The simulation study incorporates the observed

genotypes from the FHS and GEN data sets as follows. From the

available 400 K SNPs, 300 K were randomly sampled and

designated as markers (hereinafter genotypes at these loci are

denoted as xij , j = 1,…,300 K). Causal loci (p = 5,000, denoted as

zij ) were sampled from the remaining 100 K SNPs using two

strategies: (a) completely at random (RAND, by assigning equal

sampling probability, 161025, to all markers) or (b) at random but

Figure 1. Minimum R2 reduction factor, 1{bnz1ð Þ2, due to imperfect linkage disequilibrium between markers and QTL versus values
of the regression of genomic relationships realized at markers and at causal loci (bnz1).
doi:10.1371/journal.pgen.1003608.g001

G-BLUP for Complex Human Traits
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sampling an excess of SNPs with low MAF (Low-MAF). Here we

assigned sampling probability of 0 to markers with MAF greater

than 0.15, 1.7661025 probability to markers with MAF between

0.05 and 0.15 and three times higher probability, 5.2861025, to

markers with MAF smaller or equal to 0.05. These sampling

probabilities were defined based on MAF computed using the

average MAF observed in FHS and GEN. In the RAND scenario,

markers and genotypes at causal loci were sampled from the same

distribution; on the other hand, in the Low-MAF scenario markers

and genotypes at causal loci have different distribution of allele

frequencies.

The effects of causal loci bj

� �5,000

j~1
and model residuals eif g5,800

i~1

were sampled from independent normal densities, the residual

variance (s2
e ) was set to 0.2 and the variance of causal loci effects

(s2
b) was set to: 0:8| 2

P5,000
l~1 hl 1{hl j

� �h i{1

where the hl ’s

correspond to observed allele frequencies calculated pooling the

genotypes in FHM and GEN. Phenotypes were finally generated

using a linear model of the form: yi~
P5000

j~1 zijbjzei. Under

linkage equilibrium, this results in a phenotypic variance and

heritability equal to 1 and 0.8, respectively. A total of 30 Monte

Carlo (MC) replicates were generated. The assignment of markers

into causal and tag SNPs was kept fixed across MC replicates;

therefore, what varied across replicates were causal loci effects and

error terms. Note that the assignment of SNPs to sets of markers

and of causal loci, as well as the marker effects and error terms

used in the simulations were the same in FHS and GEN; therefore,

the only difference between the two data sets in the simulation

study was that one (FHS) consisted of related individuals and the

other (GEN) of unrelated subjects.

Analysis of simulated data. The simulated data were

analyzed using a G-BLUP model with genomic relationships

computed either using genotypes at causal loci (G) or using

markers (�GG) and according to the following expressions:

Gij~
1

5,000

X5,000

l~1

zil{2hlð Þ zjl{2hl

� �
2hl 1{hlð Þ and

�GGij~
1

3|105

X3|105

l~1

xil{2hlð Þ xjl{2hl

� �
2hl 1{hlð Þ

There are several ways of computing genomic relationships

[7,21–24]; here, we have adopted one of the conventions which

consist of centering (by subtracting the mean, 2hl ) and standard-

izing, by dividing by the variance 2hl 1{hlð Þ, of each marker

before computing genomic relationships. The allelic frequencies

used to center and standardize genotypes were computed by

pooling the genotypes in the FHS and GEN data sets. Centering

has no effects either on estimation or predictions [25]. On the

other hand, standardization does have an effect. When marker

genotypes are standardized all markers make an equal contribu-

tion to the computation of relationships. An advantage of

centering and standardizing is that the expected value of the

resulting genomic relationship matrix is the numerator relation-

ship matrix; therefore, deviations of the observed genomic

relationship matrix relative to its expected value can be attributed

to the sampling of alleles at meiosis.

In the analysis of the simulated data a Bayesian model with

uninformative priors for variance parameters was used to estimate

variance parameters and to predict phenotypes and genetic values.

Details of the model used for analysis as well as specifics of the

MCMC implementation are given in Supplementary Methods.

Estimation of prediction accuracy in simulated

data. For each of the 30 MC replicates, we used data from

5,300 individuals to train the models (TRN) and data from 500

individuals for testing (TST). Phenotypes of individuals assigned to

TST were regarded as missing and prediction accuracy was

assessed by means of R2 between predicted and observed

phenotypes in the TST data sets, estimated by the squared of

Pearson’s product-moment correlation. The assignment of indi-

viduals to TRN/TST data sets was completely at random in GEN.

In FHS we designed a sampling strategy that guarantees that

prediction used only ancestors and nominally unrelated individ-

uals. Specifically, TST data sets were drawn from the most recent

cohort, and the algorithm used to construct the TRN data set

avoided contemporaneous relatives between individuals in the

TRN and TST data sets.
Real data analysis. In the real data analysis height is used as

model trait and we report estimates of variance parameters and

assess PA in FHS and GEN. The models for the analysis were

similar to those used in the simulation (see below for details) but

alternatives that incorporate results from previous GWAS into the

whole-genome regression approach are also considered. In both

data sets height was preadjusted with estimates of effects of age and

sex (estimated within each data set). Estimates of variance

components were derived by fitting models to each of the full

data sets (N = 5,800, in both cases) and to the combined data sets

(N = 11,600). PA was assessed for FHS and GEN using the same

30 TST data sets used in the simulation, each containing 500

individuals.

For assessing PA, the training was done within data set (N-

TRN = 5,300 in each partition) or using a combined data set. For

the combined data set analyses, when testing was carried out in

GEN, the TRN data set included the 5,300 individuals from GEN

(those not used for TST in each partition) plus 5,800 from FHS.

Similarly, when testing in FHS, the TRN data set included 5,300

individuals from FHS and 5,800 from GEN.
Models used in the real data analysis. The baseline model

was a G-BLUP using all available markers (p = 400 K SNPs). As

shown in the next section, results from the simulation study suggest

that imperfect LD between genotypes at markers and those at

causal loci can have dramatic impacts on PA, especially when data

involve unrelated individuals. In practice, the set of causal loci is

unknown; however, it is possible to use information from existing

GWAS to either select or weight the markers included in the

analysis. Therefore, we also evaluated G-BLUP models using a

subset of markers selected on the basis of their association p-values

for human height published by the GIANT consortium [5]. To

this end, SNPs were ranked according to their p-values (from

smallest to largest) and then G-BLUP type models were

implemented using the top-t markers only, with t = 100, 250,

500, 1 K, 2.5 K, 5 K, 10 K, 20 K, 50 K and 100 K.

As an alternative to this variable selection approach we

evaluated the use of genomic matrices computed by weighting

all markers differentially [26], in this case according to the

evidence of association obtained from the GIANT study.

Specifically, in this weighted-G-BLUP (hereinafter wG-BLUP)

genomic relationships were computed as �GGw,ij~

K{1
Pp

k~1 w2
k

xik{2hkð Þ xjk{2hk

� �
2hk 1{hkð Þ , where wk~{log10 pkð Þ,

K~
Pp

k~1 w2
k, and log10 pkð Þ is the base-10 logarithm of the

SNP association p-value reported by the GIANT consortium [5].

These p-values were derived using a sample size of the order of

133,000 records. Although both FHM and GEN were part of this

study, in practice, in each replicate we are validating using 500

individuals; arguably, the influence of these data points on the
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derivation of the p-values derived by the GIANT consortium is

negligible. The fourth and final set of results was obtained by

predicting phenotypes using pedigree information only. This

approach is denoted P-BLUP (pedigree BLUP) and was applied

only to FHS.

Results

Results from the simulation study are reported first; this is

followed by the results of the real data analysis.

Results from the Simulation
Table 1 shows the distribution of allele frequencies (computed

among the 5,800 individuals used for analysis in each of the data

sets) by set of markers and data set. The distribution of allele

frequencies observed in the FHS and GEN was very similar, with a

correlation of MAF between the two data sets of 0.997. The

distribution of minor allele frequencies of subsets of randomly

chosen markers (either those designated as non-causal loci or those

designated as causal loci in the RAND scenario) was very similar,

with more than 65% of the markers having a MAF greater than

0.15. On the other hand, as a consequence of the sampling scheme

used, in the Low-MAF scenario, the distribution of allele

frequencies at causal loci had an over representation of low

MAF loci. We also computed the squared correlation of genotypes

of adjacent markers at various lags (in this case defined as the

number of markers in the interval in the map), from lag 1 to lag

100 in FHS and GEN. For the set of SNP used in this study

(400 K) the average inter marker distance was 7.2 kb. Plots of the

patterns of association between genotypes at adjacent markers are

given in the Supplementary Data (see figures S1 and S2).

Although, for some pair of markers, the squared correlations in

FHS and GEN were different; however, the overall patterns (e.g.,

the average squared-correlation at lag 1, 2,…, 100, or percentiles

of the squared correlations at various lags) were identical in both

data sets.

The eigenvalue decomposition of the marker-derived genomic

relationship matrices revealed that the cumulative variance

explained by the 1st 5 eigenvalues were 0.35, 0.51, 0.64, 0.78

and 0.90% in FHM and 0.35, 0.51, 0.61, 0.69, and 0.77% in

GEN, respectively. Ordinary least squares regression of adjusted

height on the 1st PC explained a proportion of the variance (in the

training sample) equal to 4% in FHM and to 2% in GEN.

Therefore, although both data sets exhibit some extent of

population stratification, the proportion of variance of genotypes

explained by high order principal components was low.

Estimates of h2
G and of prediction R2, averaged across 30 MC

replicates are displayed in Table 2. Results by MC replicate are

provided in Tables S1, S2, S3, S4, S5 of the Supplementary Data.
Proportion of variance explained. The estimates (6

estimated standard error) h2
G obtained when realized genetic

relationships at causal loci were used were very close to 0.8 in FHS

(0.7860.01) and GEN (0.7760.01). This holds for both sampling

scenarios, RAND and Low-MAF. Therefore, as one would expect,

and regardless of whether data are from related or unrelated

individuals, when genotypes at markers and those at causal loci are

in perfect LD, the model holds and there is no missing heritability.

On the other hand, when genotypes at markers and those at causal

loci are in imperfect LD, in FHS the estimates of h2
G were 0.77

(60.018, RAND scenario) and 0.75 (60.018, Low-MAF scenario)

and those from GEN were 0.74 (60.040) and 0.57 (60.58), for the

RAND and Low-MAF scenarios, respectively. Therefore, with

family data and imperfect LD we either did not observe missing

heritability (RAND scenario) or observed a very small proportion

of missing heritability, roughly 3% computed as 1006(120.748/

0.777), when marker and causal loci were drawn from different

distributions (Low-MAF scenario). However, with unrelated

individuals (GEN) we either observed a small proportion of

missing heritability, roughly 4% (computed as 1006[120.737/

0.773) in the RAND scenario, or a great deal of missing

heritability, roughly 26% (computed as 1006[120.573/0.775]),

in the Low-MAF scenario. These results are consistent with

previous analyses of human height using related [7,8] individuals

and provide support to the conjecture offered by Yang et al. [7]

that the extent of missing heritability observed with unrelated

individuals may be due to imperfect LD between markers and

QTL, exacerbated by the fact that marker and causal loci may

have different distributions of allele frequency.

For the FHS we also fitted a pedigree-based model to the

simulated data and the estimates of proportion of variance

explained with pedigrees (0.764 and 0.755 in the RAND and

Low-MAF scenarios, respectively) were very similar, only slightly

lower, but not significantly different based on the MC SEs, to

those obtained when genotypes at markers were used.
Prediction accuracy. When genotypes at marker and causal

loci are in perfect LD, the R2 between predicted and observed

phenotypes in TST data sets (averaged across 30 MC replicates)

ranged from 0.517–0.551, with very minor differences across data

sets and scenarios. The R2 for prediction of genetic values (not

presented in the Table 2) are given in the Supplementary Data (see

Tables S4 and S5).

The PA attained when marker genotypes were used to compute

genomic relationships was much lower than that achieved using

genotypes at causal loci. Reduction in R2 due to imperfect LD

between markers and QTL ranged from 52% (for FHS in the

RAND scenario, computed as 1006[120.263/0.545]) to 91% (for

GEN in the Low-MAF scenario, computed as 1006[120.049/

0.536]). In both data sets the reduction in R2 was higher in the

Low-MAF scenario than in the RAND scenario; however, the

reduction in R2 was orders of magnitude different in FHS and

GEN, regardless of the simulation scenario.

Importantly, in many cases, the value of the estimated h2
G did

not provide a good indication of what one would expect for

Table 1. Percentage of loci by minor allele frequency (MAF),
scenario and data set.

Type of
loci Scenario

Data
set Minor Allele Frequency

,3%
3%–
5%

5%–
10%

10%–
15% .15%

Tag FHS .061 .049 .119 .116 .654

Tag GEN .065 .049 .119 .115 .652

Causal RAND FHS .063 .047 .117 .123 .651

Causal RAND GEN .066 .048 .117 .117 .651

Causal Low-MAF FHS .310 .233 .239 .207 .011

Causal Low-MAF GEN .321 .237 .231 .201 .010

FHS = Framingham Heart Study, GEN = GENEVA, RAND: in this scenario causal
and marker loci were drawn from the same distribution, Low-MAF: in this
scenario marker loci were drawn at random and causal loci were drawn over-
sampling loci with extreme minor-allele frequency (MAF). In the Low-MAF
scenario, the sampling of causal loci was done using average MAF of the FHS
and GEN data sets. Although MAF were very similar across data sets, these were
not exactly equal, and this explains why in the Low-MAF roughly 1% of the
causal loci had MAF (within-data set) greater than 15%.
doi:10.1371/journal.pgen.1003608.t001
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prediction R2. For instance, in FHS the use of markers, as opposed

to causal loci, did not induce a great extent of missing heritability,

but the PA attained with markers was less than 50% of that

attained when genotypes at causal loci were used. Another

example can be seen in GEN; here, in the RAND scenario when

markers were used we observed only a small extent of missing

heritability (the estimated value was h2
G~0:737), but the reduction

in R2 due to use of markers that were in imperfect LD with causal

loci was dramatic (86% computed as 1006[120.071/0.517]).

Finally, in FHS the prediction accuracy of the pedigree model

(R2 0.224) was, as one would expect, lower than that of the

marker-based model (R2 0.263). Relative to the pedigree model,

using markers leads to a gain in PA in the R2 (correlation) scale of

17.9% (8.6%), computed as 1006[0.263/0.223–1]

100|
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:263=0:223

p
{1

� 	� �
. These gains in PA are smaller than

those reported in plant and animal breeding populations where

LD spans over long regions. For instance, for prediction of

estimated breeding values [27] reported an average (over 20 traits)

gain in predictive correlation of 20%.

According to expression (7) of section 2, imperfect LD between

markers and QTL results in a minimum reduction in prediction

R2 of tnz1~ 1{bnz1ð Þ2. These regression coefficients

bnz1f gwere estimated for each of the 500 individuals in each of

the 30 TST data sets used in the simulations. Results (averaged

across individuals and MC replicates) are given in Table 3. The

average regression coefficient in FHS was much higher than in

GEN, and the regression coefficient was lower in the scenario

where marker and causal loci were drawn from different

distributions. Consequently, according to (7), we anticipate much

higher minimum reduction factor in GEN than in FHS and in

Low-MAF than in RAND, and this is consistent with the results

reported in Tables 2 and 3.

The validity of inequality (7) can be evaluated by comparing the

minimum reduction factor in prediction R2, tnz1~ 1{bnz1ð Þ2,

given in the 5th column of Table 3, with the observed reduction

factors, computed using results presented in Table 2; these are

given in the last column in Table 3. In all scenarios/data sets the

minimum reduction factor under predicts the observed reduction

in R2, as expected from (7). The order of magnitude of tnz1 and of

the observed reduction in prediction R2 are similar, with a

difference between the two of roughly 10 percentage units.

To get further insight, and to check the validity of the linear

relationship postulated by eq. (6), off-diagonal elements of genomic

relationship matrices computed from markers were plotted against

those realized at causal loci for individuals in FHS and GEN. The

patterns observed were relatively consistent across individuals: (a)

overall, the linear pattern postulated by eq. (6) seems to hold well

in GEN and to some extent in FHS (see Figure 2), (b) large realized

genomic relationship coefficients (e.g., genomic relationships

between parent-offspring or, more in general, those greater than

0.1) were very similar at markers and at causal loci; therefore, for

the regression coefficient bnz1ð Þ was very close to one; however, (c)

the same regression was much lower (of the order of 0.1) for

nominally unrelated individuals. This is illustrated in Figure 2 that

discloses the realized relationships (at markers in the y-axis and at

causal loci in the x-axis) between one individual in TST and all the

other individuals in TRN for GEN (right panel) and FHS (left

panel). In the case of the right panel (GEN) since the individual is

nominally unrelated with all the individuals in the TRN dataset,

the regression of the genomic relationships realized at markers on

those realized at casual loci is very low (of the order of 0.1). On the

other hand, the plot in the left (FHM) shows two contrasting

situations: for the small coefficients (i.e., those describing

relationships between nominally unrelated individuals) the regres-

sion is as flat as in the case of GEN; however the regression

approaches one as the coefficients become larger.

The effect of the degree of familial relationships on the

regression between genomic relationships realized at markers

and at causal loci is further illustrated in Table 4. The table

displays estimates of regression coefficients computed for individ-

uals in the TST data that are either related or nominally unrelated

Table 2. Estimates (estimated standard errors) of proportion of variance explained (h2
G) and of prediction R-squared of phenotypes

in validation datasets, R2 (TST).

Scenario
Genetic Information Used to
Compute Relationships h2

G
(1) R2 (TST)(2)

FHS GEN FHS GEN

RAND Causal Loci 0.775 0.773 0.545 0.517

(0.009) (0.010) (0.040) (0.031)

Markers 0.774 0.737 0.263 0.071

(0.018) (0.040) (0.048) (0.023)

Pedigree 0.764 — 0.223 —

(0.020) (0.047)

Low-MAF Causal Loci 0.777 0.775 0.551 0.536

(0.007) (0.008) (0.026) (0.026)

Markers 0.748 0.573 0.240 0.049

(0.018) (0.058) (0.029) (0.019)

Pedigree 0.755 — 0.224 —

(0.023) (0.033)

FHS = Framingham Heart Study, GEN = GENEVA, RAND: in this scenario causal and marker loci were drawn from the same distribution, Low-MAF: in this scenario marker
loci were drawn at random and causal loci were drawn over-sampling loci with low minor allele frequency, TST = Testing data set.
(1): average (over 30 MC replicates) estimated posterior mean of the ratio of genomic variance over the sum of genomic and residual variance;
(2): average prediction R2 (phenotypes) over 30 training (N = 5,300)-testing (N = 500) partitions.
doi:10.1371/journal.pgen.1003608.t002
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to those in the TRN data. As one could anticipate from Figure 2,

the estimated regression coefficients were low (of the order of 0.1)

for pairs of unrelated individuals both in FHS and in GEN. On the

other hand, for related individuals, the estimated regression

coefficients were close to one, suggesting that for these pairs of

individuals, marker derived genomic relationships provide a very

good description of the realized genetic relationships at causal loci.

Results from the Real Data Analysis
Table 5 gives estimated posterior means of h2 for the pedigree-

model (P-BLUP, applied to FHS only), and of h2
G for G-BLUP and

wG-BLUP fitted to the full and combined data sets. The estimate

of h2 for the P-BLUP model in FHS was 0.857; this value is within

the range, slightly higher, of what is generally considered the

heritability of human stature (i.e., 0.8). The estimate of h2
G in FHS

with G-BLUP was slightly smaller (0.837). Both results are in

agreement with previous reports for this trait and data set (e.g.,

Makowsky et al. [8]) as well as with the simulation study presented

in this article, with one small difference: in the simulation study the

estimate of h2
G from marker based G-BLUP was slightly higher

than that of P-BLUP, while in the real data analysis the opposite

happened. One possible explanation is that in the real data

Figure 2. Genomic relationships realized at markers (vertical axis) versus those realized at causal loci (horizontal axis). The plot
displays realized relationships between one individual in TST and all the other individuals in TRN for GEN (right panel) and FHS (left panel). Genomic
relationships computed using markers are given in the vertical axis and those computed using genotypes at causal loci are in the horizontal
coordinate.
doi:10.1371/journal.pgen.1003608.g002

Table 3. Average (over individuals in TST data sets) regression coefficient (bn+1, see eq. 4) between realized genomic relationships
at markers and those realized at causal loci, corresponding minimum reduction factor in prediction R2 (see eq. 7) and observed
reduction factor in prediction R-squared.

Data set
Information used to
compute relationships Simulation Scenario

Regression Coefficient
(bn+1)1 Reduction Factor in R-squared

Minimum2 (tn+1) Observed3

Framingham Pedigree Random 0.295 50% 59%

Low-MAF 0.285 51% 60%

Markers Random 0.371 40% 52%

Low-MAF 0.334 44% 56%

GENEVA Markers Random 0.127 76% 86%

Low-MAF 0.089 83% 91%

Low-MAF: scenario where causal loci were over-sampled among loci with low minor allele frequency. Random: scenario where markers and causal loci were sampled
from the same distribution.
1: For each individual in the testing (TST) data sets we computed the regression of marker or pedigree derived relationships on genomic relationships computed at
causal loci, �GGij~bjGijzjij and Aij~~bbjGijzjij , respectively, where j (j = n+1,n+2,…) indexes individuals in the testing data set and i (i = 1,…,n) indexes individuals in the
training (TRN) data sets. The TRN-TST partitions used were those used in the simulation. Results in the table are averages across individuals in TST data sets.
2: Upper bound calculated using expression (7).
3: Reduction in prediction R2 observed when data was analyzed using markers relative to that obtained when data was analyzed using genotypes at causal loci (see
Table 2).
doi:10.1371/journal.pgen.1003608.t003
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analysis P-BLUP captured some non-additive genetic effects and/

or some components of permanent environment that are not

captured by G-BLUP. Finally, in FHS, the estimated h2
G derived

using wG-BLUP was similar, albeit slightly lower, than with G-

BLUP (0.814). In short, regardless of the method (P-BLUP, G-

BLUP or wG-BLUP) no missing heritability is observed in the

analysis of family data.

On the other hand, the analysis of data from unrelated

individuals (GEN) exhibited a great extent of missing heritability

(roughly 53% for G-BLUP, computed as 1006[120.374/0.80])

both for G-BLUP and even greater for wG-BLUP. These results

are also in agreement with previous reports for the trait (e.g., [7])

and with the trend observed in the simulation study in scenario

Low-MAF. However, the extent of missing heritability was higher

than what was observed in the simulation, perhaps suggesting that

the levels of imperfect LD between genotypes at markers and those

at causal loci affecting human height are even more extreme that

those present in the simulation.

Prediction accuracy. Table 6 shows estimates of prediction

accuracy by model and data set. Estimates of phenotype prediction

R2 within FHS obtained with P-BLUP and G-BLUP were of the

order of 0.28. These results are similar to what was observed for

this data set in the simulation, with two main differences: (a) the

values of R2 obtained in the simulation were 10–20% lower than

those in the real data and (b) in the simulation, G-BLUP

outperformed P-BLUP but in the real data analysis the opposite

happened. This observation is consistent with the conjecture that

P-BLUP may be capturing environmental and non-additive effects

that are not captured by G-BLUP. The PA of G-BLUP in GEN

was very poor (R2 of 3.1% when training with GEN only) and this

is in agreement with the simulation results. The PA of wG-BLUP

was higher than that of G-BLUP in FHS (11% gain in R2,

calculated as 1006[0.311/0.280–1]) and substantially higher in

GEN (R2 = 0.086 of wG-BLUP was almost 3 times higher than

that of G-BLUP). Combining FHS and GEN for training was

beneficial for prediction of GEN but not for prediction of FHS.

With use of a TRN data set that included FHS and GEN and with

wG-BLUP we attained a prediction R2 of 11% with unrelated

individuals. Interestingly, in the case of GEN wG-BLUP leads to

higher proportion of missing heritability and to higher prediction

accuracy, stressing again that there is no direct relationship

between estimates of h2
G and prediction R2.

The above results indicate that the use of differential weights in

the computation of genomic relationships may be beneficial,

especially with data from unrelated individuals. Another alterna-

tive is to use p-values from GWAS to select predictors. Figure 3

gives prediction R2 obtained with FHS and GEN using subsets of

markers selected on the basis of the associated p-values reported by

the GIANT consortium [5]. In FHS, R2 increased monotonically

with marker density in the range 0–100 K SNPs, suggesting no

benefit of pre-selecting markers within that range. In this data set,

R2 with 400 K SNPs was only slightly lower than that obtained

using the top 100 K SNPs; therefore, we conclude that there is

little benefit of performing variable selection when family data are

used. On the other hand, for GEN, benefits of pre-selection of

markers are clearly observed: in this case R2 increases sharply up

to 5 K SNPs, achieving a prediction R2 substantially higher than

the G-BLUP with 400 K SNPs (7.5% relative to 3.1% or 9.9%

relative to 3.6% in the analyses with training using GEN or GEN

combined with FHS, respectively), and decreases thereafter with

higher marker density. However, wG-BLUP gave higher predic-

tion accuracy than the use of 5 K selected SNPs (R2 8.6% and

11% in the case of the analysis using GEN or GEN and FHM for

training) suggesting that perhaps the use of ‘smooth weights’ may

be better than the use of 0/1 weights which are implicitly used

when markers are pre-selected. We note again that the estimates of

genomic heritability did not follow the same patterns than those of

R2, for instance the analysis with the top 5 K SNPs yielded smaller

genomic heritability but higher prediction accuracy than the

analysis with 400 K SNPs.

Discussion

In recent years GWAS have uncovered unprecedented numbers

of variants associated with many important complex human traits

Table 4. Regression coefficient (bnz1, see expression 6) between realized genomic relationships at markers and those realized at
causal loci, by data set, type of relationship and simulation scenario.

Data set Framingham GENEVA

Relationships1 Related Unrelated Unrelated

Scenario RAND Low-MAF RAND Low-MAF RAND Low-MAF

Average 0.992 0.998 0.119 0.078 0.127 0.089

q5% 0.898 0.827 0.085 0.048 0.087 0.051

q95% 1.083 1.174 0.184 0.130 0.329 0.269

1: Relationship between the individual whose phenotype is predicted and those used for model training; coefficients, bnz1 , were estimated for each individual in
training datasets. q5% and q95% represent the 5% and 95% empirical percentiles of the estimated regression coefficients.
doi:10.1371/journal.pgen.1003608.t004

Table 5. Estimates of proportion of variance accounted for by
regression on pedigree or regression on markers by training
data set and analysis method (estimated posterior standard
deviaton).

Data set Pedigree G-BLUP wG-BLUP

Framingham (N = 5,800) 0.857 0.837 0.814

(0.016) (0.016) (0.013)

GENEVA (N = 5,800) — 0.374 0.268

(0.049) (0.026)

Framingham+GENEVA (N = 11,600) — 0.721 0.632

(0.016) (0.015)

wG-BLUP uses all SNPs (p = 400 K), but the contribution of each SNP to the
genomic relationship matrix was weighted using {log10 pkð Þ as weight, where
pk is the SNP associated p-value reported by the GIANT consortium [5].
doi:10.1371/journal.pgen.1003608.t005
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and diseases. However in most cases the joint effects of variants

detected so far explain only a small proportion of the genetic

variance of those traits, a problem referred to as the missing

heritability of complex traits [3,4]. G-BLUP was first used in

human genetic studies partly to address this issue in the study of

Yang and co-authors in 2010 [7]. This study showed that inclusion

of all available marker information in a joint analysis resulted in a

marked increase of the proportion of variance explained,

recovering part of the missing heritability. However, the ability

of a model to predict yet-to-be observed phenotypes can be

markedly different from the proportion of variance accounted for

in a training data set, as measured by estimates of h2
G . Previous

studies [8] suggest that the ability of G-BLUP to predict

unobserved phenotypes of individuals that are distantly related

to the training samples is very limited.

The purpose of this study was to shed light on some of the

factors that affect the predictive performance of G-BLUP and to

identify avenues by which this methodology can be improved. In

particular we focused on studying how imperfect LD between

markers and QTL affects the extent of shrinkage in prediction R2,

relative to the prediction R2 obtained with the same sample and

data structure if genotypes at causal loci were known. Several

authors have studied the factors affecting prediction accuracy of

G-BLUP. For instance, Goddard [28] and Daetwyler et al. [29,30]

derived formulas linking prediction R2 to features of the trait (e.g,

h2) of the sample (e.g., size of the training data set) and of the

genome (e.g., span of LD and how this affects the number of

Table 6. Prediction R-squared evaluated in testing data sets (average over 30 randomly drawn testing data sets, each having 500
individuals) by training and validation data sets and model.

Training data sets Testing data sets Pedigree-BLUP G-BLUP wG-BLUP

N-FHS N-GEN N-FHS N-GEN

5,300 — 500 — 0.284 0.281 0.311

(0.048) (0.051) (0.037)

5,300 5,800 500 — 0.273 0.290

(0.048) (0.036)

— 5,300 — 500 0.031 0.086

(0.013) (0.020)

5,800 5,300 — 500 0.036 0.110

(0.015) (0.027)

N-FHS = Number of records from Framingham, N-GEN = Number of records from GENEVA. G-BLUP uses 400 K SNPs, wG-BLUP uses 400 K SNPs, but the contribution of
each SNP to the genomic relationship matrix was weighted using {log10 pkð Þ as weight, where pk is the SNP associated p-value reported by [5].
doi:10.1371/journal.pgen.1003608.t006

Figure 3. Prediction R2 (vertical axis) versus thousands of markers (selected based on p-values from the GWAS of the GIANT
consortium, [5]) included in the model (horizontal axis) by validation data set (FHM in the left panel, GEN in the right panel) and
training data set (line with dots training with FHM and GEN combined, line with circles, training-testing within each study). Dotted
horizontal lines give the prediction R2 obtained when all markers (p = 400,000) were used.
doi:10.1371/journal.pgen.1003608.g003
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independently segregating segments). The studies of Goddard [28]

and Daetwyler [30] have a much broader scope than ours.

However, because of the broader scope, their results reside on

stronger assumptions and important factors affecting prediction

accuracy are not accounted for. One of these assumptions is that

genomes can be described as a set of independently segregating

segments. This abstraction is conceptually appealing; however the

abstraction is difficult to validate and the quantification of the

number of independently segregating segments is controversial

(various methods leading to very different values of this parameter

exist, e.g., [24,28]). In the approach presented in this study this

assumption is not required.

One limitation of Goddard’s approach is that it does not account

for the effects of recent familial relationships (the derivations are solely

based on population LD). Our approach captures, via the regression

of marker-derived genomic relationships on those realized at causal

loci, both effects of LD between markers and QTL as well as

cosegregation between markers and QTL that occurs because of

recent family relationships. On the other hand, Daetwyler’s approach

[30] assumes that the model accounts for all the genetic variance. We

have shown that this assumption, which is not present in Goddard

[28], is clearly violated in analyses involving unrelated individuals and

is not part of the derivations presented in our work.

In Goddard’s approach [28] the factors affecting prediction

accuracy are decomposed into two components: (a) one related to

the accuracy of estimates of effects and (b) one that quantifies the

effects of imperfect LD between markers and QTL on prediction

accuracy. In our approach, all the factors affecting the accuracy of

estimates of the effects of the alleles at causal loci are captured by

the R2 under perfect LD; and we make almost no statements about

this quantity, other than the ones that follow from the properties of

the multivariate normal distribution. Instead, we focus on

quantifying the effects of LD on R2 that occurs through

misspecification of TRN-TST relationships. Importantly, our

simulation results show that the proposed upper bound formulas

account for 80–90% of the observed shrinkage in R2.

In summary, our approach is complementary to that of Goddard

[28] and Daetwyler [30]; we focused on a much narrower problem

and by virtue of that were able to arrive at closed-form formulas that

account for a sizable proportion of the shrinkage in R2 due to

imperfect LD without making strong assumptions.

Impacts of Genomic Relationships on Inferences and on
Predictions

The ability of G-BLUP to separate true signal (g) from noise (e)

depends entirely on how well marker derived genomic relationships

(�GGij ) describe genetic relationships realized at unobserved causal loci

(Gij ). Genomic relationships at subsets of loci in the genome (e.g.,

markers, causal loci) can be viewed as the result of a random process

with expected value given by the pedigree relationships (Aij ) and

variation due to Mendelian sampling. Because of the random nature

of this process, genomic relationships vary across regions of the

genome and therefore, the patterns of genomic similarity at markers

and at causal loci may be different.

If the variance of the realized genomic relationships (across

regions of the genome) is small relative to their expected value, the

patterns of realized genomic relationships at markers will provide a

good description of the patterns of realized genetic relationships at

unobserved causal loci. Hill and Weir (2011) [20] have charac-

terized various moments of the distribution of genomic relation-

ships and concluded that the coefficient of variability decreases as

the expected value, Aij , increases. Therefore, for pairs of unrelated

individuals, a large coefficient of variation of genomic relationships

across regions of the genome is expected. The analyses reported

here support this; indeed, the regression of realized genomic

relationships computed at different subsets of markers is close to

one (0.98, see Table 4) for closely related individuals and very

small (of the order of 0.10, see Table 4) for pairs of nominally

unrelated individuals. Therefore, two contrasting situations are

encountered: some of the elements of the marker derived genomic

relationship matrix represent very well the true covariance

function (i.e., the patterns of realized genetic relationships at

observed causal loci) but others (all the off-diagonal elements

corresponding to distant relatives and to pairs of unrelated

individuals) show patterns of realized genomic relationships that

do not describe well the patterns of realized genetic relationships at

causal loci. This has direct and different impacts on estimation of

variance parameters and on PA, because variance parameters and

PA are driven, in part, by different forces. To illustrate with an

extreme scenario, suppose that G, the matrix of realized genomic

relationships at causal loci, is diagonal (i.e., all off-diagonal terms

of G equal zero). In this case, it would still be possible to estimate

variance parameters and genomic heritability (simply based on the

fact that the diagonal elements of G are not constant). Yet, the

prediction accuracy for phenotypes in the TST data set will be null

because all the off-diagonals of G are equal to zero.

In this study we have chosen to center and to standardize markers

using estimates of allele frequency derived from the sample. As stated,

centering does not have an effect on predictions or on estimates of

variance parameters [25], provided that the model contains an

intercept. On the other hand, standardization can have an effect.

When markers are standardized to unit variance, the relative

contributions of markers to the genomic relationship matrix are the

same. This is good practice if it enhances the ability of marker derived

genomic relationships to describe the patterns of genetic similarity

realized at causal loci. If the distribution of allele frequency at causal

loci has a higher representation in the low minor allele frequency

spectrum than the one observed at the markers, or if the size of effects

is inversely related to minor allele frequency, then standardization

may reduce the extent of missing heritability and may improve

prediction accuracy.

Estimation of Proportion of Missing Heritability Using G-
BLUP Methods

The results of the simulation study indicate that when markers

and QTL are in perfect LD, no missing heritability is observed, as

expected. This holds regardless of whether the training sample

comprises data from related or unrelated individuals. When

markers and QTL are in imperfect LD two contrasting situations

were encountered: (a) with family data no missing heritability was

observed, and (b) with unrelated individuals, we either observed a

small extent of missing heritability (when markers and QTL were

sampled from the same distribution of loci, the RAND scenario) or

a greater extent of missing heritability (this happened when the

distribution of allele frequency at markers and causal loci was

different, the Low-MAF scenario). The estimates of variance

components and of genomic heritability for human height

reported here are consistent with previous results for this trait.

In other words, no missing heritability was observed in the analysis

of family data [8] and a great extent of missing heritability (roughly

50%) was observed with unrelated individuals [7].

Prediction Accuracy with Related and Unrelated
Individuals Using G-BLUP

Predictions based on G-BLUP are weighted averages of

phenotypes in the TRN data set (see, eq. 4). The weights are
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heavily determined by the realized TST-TRN genomic relation-

ships (i.e., the off-diagonal entries of G). Therefore the PA that can

be derived from G-BLUP is highly dependent on the magnitude of

these coefficients and on the extent to which marker derived

genomic relationships represent the underlying patterns of genetic

similarity realized at causal loci. Using standard properties of the

multivariate normal distribution one can derive closed-form

expressions for prediction error variances and for prediction R2

(see Supplementary Methods). These expressions are valid if the
model holds. This requires, among other things, that the

markers used to compute genomic relationships are in perfect LD

with genotypes at causal loci. Under such conditions, prediction

R2 has an upper bound given by an index that is the product of the

heritability of the trait times a weighted sum of squares of the

realized genomic relationships between the individuals used for

TRN and those in the TST data set (see eq. 5). The expected value

of realized genomic relationships is given by the pedigree derived

additive relationships. For distantly related individuals the

expected value of genomic relationships is small and, consequent-

ly, data from unrelated individuals are expected to contribute little

to prediction accuracy. Nevertheless, if the model holds, PA is

anticipated to increase monotonically with the size of the TRN

data set (each additional phenotype in the TRN data set brings

additional information) and, asymptotically prediction R2 con-

verges to the heritability of the trait. However, this does not occur

when markers and QTL are in imperfect LD. Indeed,

under imperfect LD, prediction R2 can have an upper bound that

is much lower than the heritability of the trait. Assuming a linear

relationship between the realized genomic relationships at markers

and at causal loci, an upper bound to prediction R2 under

imperfect LD between markers and QTL (�RR2
nz1,y) was derived (see

expression 7). This upper bound is given by the product of two

terms : (a) the R2 that can be obtained (using the same TRN

sample) if markers and QTL were in perfect LD R2
nz1,y

� �
and (b)

a coefficient 2bnz1{b2
nz1

� �
that depends on the coefficient of

linear regression between TRN-TST realized genomic relation-

ships at markers and those at causal loci bnz1ð Þ. This result was

derived assuming that realized genomic relationships at causal loci

in the TRN data set are known, and therefore,

R2
nz1,y 2bnz1{b2

nz1

� �
represents an upper bound on prediction

�RR2
nz1,y under imperfect LD.

The regression coefficient bnz1 drives the size of the reduction factor

on prediction R2. When the TRN and TST data set are related due to

close familial relationships, the regression of genomic relationships at

markers on those at causal loci bnz1ð Þ is moderately high (e.g., of the

order of 0.8–0.9 for pairs of related individuals, or of the order of 0.35

when we consider a mixture of both related and unrelated individuals

as in the FHS, see Table 3). Using a value of 0.35 (average bM for the

FHS) the minimum expected reduction factor in prediction R2 due to

imperfect LD, 100| 1{bnz1ð Þ2, is of the order of 40–50%. On the

other hand, when TRN and TST data sets are composed of nominally

unrelated individuals, the regression is much smaller (of the order of

0.1). A large reduction factor in prediction R2 is therefore predicted (of

the order of 80% computed as 1006[1–260.1+0.12]). Importantly, the

minimum shrinkage in R2 predicted by our formula matched very

closely the observed shrinkage due to imperfect LD estimated in the

simulation (roughly, the minimum shrinkage factor was 80–90% of the

observed shrinkage in R2, see Table 3).

The maximum R2 that can be attained under perfect LD

(assuming infinitely large samples and that the model holds) is h2,

the heritability of the trait. Imperfect LD between markers and

QTL induces shrinkage in R2; in case of data sets of nominally

unrelated individuals similar to GEN a minimum shrinkage in R2

of 80% is anticipated; therefore, the expected asymptotic upper

bound for R2 is 20% of h2, or 16% in the case of height. This

estimate applies to data sets of similar characteristics that the GEN

data set. Prediction problems involving individuals that are less

(more) distantly related than the average individual in GEN are

expected to have a lower (higher) upper bound on R2. Similarly,

our estimates reflect the specifics of the SNP chip used and how

genomic relationships were computed.

In finite samples, as pointed out in previous studies [28–31],

estimation errors in marker effects will reduce the perfect LD R2

to values smaller than h2. Some proposed formulas for the

expected value of R2 under perfect LD take the forms

E R2
� 	

&
h2

1zm= h2Nð Þ [31], or E R2
� 	

&
h2

h2zm=N
[30], where

m is the number of independent causal loci and N is the number of

records in the training data set. These formulas could be used to

obtain a reference for the expected R2 under perfect LD.

However, the derivation of these formulas assumes that genotypes

at causal loci are fully orthogonal. We applied these formulas using

m = 5,000, N~5,500 and h2~0:8, the setting of our simulation if

we assume that causal loci are in linkage equilibrium, and

obtained R2 values of 0.47 and 0.37 using the formulas suggested

in [30] and [31], respectively. These values are lower than those

obtained in our simulation for GEN, where R2 under perfect LD

ranged between 0.52–0.54.

GENEVA and the FHS contain samples drawn from relatively

homogeneous populations. On the other hand, when allele

frequencies vary across subpopulations, so does the relative

contribution of each locus affecting the trait to genetic variance

in each of the subpopulations. This raises the question of what

estimates of allele frequencies should one use when analyzing data

involving different subpopulations. In the present study this was

not an issue because the correlation of estimates of allele

frequencies derived from GEN and FHM was virtually 1 (0.99).

However, when this is not the case, if genomic relationships are

scaled with estimates of allele frequencies derived from the entire

sample, then marker derived genomic relationships will provide a

poorer description of the realized genetic relationships in each of

the sub-populations. This may result in a lower estimate of bnz1

and a much higher R2-shrinkage factor.

Both FHS and GEN, especially the former, show some degree of

population stratification, as judged by the inspection of the loadings

of the 1st two eigenvectors derived from G. However the cumulative

proportion of variance explained by the first two eigenvectors was

relatively small. In the presence of stratification, there may be

reasons to remove between cluster variability, and to obtain within

cluster estimates of variance components and of prediction accuracy.

Following the approach used by Janss and coauthors [32] one could

derive genomic relationships that do not include the contribution to

genetic similarity of the 1st k principal components of G. The use of

such genomic relationships would yield a within cluster estimate of

bnz1. These estimates can be plugged into the equations presented

here to derive an upper bound on prediction R2 that does not

account for genetic similarity attributable to substructure.

Implications for Data Analysis
The effectiveness of G-BLUP depends critically on the extent to

which marker derived genomic relationships reflect the patterns of

realized genetic relationships at causal loci. The size of the coefficient

of variation of realized genomic relationships across regions of the

genome depends on the number of independently segregating

segments among the pair of individuals whose realized genomic
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relationship we wish to assess. For pairs of unrelated individuals this

is largely controlled by the span of LD in the population. For pairs of

related individuals this is largely controlled by within family

disequilibrium. In animal and plant breeding populations G-BLUP

has exhibited very good predictive performance because the two

conditions needed for G-BLUP to perform well are generally met:

LD span over long regions and data include highly related

individuals. Under these conditions variable selection is difficult to

perform and may not be needed because the patterns of genetic

similarity realized at markers and at causal loci are similar.

However, the analysis of human data from unrelated individuals

represents the exact opposite situation. Here LD spans over shorter

regions [33] and within family disequilibrium cannot be exploited.

Under these conditions the use of markers that are in imperfect LD

with QTL results in very low prediction accuracy of G-BLUP.

Variable selection constitutes a natural way of increasing the extent

of LD between markers and QTL. However, for complex traits,

stringent variable selection can induce poor coverage of regions with

small, but not negligible, contribution to variance. Therefore, we are

faced with the need for finding an appropriate balance: as variable

selection becomes more stringent, LD between markers and QTL

increases, but the some proportion of the variance contributed by

QTL of small effects may be lost. The appropriate balance will likely

depend on the genetic architecture of the trait but also, importantly,

on features of the sample. With family data, the benefits of variable

selection are relatively small. However with unrelated individuals,

variable selection, including large numbers of markers (e.g., 5 K top

SNPs), or perhaps better some form of smooth differential weighting

of the contribution of individual markers to genomic relationships,

seems to be an effective way of improving prediction accuracy. This

could be done either combining information from a prior study, as

implemented in this article, or using methods that perform variable

selection and differential reduction of estimates of effects simulta-

neously. The literature on WGR offers several penalized and

Bayesian methods that can achieve this goal. The application of

these methods to plant and animal breeding data has not shown

marked improved gains in PA relative to G-BLUP. However, for the

reasons discussed in this paper, we anticipate that the situation may

be different when these methods are applied to the analysis and

prediction of complex traits using data from unrelated individuals.

In conclusion, we have provided an analytical framework to

quantify the maximum prediction R2 that can be attained using G-

BLUP and have compared the properties of G-BLUP in samples

of related and unrelated individuals. The analytical expressions

derived are consistent with our simulation and empirical results

and suggest that the analysis of nominally unrelated individuals

presents a number of challenges that standard G-BLUP does not

address. These can be partly met by incorporating prior

knowledge of the relative importance of SNPs for a given trait.

Further research will be required to optimize the modeling of such

prior knowledge towards improved trait prediction.
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