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Histone lysine methylation
patterns in prostate cancer
microenvironment infiltration:
Integrated bioinformatic analysis
and histological validation
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3Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University &
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Background: Epigenetic reprogramming through dysregulated histone lysine

methylation (HLM) plays a crucial role in prostate cancer (PCa) progression.

This study aimed to comprehensively evaluate HLM modification patterns in

PCa microenvironment infiltration.

Materials and methods: Ninety-one HLM regulators in The Cancer Genome

Atlas (TCGA) dataset were analyzed using bioinformatics. Differentially

expressed genes (DEGs) and survival analyses were performed using TCGA-

PRAD clinicopathologic and follow-up information. Consensus clustering

analysis divided patients into subgroups. Gene ontology (GO) function and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses were performed on the DEGs. Tumor mutation burden (TMB) and

tumor microenvironment (TME) cell infiltration were evaluated in different HLM

clusters. Quantitative real-time PCR (qPCR) analysis assessed HLM regulators in

clinical PCa tissues.

Results: The tumor vs. normal (TN), Gleason score (GS) > 7 vs. GS < 7,

pathological T stage (pT) = 2 vs. pT = 3, and TP53 mutation vs. wild-type

comparisons using TCGA-PRAD dataset revealed 3 intersecting HLM regulators

(EZH2, NSD2, and KMT5C) that were consistently upregulated in advanced PCa

(GS > 7, pT3, HR > 1, and TP53 mutation) (P < 0.05) and verified in clinical PCa

tissues. Consensus clustering analysis revealed three distinct HLMmodification

patterns (HLMclusters). However, no significant differences in recurrence-free

survival (RFS) rates were found among the groups (P > 0.05). We screened 189

HLM phenotype-related genes that overlapped in the pairwise comparisons of

HLMclusters and P < 0.01 in the Cox regression analysis. Three distinct

subgroups (geneClusters) were revealed based on the 189 genes, in which

cluster A involved the most advanced PCa (PSA > 10, T3-4, GS8-10, and

biochemical recurrence) and the poorest RFS. The HLM score (HLMscore)
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was calculated by principal component analysis (PCA) of HLM phenotype-

related genes that have positive predictive value for RFS (P < 0.001) and

immune therapy responses (in the CTLA4-positive and -negative responses

accompanied by a PD1-negative response).

Conclusion: We comprehensively evaluated HLM regulators in the PCa

microenvironment using TCGA-PRAD, revealing a nonnegligible role of HLM

patterns in PCa complexity and heterogeneity. Elucidating the effects of HLM

regulators in PCa may enhance prognostics, aggressiveness assessments, and

immunotherapy strategies.
KEYWORDS

prostate cancer, histone lysine methylations, The Cancer Genome Atlas (TCGA),
recurrence-free survival, HLMcluster, geneCluster, HLMscore
Introduction

Prostate cancer (PCa) is a common malignancy among men

over the age of 50 (1). In 2022, there were 268,490 (27%; the

highest incidence among men with all cancers) estimated new

PCa cases and 34,500 (11%; the second most common cause of

all cancer-related deaths among men) estimated PCa-related in

the United States (1). PCa progresses to castration-resistant PCa

(CRPC) after androgen-deprivation therapy (ADT); CRPC is

more aggressive and can be resistant to subsequent

chemotherapy, ultimately leading to cancer-related death.

Therefore, identifying the molecular mechanisms associated

with PCa progression is crucial for diagnosis, risk prediction,

and treatment.

Nucleosome core particles can posttranslationally modify

histones to maintain genomic integrity (2–4). Well-known

histone modifications include methylation, acetylation,

phosphorylation, and ubiquitylation, which alter the binding
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force of DNA to histones or recruit specific histone-binding

proteins to epigenetically regulate genomic activity (4–6).

Among these modifications, histone methylation is associated

with heterochromatin formation and the regulation of target

gene promoter activity (7, 8). Histone modifications occur on

mainly the positively charged lysine (H3(K4, 9, 27, 36, and 79)

and H4K20) and arginine (H3 (R2, 8, 17, and 26) and H4R3)

residues in the N-terminal tails of wrapped DNA (9, 10). The

histone lysine methylation (HLM) sites are highly conserved and

precisely balanced by histone methyltransferases (HMT,

“writers”), demethylases (HDM, “erasers), and methyl-lysine-

recognizing proteins (MLRP, “readers”) (11–13).

Epigenetic reprogramming through inhibition of the

enhancer of zeste homolog 2 (EZH2) has been found to

enhance the effectiveness of enzalutamide (ENZ) treatment in

CRPC patients (14, 15). EZH2 is a histone H3 lysine 27

(H3K27Me3) methyltransferase that silences the transcription

of target genes. EZH2 has been found to be highly expressed in

CRPC and neuroendocrine PCa (NEPC), and inhibition of

EZH2 induces androgen receptor (AR) signaling reactivation

in CRPC and further sensitivity to ADT (16–19). Studies of >

100 patients have indicated that EZH2 is a potential valuable,

powerful prognostic parameter for PCa progression before or

after treatment (20, 21). Authoritative studies have also

elucidated that other HLM regulators, such as NSD2, SMYD3,

LSD1, and DOT1L, play crucial roles in PCa progression by

coordinating with transcription factors (such as AR and

FOXA1) and performing the functions of histone methylation

(22–27). Our previous study revealed that MLL5a (a smaller

isoform of KMT2E) can prevent PCa progression by promoting

AR/NDRG1 signaling via histone methylation (28). This finding

implies a critical role for HLM regulators in PCa progression.

Nevertheless, few studies have focused on HLM

modification patterns in different PCa risk stages and
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prognoses. Here, we performed a comprehensive transcriptome

and genomic study of acknowledged HLM regulators (51

writers, 21 erasers, and 19 readers) in PCa by conducting

bioinformatic analysis and using clinical PCa samples.
Materials and methods

Data acquisition

The data category of The Cancer Genome Atlas (TCGA) in

transcriptome profiling, simple nucleotide variation, copy

number variation (CNV), and clinical phenotype were

downloaded from the Genomic Data Commons (GDC) Data

Portal (https://portal.gdc.cancer.gov/) and University of

California Santa Cruz Xena (UCSC) browser (https://xena.

ucsc.edu/) as described in our previous study (29).
Differentially expressed gene
(DEG) analysis

Transcripts per kilobase of exome per million (TPM)

mapped reads were transformed from the transcriptome

profiling data of HTSeq-FPKM. DEGs in variant phenotypes

of PCa and normal prostate tissues were analyzed through the

Wilcoxon or Kruskal−Wallis tests using the R packages “limma”,

“reshape2”, and “ggpurb”.
Enrichment analysis

The DEG-related functional and signaling pathways were

evaluated through gene ontology (GO) function and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses utilizing the R packages “clusterProfiler”

and “enrichplot”.
Survival and correlation analyses

Recurrence-free survival (RFS) analyses were performed based

on the clinical phenotype data of “days_to_first_biochemical_

recurrence” and “days_to_last_follow_up.diagnoses”, which we

previously described (29). The survival curves were generated via

the Kaplan–Meier method, and statistical significance was

evaluated through log-rank tests. Univariate Cox regression

analysis was conducted based on the DEGs of HLM clusters

(HLMclusters), and P < 0.01 was used for subsequent gene

consensus clustering analysis. The survival analyses were

implemented utilizing the R packages “survival” and

“survminer”. Pearson or Spearman correlation analyses were

performed, and a prognostic network map was drawn utilizing
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the R packages “igraph”, “psych”, “reshape2”, “RColorBrewer”,

“corrplot”, and “ggpubr”.
Consensus clustering analysis and
principal component analysis (PCA)

To evaluate the characteristics of classifying patterns of

HLM modification phenotypes in the clinicopathological

features and prognosis of PCa patients, TCGA-PRAD patients

were divided into subgroups by conducting consensus clustering

analysis. This method identified distinct HLM modification

patterns based on the expression of HLM regulators or HLM

phenotype-related genes. Consensus clustering analysis was

applied using the R package “ConsensusClusterPlus”. The

clustering results were graphically displayed as a heatmap of

the consensus matrices, consensus cumulative distribution

function (CDF) plots, and delta area plots. The number of

clusters and their stability were determined as previously

described (29–31), including the criteria of relatively high

consistency within the cluster, low variation coefficient, and no

appreciable increase in the area under the CDF curve. PCA was

conducted to confirm the fitness and correctness of the HLM

modification patterns using the pcromp function of R software.
HLM signature generation

A set of scoring system (HLMscore) was constructed in PCa

to quantify HLM modification patterns as previously described

(31). The intersected HLM phenotype-related genes in the

pairwise comparisons of three HLMclusters were extracted,

and the significant prognostic genes were further screened via

Cox regression models (P < 0.01). Then, PCA was conducted

using screened genes to construct an HLM-relevant gene

signature. Both principal component 1 (PC1) and component

2 (PC2) were regarded as signature scores. The HLMscore was

calculated as follows:

HLMscore =o(PC1i + PC2i)

where i = the expression of HLM phenotype-related genes.
Gene set variation analysis (GSVA)

GSVA was performed to assess the potential dysfunctional

pathways in different clusters. GSVA comprehensively scored the

DEGs and transformed them into KEGG pathways (32). The

“KEGG gene sets as Gene Symbols” were downloaded from the

website of Gene Set Enrichment Analysis (GSEA) (http://www.

gsea-msigdb.org/gsea/), and the GSVA algorithm was

implemented through the R packages “GSEABase” and “GSVA”

to score each gene set.
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Tumor mutational burden (TMB)
estimation

TMB contributes to immune recognition of cancer and was

calculated by the total number of somatic mutations per million

bases (33). TCGA-PRAD patients were classified into low-TMB

and high-TMB groups based on the TMB value of optimum

threshold segmentation (lowest log-rank P value in the Kaplan‒

Meier analysis) in the RFS analysis. The correlation between the

HLM score (shown as HLMscore below) and TMB value was

then analyzed.
Tumor microenvironment (TME) cell
infiltration

Sigle-sample gene set enrichment analysis (ssGSEA) was

performed to quantify TME cell infiltration by calculating

enrichment scores (32). The gene set related to immune cell

type in each TME cell infiltration was obtained as previously

reported (34, 35). Then, we quantitatively analyzed the immune

cell type infiltration in different HLMclusters.
Immunophenoscore (IPS) analysis

As reported previously, IPS determines immunogenicity and

is calculated according to the expression levels of the genes in

representative cell types (36). The IPSs of TCGA-PRAD were

obtained from The Cancer Immunome Atlas (TCIA) website

(https://tcia.at/home) and then statistically analyzed in different

HLMscore groups.
Clinical PCa samples

Forty-two PCa tissues (14 with Gleason score (GS) < 7, 14

with GS = 7, and 14 with GS > 7) and 14 adjacent normal tissues

were collected from PCa patients in accordance with Ethics

Committee guidelines. All patients underwent prostatectomy

between 2016 and 2021 at Beijing Tongren Hospital and Beijing

Chaoyang Hospital. Table 1 summarizes the clinicopathological

characteristics of the patients.
Total RNA extraction and quantitative
real-time PCR (qPCR) analysis

Total RNA extraction and complementary DNA (cDNA)

reverse transcription were performed using TRIzol™ reagent

(Invitrogen, Carlsbad, CA, USA) and One-Step gDNA Removal

and cDNA Synthesis SuperMix (TransGen Biotech, Beijing,

China) according to the manufacturer’s instructions. qPCR
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was performed with Top Green qPCR SuperMix (TransGen

Biotech) on an SDS 7500 FAST Real-Time PCR system (Applied

Biosystems, Foster City, CA, USA). The endogenous reference

genes 18S ribosomal RNA and GAPDH were used as controls.

Supplementary Table 1 (Table S1) shows the relevant

primer sequences.
Statistical analysis

R software (4.0.3), SPSS software version 23 (IBM, Armonk,

New York, USA), Microsoft Excel 2019 software (Microsoft

Corp., Redmond, WA, USA), and GraphPad Prism 7.0

(GraphPad Software, La Jolla, CA, USA) were used to conduct

the statistical analyses. Continuous data were analyzed using

Wilcoxon or Kruskal–Wallis tests. Pearson and Spearman

correlation analyses were used to determine the association

between two variables. Kaplan–Meier survival analyses with a

log-rank test and univariate Cox regression models with a

hazard ratio (HR) were utilized for the survival analyses.
Results

Workflow of this study

This study was conducted using CNV and TPM mapped

reads in the TCGA-PRAD dataset. The flow chart of this study is

shown in Figure 1. The DEGs of HLM regulators in TCGA-

PRAD data stratified by CNV loss or gain (CNV), tumor vs.

normal (TN), GS > 7 vs. GS < 7 (GS), pT3 vs. pT2 (pT), TP53

mutation vs. wild type (TP53), and RFS high vs. low expression

were analyzed, and the intersecting genes were validated using

clinical PCa tissues. Then, the TCGA-PRAD patients were

divided into three groups (HLMcluster) based on 91 HLM

regulators via consensus clustering analysis. The HLM

phenotype-related genes overlapped in the pairwise

comparisons of HLMclusters were screened via univariate Cox

regression analysis. TCGA-PRAD patients were further divided

into three groups (geneCluster) according to the expression of

screened genes, and the HLMscore was calculated through PCA

of the HLM phenotype-related genes. The clusters (HLMclusters

and geneClusters), screened genes, and HLMscores were

evaluated using RFS, TMB, and TME analyses.
Characteristics of HLM regulators in PCa

The average estimated CNVs were previously considered a

method to determine PCa malignancy (37). We analyzed the

CNV alteration frequency and DEGs in HLM regulators in

TCGA-PRAD and normal tissues. Regarding CNV events,

approximately 7.87% (7 of 89) of HLM regulators had
frontiersin.org
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widespread CNV deletion levels (> 10%), among which SETDB2

(25.50%), PRDM13 (21.91%), and PRDM1 (21.31%) had the

three highest degrees of copy number loss. All HLM regulators

had a low proportion of CNV amplification (< 5%), with

MECOM (4.58%) and SETDB1 (4.58%) having the highest

CNV gain (Figure 2A). The chromosomal location and CNV

alterations in HLM regulators are shown in Figure S1A. DEGs in

HLM regulators in PCa and normal prostate tissues were

statistically analyzed using the TPM dataset of TCGA-PRAD.

Twenty-six HLM regulator genes with significantly higher

expression levels (including EZH2, PRDM12, and KMT5C)

and 25 with lower expression levels (including MECOM,

PRDM11, CBX7, and so on) were found in PCa tissues

compared with normal prostate tissues (P < 0.05) (Figure 2B

and Table S2). Unlike the findings in a previous study of gastric

cancer (31), no significant correlation between CNV alteration

and DEG expression was found in TCGA-PRAD. In the

mutation frequency analysis, we found that only 58 gene
Frontiers in Oncology 05
symbols of HLM regulators transformed from the “ensemble

ID” were matched with the gene symbol in the TCGA-PRAD

data category of “simple nucleotide variation” and data type of

“Masked Somatic Mutation”. Among the 58 identified HLM

regulators, mutations were found in 112 of 484 samples

(23.14%), among which KMT2D (24 of 484), KMT2C (20 of

484), and KDM6A (11 of 484) were the most frequently mutated

genes in TCGA-PRAD (Figure S1B). Nevertheless, most of the

genes exhibited low mutation rates (≤ 1%), implying highly

conserved and stable expression levels of HLM regulators

in PCa.
The expression levels of HLM regulators
related to various clinicopathological
characteristics and the prognosis
of PCa patients

PCa patients with GS ≥ 7 were previously reported to have

more aggressive disease and a worse prognosis than those with

GS < 7 (38, 39). Hence, we divided TCGA-PRAD into three

groups: 45 with GS < 7; 246 with GS = 7; and 204 with GS > 7.

Next, we estimated the expression levels of HLM regulators

using TCGA-PARD TPM data. Compared with those in the GS

< 7 group, the expression levels of EZH2, ORC1, UHRF1, NSD2,

KMT5C, PRDM12, EED, DNMT3A, KDM2A, and KDM2B

were significantly elevated in the GS > 7 group (P < 0.001)

(Figure 3A and Table S3). The DEGs in HLM regulators in

different pathological T (pT) stages (187 with T2; 291 with T3;

and 10 with T4) were also analyzed, and UHRF1, EZH2, ORC1,

NSD2, EED, DNMT3A, KMT5C, and PRDM12 were

significantly elevated in T3 stage PCa compared with T2 stage

PCa (P < 0.001) (Figure 3B and Table S4).

In the survival analysis of Kaplan–Meier curves and

univariate Cox regression analysis, TCGA-PRAD patients were

divided into two groups according to the optimum threshold

segmentation of the expression levels of HLM regulators, which

had the lowest log-rank P value in the Kaplan−Meier analysis.

High expression levels of KMT5C, L3MBTL1, PRDM16, NSD2,

KMT2B, SUV39H1, SETD4, DOT1L, EZH2, and PRDM15 were

associated with poor RFS rates (HR > 1 and P value of Cox

regression analysis < 0.001) (Figure 3C). PCa with TP53

mutation was previously reported to have poor radiographic

progression-free survival (rPFS) rates and a shorter time to

CRPC progression (40). We divided TCGA-PRAD into two

groups according to TP53 mutation status (44 with TP53

mutation and 429 with TP53 wild-type) and found that the

expression levels of EZH2, PHF23, UHRF1, DNMT3A, and

SMYD2 were differentially expressed between the TP53

mutation and wild-type groups (P < 0.001) (Figure 3D and

Table S5). The comprehensive landscape of HLM regulator

interactions and prognosis based on RFS outcomes is depicted

in the network (Figure 3E).
TABLE 1 Clinicopathological characteristics of clinical PCa patients.

Clinicopathological parameters Total (n = 42) (%)

Age

Median (IQR) 64.5 (59.0-70.5)

Range (min, max) 52-78

< 65 21 (50%)

≥ 65 21 (50%)

Total PSA (t-PSA) (ng/ml)

Median (IQR) 13.34
(6.945-26.605)

Range (min, max) 2.17-92.21

< 4 ng/ml 2 (4.8%)

4-10 ng/ml 15 (35.7%)

10-20 ng/ml 10 (23.8%)

> 20 ng/ml 15 (35.7%)

Gleason Score (GS)

< 7 14 (33.3%)

7 14 (33.3%)

> 7 14 (33.3%)

Clinical T-stage

T2a 10 (23.8%)

T2b 15 (35.7%)

T2c 6 (14.3%)

T3a or T3b 11 (26.2%)

Lymph node metastasis

N0 34 (81%)

N1 8 (19%)

Distant metastasis

M0 or Mx 40 (95.2%)

M1 2 (4.8%)

TNM stage

I-II 28 (66.7%)

III-IV 14 (33.3%)
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We then analyzed the intersecting differentially expressed

HLM regulators by comparing TN (tumor versus (vs.) normal),

GS (GS > 7 vs. GS < 7), pT (T3 vs. T2), RFS (high vs. low in the

univariate Cox regression analysis), and TP53 (mutation vs. wild

type) (P < 0.05). Six intersecting DEGs of EZH2, NSD2, KMT5C,

UHRF1, ORC1, and DNMT3A were found in the 5

comparisons, and all were consistently highly expressed in

tumor and other advanced-stage parameters (in the GS > 7,

pT3, HR > 1, and TP53 mutation groups) (Figure 4A). Forty-two

clinical PCa tissues were used to validate these oncogenes,

including 14 adjacent normal prostate tissues, 14 with GS < 7,

14 with GS = 7, and 14 with GS > 7 (Table 1). The expression

levels of 6 genes were assessed via qPCR analysis. Compared

with adjacent normal tissues, the relative expression levels of

EZH2, NSD2, KMT5C, and UHRF1 were higher in PCa tissues

(P < 0.05), but no significant differences were found in the

expression levels of ORC1 and DNMT3A (P > 0.05) (Figure 4B).

The expression levels of EZH2, NSD2, and KMT5C were
Frontiers in Oncology 06
significantly higher in the GS > 7 group than in the GS < 7

group (P < 0.05) (Figure 4C). These data confirmed the roles of

EZH2, NSD2, and KMT5C oncogenes in the occurrence and

progression of PCa.
Consensus clustering of the PCa cohort
via HLM regulators

We divided TCGA-PRAD patients into subgroups

(HLMcluster) through consensus clustering analysis using

HLM regulators to explore the influence of HLM modification

patterns on PCa prognosis and immune cell infiltration. The

cluster number, k = 3, was determined to be the optimal category

number considering the appreciable delta area under the CDF

curves (Figure 5A). The transcriptome profiles of HLM

regulators between different clusters (named “clusters 1–3 or

A-C”) were significantly distinguished by PCA (Figure 5B). The
FIGURE 1

Flow chart of this study. CNV, CNV loss or gain; TN, tumor vs. normal; GS, GS >7 vs. GS< 7; pT, pT3 vs. pT2 (pT); TP53, TP53 mutation vs. wild
type; RFS, RFS high vs. low expression of genes.
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B

A

FIGURE 2

The CNV variation frequency and the expression levels of HLM regulators in PCa. (A) The CNV variation frequency of HLM regulators in TCGA-PRAD.
Red dot, amplification frequency; Blue dot, deletion frequency. (B) The expression levels of the 91 HLM regulators in PCa and normal prostate tissues
are shown as boxplot. The values of median ± interquartile ranges are shown in the graph. ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
B

C

D

E

A

FIGURE 3

DEGs of HLM regulators in relation to different PCa clinicopathological characteristics and prognoses. (A–D) Distribution of the 3–4 lowest P
values of HLM regulators in TCGA-PRAD data stratified by GS (GS > 7 vs. GS < 7) (A), pT (T3 vs. T2) (B), RFS (lowest log-rank P value in the
Kaplan‒Meier analysis) (C), and TP53 (mutation vs. wild type) (D). The boxplots show the median ± interquartile range values, and P values are
presented above each pair of comparisons. (E) Prognostic network of interactions among HLM regulators in PCa. Different circle sizes represent
the P values of each HLM regulator with respect to the prognosis. Right hemisphere of purple, risk factors for RFS; green, favorable factors for
RFS. Left hemisphere of blue, erasers; orange, readers; red, writers. Lines of pink, positive correlations of HLM regulators; blue, negative
correlations.
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levels of HLM regulators were integrally highly expressed in

cluster A and weakly expressed in cluster B (Figure 5C). Among

the three clusters, the number of biochemical recurrences,

pathological N1 (pN1), and PSA grade 3 (grade 1: > 0 and <

1, grade 2: 1–10, grade 3: > 10) stages were visually lowest in

cluster B, implying relatively low malignancy of PCa in cluster B

(Figure 5C). The different KEGG pathways were analyzed via

GSVA in every pairwise comparison among the three clusters

(Figure S2A-C). The KEGG lysine degradation, adherens

junction, and neurotrophin signaling pathways were

dysregulated in the comparison of clusters A and B (Figure

S2A). However, the RFS Kaplan–Meier curves for the

HLMclusters revealed no significant differences among these

subgroups (P = 0.194) (Figure 5D). Thus, HLM clusters may not

be suitable for prognostic risk prediction. Immune cells can

infiltrate more oncogenic mutated tumors, and these tumors are

more sensitive to immunotherapy (41, 42). We analyzed

immune cell infiltrations in three HLMclusters and found that
Frontiers in Oncology 08
13 of 23 subpopulations of immune cells were significantly

differentially infiltrated among these clusters (Figure 5E and

Table S6).
Consensus clustering of the PCa cohort
via DEGs in HLMclusters

We screened DEGs (P value of Bayes test < 0.00001) in every

pairwise comparison among the three HLMclusters to

investigate the effect of downstream genes of HLM regulators

and found 3,297 intersecting genes via a Venn diagram

(Figure 6A). In the GO enrichment analysis, epigenetic

reprogramming, such as covalent chromatin modification,

histone modification, RNA splicing, nuclear speck, and

transcription coregulator activities, was significantly enriched

according to the DEGs (Figure S3A, B). KEGG pathway

signaling enrichment analysis of the DEGs revealed that
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FIGURE 4

The expression levels of 6 intersecting differentially expressed HLM regulators in clinical PCa tissues. (A) The intersecting DEGs of 91 HLM regulators
in relation to the comparisons of TN (tumor vs. normal PCa tissues), GS (GS > 7 vs. GS < 7), pT (T3 vs. T2), RFS (P value of univariate Cox regression
analysis < 0.05), and TP53 (mutation vs. wild type) are shown as a Venn diagram. (B, C) The expression levels of 6 intersecting HLM regulators
(EZH2, NSD2, KMT5C, UHRF1, ORC1, and DNMT3A) were compared in PCa vs. adjacent normal prostate tissues (B) and GS > 7 vs. GS = 7 vs. GS< 7
(C). The results were normalized to adjacent normal tissues or those of endogenous reference genes. The means ± SEMs are shown in the graphs.
ns P > 0.05; *P < 0.05; **P < 0.01.
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nucleocytoplasmic transport, protein processing in the

endoplasmic reticulum, ubiquitin-mediated proteolysis, and

mRNA surveillance pathways were dysregulated (Figure

S3C, D).

We then performed a univariate Cox analysis using these

DEGs and found that 189 genes (HLM phenotype-related genes)

had significant differences in the context of RFS outcomes (P

value of Cox regression< 0.01). Nine genes (SIN3B, CREBZF,

DENND4B, SLC12A7, HNRNPH1, CEP170B, RAB11FIP3,

TIA1, and WDR5) among these had a P value < 0.001 in the

Kaplan–Meier survival and Cox regression analysis (Figure 6B).

We next evaluated the characteristics of classify patterns of

HLM phenotype-related genes. Three consensus clusters
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(geneCluster 1–3 or A–C) of TCGA-PRAD patients were

identified by analyzing 189 HLM phenotype-related genes

(Figure 6C). In the survival analysis, significant differences in

the RFS outcomes were found among geneClusters, and cluster

A had the poorest RFS rate (P value of Kaplan–Meier survival

analysis = 0.007) (Figure 6D). The distribution of

clinicopathological characteristics in the geneClusters showed

that the number of biochemical recurrences, GS, pN, pT, and

PSA grade 3 were visually highest in geneCluster A (Figure 6E).

The TME of immune cell infiltration characteristics in the three

geneClusters were evaluated, and 7 of 23 subpopulations of

immune cells were differentially infiltrated among these clusters

(Figure S4A and Table S7). The expression levels of HLM
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FIGURE 5

Consensus clustering analysis based on HLM regulators. (A) (left) Relative changes in the area under the CDF curve from k = 2 to 9. (right)
Color-coded heatmap of the consensus matrix for k = 3 obtained from applying consensus clustering. Color gradients represent values from 0–
1: white: 0; dark blue: 1. (B) PCA of the transcriptome profiles of HLM regulators in three HLMcluster patterns. Red, orange, and blue dots in the
scatter diagram represent HLMclusters (A–C) respectively. (C) The expression levels of HLM regulators in the unsupervised three HLMclusters
were estimated, and the distribution of the various clinicopathological characteristics of TCGA-PRAD are shown as a heatmap. PSA grade, pT,
pN, GS, and biochemical recurrence were used for patient annotation. Red in the heatmap, high expression; blue, low expression. (D) RFS
analysis among the three HLMclusters using Kaplan–Meier curves. Log-rank P values are shown in the graph, and the numbers at risk are shown
at the bottom. (E) The abundance of infiltration of each immune cell type among the three HLMclusters is shown in the boxplot. The values of
the median ± interquartile range are shown in the graph. ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.
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regulators in the geneClusters revealed that 86 of 91 HLM

regulators were significantly dysregulated, most of which were

highly expressed in cluster A (Figure 6F and Table S8).
A low HLMscore is associated with poor
RFS outcomes

Considering the complexity of HLM regulators and the

individual heterogeneity of PCa patients, the patterns of HLM

modification in individual patients were quantitatively assessed

(HLMscore) by constructing a set of scoring system by PCA of

the 189 HLM phenotype-related genes (Figure 7A). The
Frontiers in Oncology 10
HLMscores in geneClusters/HLMclusters were analyzed and

were significantly different in both clusters; geneCluster C and

HLMcluster B had the highest values (Figure 7B). In the survival

analysis, TCGA-PRAD patients were divided into two groups

according to the optimum threshold segmentation of the

HLMscore with the lowest log-rank P value in the Kaplan

−Meier analysis (202 with low-HLMscore group and 293 with

high-HLMscore group). The results showed that the low-

HLMscore group was associated with poor RFS outcomes

(P < 0.001) (Figure 7C). A low HLMscore was also associated

with a higher rate of biological recurrence (fustat of 1) (19%),

and the recurrence status was matched with lower HLMscores

(Figure 7D). We then analyzed the RFS outcomes of the
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FIGURE 6

Consensus clustering analysis based on 189 HLM phenotype-related genes. (A) Intersecting DEGs identified in every pairwise comparison of
HLMclusters are shown as a Venn diagram. (B) Univariate Cox regression analysis for RFS was performed in relation to 3,297 intersecting genes.
The statistical significance (P in the Kaplan–Meier survival and Cox regression analysis < 0.001) of 9 genes (SIN3B, CREBZF, DENND4B, SLC12A7,
HNRNPH1, CEP170B, RAB11FIP3, TIA1, and WDR5), P value, and HR value (with 95% confidence interval (CI)) are shown in the plot. (C)
Consensus clustering analysis based on the 189 HLM phenotype-related genes (overlap in the pairwise comparisons of HLMclusters and P <
0.01 in the Cox regression analysis) was performed. (up) Relative change in area under the CDF curve from k = 2 to 9. (down) Color-coded
heatmap of the consensus matrix for k = 3. Color gradients represent values from 0–1: white: 0; dark blue: 1. (D) RFS analysis among the three
geneClusters using Kaplan–Meier curves. Log-rank P values are shown in the graph, and the numbers of at-risk patients are shown at the
bottom. (E) The expression levels of 189 HLM phenotype-related genes in the unsupervised three geneClusters were estimated, and the
distribution of the various clinicopathological characteristics of TCGA-PRAD are shown as a heatmap. PSA grade, pT, pN, GS, biochemical
recurrence, and HLMclusters were used for patient annotation. Red in the heatmap, high expression; blue, low expression. (F) Boxplot of the
expression levels of HLM regulators among the three geneClusters. The values of the median ± interquartile range are shown in the graph. ns
P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.
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HLMscore groups stratified by clinicopathological features of GS

and pT (Figure 7E and Figure S4B, C). The low HLMscore group

also exhibited poor RFS outcomes in the GS 8-10 (P = 0.004) and

pT3 (P < 0.001) stages (Figure 7E). A summary of the attribute

changes in HLMcluster, geneCluster, HLMscore, and biological

recurrence status is shown in the alluvial diagram (Figure 7F).

Consistent with the findings above, most patients in geneCluster

A were classified into the low-HLMscore group, which is

relevant to the higher rate of biological recurrence.
Characteristics of gene mutations based
on HLMscore status in TCGA-PRAD

TMB is positively associated with oncogenic mutations and

the immunotherapeutic response (41, 42). The correlation

between the HLMscore and TMB was analyzed to estimate

PCa malignancy. However, the results showed that there was

no difference in the level of TMB between the low- and high-

HLMscore groups (P = 0.4), and TMB also showed no

correlation with the HLMscore in the Spearman correlation

analysis (R = -0.058 and P = 0.21) (Figure 8A). The patients were

first divided into two groups (the high- and low-TMB groups)

according to the TMB value via an RFS analysis as previously

reported (29). Then, the patients were further divided into four

groups by combining the HLMscore and TMB groups. As shown

in Figure 8B, the high-TMB with low-HLMscore group had the

poorest RFS among the four groups. The distribution of somatic

mutations in the low- and high-HLMscore groups indicated a

more extensive mutation frequency of TP53 (13% vs. 7%) and a

reduced frequency of SPOP (5% vs. 14%) mutation in the low-

HLMscore group vs. the high-HLMscore group (Figure 8C).
Characteristics of immune cell infiltration
based on the HLMscore in TCGA-PRAD

The correlation between the HLMscore and genes related to

immune-related cell infiltration was analyzed to better illustrate

the HLMscore characteristics based on immune cell infiltration.

Previous research suggested that low immune-cell infiltration

was markedly related to prolonged overall survival times (30).

Our results revealed that 8 of 23 immune cell infiltrates were

negatively correlated with the HLMscore, and 4 were positively

correlated (Figure 9A). Thus, it is unlikely that the HLMscore

and immune response patterns interact with each other to

influence RFS prognosis (Figure 7C).

Immunotherapy as represented by immunological

checkpoint (PD-1/L1 and CTLA-4) blockade (ICB) was

confirmed to have pronounced efficacy in the clinical

treatment of durable response patients (43). However,

unfortunately, the majority of tumor patients are insensitive

and experience minimal or no clinical benefit, which is far from
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ideal (43). Predicting sensitivity to ICB is key for improving ICB

therapeutic success and exploring novel immunotherapeutic

strategies (42, 44). PD-L1 and CTLA4 expression in the

HLMscore groups was evaluated to determine the potential

sensitivity to immunotherapy. The results showed that both

PD-L1 and CTLA4 were highly expressed in the low-HLMscore

group (Figure 9B). We then performed value prediction of the

risk score for ICB. TCGA-PRAD patients were classified into the

following four groups: ips_ctla4_neg_pd1_neg (CTLA4 and

PD1 negative response); ips_ctla4_pos_pd1_neg (CTLA4

positive and PD1 negative response); ips_ctla4_neg_pd1_pos;

and ips_ctla4_pos_pd1_pos (Figure 9C). The results showed

that CTLA4-positive and -negative responses accompanied by

PD1-negative regions (ips_ctla4_pos/neg_pd1_neg) had

significantly different IPSs in the two HLMscore groups (P <

0.05) but not in the PD1-positive regions (ips_ctla4_pos/

neg_pd1_pos) (P > 0.05) (Figure 9C). This finding suggests

that the HLMscore groups in this risk score model may indicate

a better prediction efficacy to predict insensitivity to

PD1 blockade.
Discussion

In this study, we performed bioinformatic analysis to

evaluate the extensive regulatory mechanism of the HLM

modification in PCa for the first time using the TCGA-PRAD

dataset. We found that HLMmodification patterns play a crucial

role in PCa aggressiveness, prognosis, and prediction of

immunotherapy sensitivity. Three representative HLM

regulators (EZH2, NSD2, and KMT5C) were found to serve as

highly valuable biomarkers in advanced PCa.

In general, the molecular mechanism of PCa progression

remains unclear. Increasing evidence has demonstrated that

epigenetic reprogramming through HLM can accelerate the

development of PCa (14, 15). Epigenetic regulation by the

degree of HLM occurs through alterations in gene

transcription, chromatin structure, and mitosis (45). The most

acknowledged HLM regulator is EZH2, a subunit of polycomb

repressive complex 2 (PRC2) that silences gene expression via

H3K37me3 methyltransferase activity and has been reported to

be associated with the progression of CRPC and NEPC (16–19,

46). Unlike its role as a transcriptional repressor, the

phosphorylation of EZH2 is associated with both coactivation

(16, 47, 48) and corepression (15, 18) of AR transcriptional

activity in PCa. Previous patient studies confirmed the value of

EZH2 as a PCa prognosis parameter before (20) or after

(21) treatment.

Moreover, as an H3K4 methyltransferase, SMYD3 can

epigenetically upregulate AR expression by binding to the AR

promoter region and is further associated with PCa

tumorigenesis (25). R. Vatapalli et al. reported that the H3K79

methyltransferase DOT1L selectively regulates tumorigenicity
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and is associated with poor PCa outcomes by coordinating with

AR and regulating MYC transcription (26). LSD1 acts as a

transcriptional repressor by associating with FOXA1 through

the demethylation of H3K4; it also acts as an AR coactivator, and

an LSD1 inhibitor suppresses tumor growth synergy with

enzalutamide in CRPC cells (22). NSD2 is a conserved driver

of metastatic PCa progression, which robustly expressed in lethal

PCa and its silencing inhibited PCa metastasis in vivo of mouse

allografts (24). Our previous study also revealed that MLL5a
inhibits PCa progression by forming a complex with AR and
Frontiers in Oncology 12
promotes the transcription of NDRG1 through H3K4me3 in the

promoter region (28). All of these previous studies suggest that

epigenetic regulation via HLM regulators plays a crucial role in

PCa progression.

Nevertheless, the overall effect of HLM modification in PCa

remains unclear. To our knowledge, only one preliminary study

has been conducted to analyze the genetic abnormalities of HMT

in TCGA-PRAD, but this study lacked integration with HDM

and MLRP (13). The complexity and heterogeneity of the

individual PCa microenvironment may be influenced by
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FIGURE 7

The low-HLMscore group based on the 189 HLM phenotype-related genes was associated with poor prognosis in terms of RFS. (A) PCA of the
transcriptome profiles of 189 HLM phenotype-related genes in three geneGluster patterns. Red, orange, and blue dots in the scatter diagram
represent geneClusters A to C, respectively. (B) The HLMscore was calculated via PCA based on 189 gene levels in TCGA-PARD. Then, we
compared the levels of the HLMscore among geneClusters (left) and HLMclusters (right). The values of median ± interquartile range and P are
shown in the boxplots. (C) TCGA-PRAD patients were divided into two groups (202 with low-HLMscore group and 293 with high-HLMscore
group) according to the optimum threshold segmentation of the HLMscore in relation to the lowest log-rank P value in the Kaplan‒Meier
analysis. RFS analysis of the two HLMscore groups is performed using Kaplan–Meier curves. (D) (left) The proportion among TCGA-PRAD
patients of biochemical recurrence status in low- and high-HLMscore groups (fustat of 0: no recurrence; 1: recurrence). (right) HLMscores in
the different statuses of biochemical recurrence. The P value of the Wilcoxon test is shown in the boxplot. (E) RFS analysis of the two HLMscore
groups among TCGA-PRAD patients with GS 8–10 (left) and pT3 (right). (F) The attribute changes of TCGA-PRAD in HLMclusters, geneClusters,
HLMscore, and recurrence status are shown as an alluvial diagram.
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various HLM regulators that interact with each other and form a

complex network to induce epigenetic reprogramming. Thus, we

summarized the widely acknowledged HLM regulators, 51

writers (HMT), 21 erasers (HDM), and 19 readers (MLRP),

and then comprehensively investigated the HLM modification

patterns in PCa by assessing various clinicopathological

characteristics and performing survival analysis using the

TCGA-PRAD dataset.

The results revealed that more than half (51 of 91) of the

HLM regulators are dysregulated in PCa, and the numbers of

overexpressed and downregulated HLM regulators were

approximately the same (26 vs. 25), suggesting various

alterations of HLM regulators in PCa. The representative

HLM regulator EZH2 was overexpressed, but negligible CNV

was found in PCa. All HLM regulators showed a copy number

gain of < 5%. The highest copy number loss (25.5%) was found

in SETDB2, which was downregulated in PCa patients (P =

0.02). However, while HLM regulators, such as PRDM13,

PRDM1, KDM6B, CHD1, PHF23, and PRDM7, all exhibited
Frontiers in Oncology 13
high levels of copy number loss (> 10%), no significant

downregulation (even overexpression of PRDM13) was found

in the PCa of TCGA-PRAD dataset. This finding implies no

causal relationship between CNV and the expression levels of

HLM regulators in PCa.

In the prognosis validation by survival analysis, we

conducted RFS instead of OS because of the low death rate (10

of 493) among TCGA-PRAD patients. We extracted the follow-

up phenotype of “days_to_first_biochemical_recurrence” as

“recurrence follow-up time” and confirmed “recurrence

status”, as previously described (29). The Cox regression

analysis showed that 10 HLM regulators (KMT5C, L3MBTL1,

PRDM16, NSD2, KMT2B, SUV39H1, SETD4, DOT1L, EZH2,

and PRDM15) were significant risk factors, with HR > 1 and

P < 0.001.

We validated the oncogene status of HLM regulators via

integration with DEGs associated with various clinicopathological

characteristics (TN, GS, pT, and TP53 mutation) and RFS

outcomes and found 6 intersecting genes, EZH2, NSD2,
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FIGURE 8

Characteristics associated with TCGA-PRAD tumor mutations based on HLMscore status. (A) (left) TMB values of the two HLMscore groups. The
P value of the Wilcoxon test is shown in the boxplot. (right) Spearman correlation analysis between the HLMscores and TMB values in TCGA-
PRAD was performed and is shown as a scatter diagram. Red, orange, and blue dots represent geneClusters A to C, respectively. (B) TCGA-
PRAD patients were divided into two statuses (low and high TMB) according to the optimum threshold segmentation of TMB values in relation
to the RFS analysis. Then, the TCGA-PRAD patients were further split into four groups based on TMB and HLMscore status (high (H)-TMB + H-
HLMscore; H-TMB + low (L)-HLMscore; L-TMB + H-HLMscore; and L-TMB + L-HLMscore), and survival analysis for RFS was performed. (C) The
somatic mutations of TCGA-PRAD patients with low-HLMscore (left) and high-HLMscore (right) groups are shown as waterfall plots.
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KMT5C, UHRF1, ORC1, and DNMT3A, which were highly

expressed in association with all advanced-stage parameters

(tumor, GS > 7, pT3, HR > 1, and TP53 mutation). When

verifying these genes in clinical PCa tissues, six genes trended

toward an increase in the GS > 7 group (compared with GS < 7),

and 3 of them (EZH2, NSD2, and KMT5C) were statistically

significant (P < 0.05). EZH2 and NSD2 are representative HLM

regulators that were mentioned above and have been widely

confirmed in PCa research. However, there is a lack of research

focused on the role of KMT5C in PCa. KMT5C is an H4K20me3

methyltransferase and represses several key drivers of the

epithelial state, further promoting epithelial to mesenchymal

transition (EMT) in pancreatic cancer (49). UHRF1 promotes

CRPC progression by triggering AR-regulated CDC6

transcription by binding to the CCAAT motif and recruiting

KDM4C to demethylate H3K9me2/3 (50). UHRF1 could induce

epigenetic inactivation of tumor suppressor genes in combination

with SUV39H1, DNA methyltransferases, and EZH2 (51). ORC1

is a key subunit of the origin recognition complex, and few studies

have focused on the role of ORC1 in PCa. DNMT3A

epigenetically regulates EMT-associated key microRNAs to

promote PCa metastasis (52); it is recruited to the promoters of

these miRNAs and silences their transcription by increasing

H3K9/27me3 and/or decreasing H3K4/36me3. In general,

clinical PCa verification and previous research confirmed a
Frontiers in Oncology 14
certain level of accuracy of our bioinformatic analysis using the

TCGA-PRAD dataset.

This study aimed to evaluate the integral HLM phenotypes

in PCa patients. Here, we revealed three distinct HLM

modification patterns based on 91 HLM regulators

(HLMclusters) using consensus clustering analysis and

inves t i ga t ed the e ff e c t o f three HLMclus t e r s on

clinicopathological features and the prognosis of PCa patients;

the results indicated no significant difference in these clusters in

RFS (P = 0.194). This finding implies that clustering TCGA-

PRAD patients based on 91 HLM regulators may not be suitable

for involvement in a prognostic risk prediction model. We

previously divided TCGA-PRAD patients into three clusters

based on 25 N6-methyladenosine (m6A) regulators and found

no significant differences in RFS analysis (29), which is

discordant with the same analysis in gastric cancer (31). This

finding suggests the heterogeneity of epigenetic regulation in

diverse tumors.

Epigenetic modification of target genes to regulate their

transcription is the primary function of HLM regulators. To

predict genes downstream of HLM regulators, we identified 189

HLM phenotype-related genes that overlapped in the pairwise

comparisons of HLMclusters (P value of Bayes test < 0.00001)

and P < 0.01 in the Cox regression analysis. The patients were

then classified into three subtypes (geneCluster) based on 189
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FIGURE 9

Characteristics of the HLMscore status in PCa with an immune-related microenvironment. (A) Correlation analysis between the HLMscore and
infiltrating immune cell type in TCGA-PRAD. Red, positive correlation, blue, negative correlation.*P < 0.05. (B) The expression levels of PD-L1
and CTLA4 in the two HLMscore groups are shown as boxplots. (C) The IPS scores in ips_ctla4_neg_pd1_neg (CTLA4 and PD1 negative
response), ips_ctla4_pos_pd1_neg (CTLA4 positive and PD1 negative response), ips_ctla4_neg_pd1_pos, and ips_ctla4_pos_pd1_pos in relation
to the respective HLMscore groups are shown as violin plots. The P values of the Wilcoxon test are shown in the violin plots.
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HLM phenotype-related genes. These subtypes were

significantly associated with different RFS rates (P = 0.007),

suggesting that it may be an appropriate risk prediction model.

In the results, geneCluster A exhibited the poorest RFS and

recruited more of the clinicopathological parameters of PSA

grade 3, pT4, pN1, and GS > 7.

However, the evaluation above was a qualitative analysis that

highly depended on the population of patients and could not

accurately predict the HLM modifications in individual PCa

patients. Considering the heterogeneity of individual patients

and complexity of HLM modifications, we constructed a set of

scoring system (HLMscore) as described previously (31) based

on the PCA of the 189 HLM phenotype-related genes to quantify

the HLM modification pattern of individual PCa patients. The

HLMscore progressively increased from geneCluster A–C, and a

lower HLMscore resulted in a poorer prognosis in terms of RFS.

The TMB score corresponds to tumor-related mutations that are

sensitive to immune cell recruitment (41, 42). This study found

no significant correlation between TMB and HLMscore (P =

0.21). However, the low-HLMscore group exhibited a higher

proportion of TP53 mutations (13% vs. 7%) and fewer SPOP

mutations (5% vs. 14%) than the high-HLMscore group. TP53

and SPOP were the most highly mutated genes in PCa (11% and

10%, respectively, in TCGA-PRAD). TP53 mutation was

associated with a poor rPFS outcome, shorter time to CRPC

progression, and higher aggressiveness (40, 53). SPOP mutation

can enhance autophagy in PCa and respond to AR inhibition in

various clinical settings (54, 55). Epigenetic modulation has been

reported to play a vital role in antitumor immunity (56), but few

studies have focused on HLM regulators and tumor immune cell

infiltration. We found that 12 of 23 immune cell infiltrations

were significantly correlated with HLMscore, and 8 of them were

negatively correlated. The difference in the infiltrated

subpopulations of immune-associated cells was also not

substantial among the three HLMclusters (13 of 23) and three

geneClusters (7 of 23), making it difficult to assess whether the

HLM signature influences immune response patterns in PCa.

Immunotherapy with ICB (PD-1/L1 and CTLA-4) was

demonstrated to have astounding efficacy in the positive

response patients (43). Predicting the sensitivity to ICB in PCa

patients is crucial for improving ICB therapy success and exploring

novel immunotherapeutic strategies (42, 44). We found significant

differences in the expression levels of PD-L1 and CTLA4 in the

low- and high-HLMscore groups. Further assessment of

immunotherapy responses showed that the IPS of CTLA4-

positive and -negative responses accompanied by a PD1-negative

response significantly differed between the two HLMscore groups

(P < 0.05). This finding suggests that HLMscore estimation may

have predictive value for immunotherapy sensitivity in PCa.
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Conclusions

This study comprehensively evaluated the extensive HLM

regulation mechanisms in the PCa microenvironment for the

first time using the TCGA-PRAD dataset. HLM modification

patterns play a crucial role in the complexity and heterogeneity

of individual tumor microenvironments. Elucidating the overall

effect of HLM regulators in PCa may contribute to the

determination of a valuable risk model for predicting

prognosis, aggressiveness, and immunotherapy strategies. We

found 3 crucial HLM regulators (EZH2, NSD2, and KMT5C)

that were consistently highly expressed in advanced PCa stages

and associated with various clinicopathological characteristics

(tumor, GS > 7, pT3, HR > 1, and TP53 mutation).
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SUPPLEMENTARY FIGURE 1

CNV variation and mutation frequency of HLM regulators in PCa. (A) The
location of CNV alterations of HLM regulators on 23 chromosomes. Red dot,
copy number gain; blue dot, copy number loss. (B) The mutation frequency

of HLM regulators in 484 TCGA-PRAD patients is shown in the waterfall plot.
Columns represent individual patients, the upper bar plot shows TMB, the

right bar plot shows the proportion of each variant type, and the stacked bar

plot below shows the transformed fraction of each patient.

SUPPLEMENTARY FIGURE 2

KEGG enrichment analysis in distinct HLMclusters. (A-C) Heatmap of

KEGG enrichment analysis, including the activation states of biological
pathways, in the respective comparisons of HLMclusters (A vs. B (A), A vs.

C (B), and B vs. C (C).
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SUPPLEMENTARY FIGURE 3

Enrichment analysis of 3,297 intersecting DEGs in every pairwise
comparison of HLMclusters. (A, B) GO enrichment of biological process

terms (BP), cellular component terms (CC), and molecular function terms
(MF) are shown as a barplot (A) and dotplot (B). (C, D) KEGG enriched

terms in the activation states of biological pathways are shown as a
barplot (C) and dotplot (D).

SUPPLEMENTARY FIGURE 4

TME immune cell infiltration in three geneClusters and RFS prognosis

based on HLMscore status among TCGA-PRAD patients stratified by
various clinicopathological characteristics. (A) The abundance of

infiltration of each immune cell type among the three geneClusters is
shown in the boxplot. The values of the median ± interquartile range are

shown in the graph. ns P > 0.05; ** P < 0.01; ***P < 0.001. (B) RFS analysis
of the two HLMscore groups of TCGA-PRAD patients with GS 6 (left) and

GS 7 (right). (C) RFS analysis of the two HLMscore groups of TCGA-PRAD

patients with pT2 (left) and pT4 (right).

SUPPLEMENTARY TABLE 1

Oligonucleotide primers of relative genes.

SUPPLEMENTARY TABLE 2

The expression levels of 91 HLM regulators in TCGA-PRAD and normal

tissues. a ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.

SUPPLEMENTARY TABLE 3

Expression levels of HLM regulators in TCGA-PRAD data stratified by GS. a

ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.

SUPPLEMENTARY TABLE 4

Expression levels of HLM regulators in TCGA-PRAD data stratified by pT
stage. a ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.

SUPPLEMENTARY TABLE 5

Expression levels of HLM regulators in TCGA-PRAD data stratified by TP53
mutation. a ns P > 0.05; * P< 0.05; ** P< 0.01; ***P< 0.001.

SUPPLEMENTARY TABLE 6

Abundance of each infiltrating immune cell among the three HLMclusters.
a ns P > 0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.

SUPPLEMENTARY TABLE 7

Abundance of each infiltrating immune cell among the three

geneClusters. a ns P > 0.05; ** P < 0.01; ***P < 0.001.

SUPPLEMENTARY TABLE 8

Expression of HLM regulators among the three geneClusters. a ns P >
0.05; * P < 0.05; ** P < 0.01; ***P < 0.001.
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