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ABSTRACT: Drug discovery is a costly and time-consuming
process, necessitating innovative strategies to enhance efficiency
across different stages, from initial hit identification to final market
approval. Recent advancement in deep learning (DL), particularly
in de novo drug design, show promise. Generative models, a
subclass of DL algorithms, have significantly accelerated the de novo
drug design process by exploring vast areas of chemical space. Here,
we introduce a Conditional Variational Autoencoder (CVAE)
generative model tailored for de novo molecular design tasks,
utilizing both SMILES and SELFIES as molecular representations.
Our computational framework successfully generates molecules
with specific property profiles validated though metrics such as
uniqueness, validity, novelty, quantitative estimate of drug-likeness (QED), and synthetic accessibility (SA). We evaluated our
model’s efficacy in generating novel molecules capable of binding to three therapeutic molecular targets: CDK2, PPARγ, and DPP-
IV. Comparing with state-of-the-art frameworks demonstrated our model’s ability to achieve higher structural diversity while
maintaining the molecular properties ranges observed in the training set molecules. This proposed model stands as a valuable
resource for advancing de novo molecular design capabilities.

■ INTRODUCTION
De novo drug design, which involves creating novel molecules
with specific molecular properties such as molecular weight
(MW), polarity, and toxicity, poses a significant challenge in
drug discovery.1,2 Over recent years, the integration of artificial
intelligence (AI) and deep learning (DL) into computer-aided
drug design (CADD) has led to a wealth of groundbreaking
discoveries.3−5

Generative models, a subset of DL algorithms, have made
significant strides across diverse fields such as image
generation,6 speech recognition7 and translation,8 surpassing
traditional machine learning (ML) approaches. Recent
advancements in generative models have enabled the computa-
tional design of both chemically novel and synthetically viable
compounds, facilitating exploration within the vast chemical
space of drug-like molecules.5,9−14

The molecular generation process using generative models
involves several steps that vary depending on the model’s
architecture. Typically, it starts with selecting a data set of
reference molecular structures, which are then converted into a
machine-readable format for training the model to recognize
chemical patterns from existing molecules.5,11,12 This iterative
process continues until desired property scores are achieved.
Generative models predominantly utilize deep neural networks
(DNNs) to generate new compounds based on latent

representations of molecular structures learned during model
training.
To optimize the design of novel chemical structures, various

generative models have been employed, including Recurrent
Neural Network (RNN),15 Generative Adversarial Networks
(GAN),16 Graph Neural Networks (GNNs)17 and Variational
Autoencoders (VAE).18 Each method has its strengths and
limitations, and there is no “champion” model that universally
outperforms the others. One pioneering approach in this
domain integrated a VAE model, comprising an encoder that
translate SMILES strings into continuous vectors in latent
space, and a decoder that convert these vectors back into
SMILES, along with a molecular properties predictor.19

However, this model suffered from a high incidence of
generating invalid chemical structures. Another widely adopted
model for molecular generation is the RNN,10 which samples
from learned distributions of input molecules to generate new
SMILES-formatted structures. In the REINVENT model,
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which is based on RNN, a reinforcement/curriculum-learning
(RL/CL) method was employed to fine-tune the pretrained
RNN, enhancing its ability to generate structures with desired
properties.18,20,21

In the MOLGEN model,22 which is also based on RNNs, a
GAN approach was employed. In this framework, the RNN
serves as the generator, which is trained to produce molecular
structures, while the discriminator evaluates the generated
molecules against real samples. The adversarial training process
fine-tunes the generator, enhancing its ability to produce valid
molecules. This GAN-based approach allows MOLGEN to
improve the diversity and quality of the generated molecular
structures.
The Conditional VAE (CVAE), an extension of the classical

VAE, has proven effective in multivariable control by
incorporating molecular properties information into the
encoding process. This integration enables manipulation of
these properties during decoding within the latent space. This
approach facilitates the design of compounds with specific
attributes such as MW, partition coefficient (log P), and
topological polar surface area (TPSA), collectively influencing
compound’s drug-likeness.
Kim et al.23 introduced a novel approach to molecular

design using a CVAE to generate molecules with specific
properties. By leveraging CVAE, the authors successfully
produced molecules exhibiting properties akin to those of
Aspirin and Tamiflu. These molecules varied in structural
configurations yet maintained a degree of similarity and
comparable characteristics. Joo et al.24 proposed a CVAE
model for generating potential anticancer agents encoded as
MACCS fingerprints (FPs). Training utilized a data set derived
from NCI-60 drug screening, with normalized GI50 (growth
inhibitory activity) values employed as conditional vectors.
The CVAE effectively captured the distribution of molecular
structures associated with anticancer activity, enabling the
generation of new FPs with desired traits. Yang et al.25

introduced a generative model based on a multiobjective
CVAE and subsequently implemented Bayesian optimization
guided by docking scores to enhance the biological activity of
generated molecules.
In this study, we introduce a generative model based on the

CVAE architecture, leveraging two prominent molecular
representations: Simplified Molecular Input Line Entry System
(SMILES) and Self-Referencing Embedded Strings
(SELFIES). SMILES captures the sequential arrangement of

atoms and bonds in a molecule,26 while SELFIES represents a
novel linear notation for constrained graphs, ensuring the
generation of syntactically and semantically valid molecular
structures.27 This notation can be easily converted to and from
other molecular representations. To evaluate the real-world
potential of our model for de novo drug design, we focused on
three therapeutic targets: Cyclin-Dependent Kinase 2 (CDK2),
Dipeptidyl Peptidase IV (DPP-IV), and Peroxisome Prolifer-
ator-Activated Receptor γ (PPARγ). Our goal was to generate
compounds capable of modulating these targets while
exhibiting drug-like properties. The quality of the generated
molecules was evaluated using established metrics to evaluate
the model’s validity. Additionally, molecular docking was
employed to determine the binding affinity of the generated
molecules within each target’s active site, aiming to replicate
the interactions of known active compounds. Our workflow,
outlined in Figure 1, demonstrates a robust and adaptable
approach to drug discovery, easily generalizable to other
molecular targets. This model represents a significant advance-
ment in the field, providing a valuable tool for the development
of novel therapeutic agents.

■ EXPERIMENTAL SECTION
Data Sets. For model training, we used the ChEMBL data

set (version 22),28−30 selecting only compounds involved in
direct interactions (type “D”) with human targets at the
highest confidence level (score 9). We included compounds
with specified equilibrium constants (Ki values) or IC50,
resulting in a set of 327,660 molecules.
A filtering procedure was conducted with the following

criteria:
(i) Removal of duplicate entries.
(ii) Standardization using RDKit31 to remove salts and

stereochemical information.
(iii) Exclusion of molecules with SMILES strings outside the

24−82 token range.
(iv) Exclusion of molecules with

• Hydrogen Bond Donors (HBD) ≥10
• Hydrogen Bond Acceptors (HBA) ≥10
• Number of rings ≥8
• Rotatable bonds (RotB) ≥15
• Length of rings ≥9

Molecules were encoded into sequences of characters
denoting specific structural attributes, combining tokens for

Figure 1. Workflow for molecule generation using the CVAE model.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08027
ACS Omega 2024, 9, 43963−43976

43964

https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


atoms not found in the organic subset and without formal
charge. To simplify the vocabulary and reduce its size, an
additional filtering step was implemented:

(i) Removal of molecules with natural numbers ≥6, due to
their low data set representation (3902 molecules, 1.86%
of the total).

(ii) Encoding all molecules using only capital letters.

These refinements led to a comprehensive “dictionary”
including {C, =, (,), N, O, 1, 2, 3, 4, F, S, 5, Cl, [O-1], [NH1],
Br, #, [N-1], [N+1], [NH1+1], I, P, [S-1], [NH2+1], [S+1],
B, [NH1−1], [Si], [C-1], [NH3+1], [Se], [B-1], [O+1],
[PH1], [P+1], [2H], [SH1+1], [CH1−1], [Se+1], [OH1+1],
[S+2], [Te+1], [Te], [SH1]}. To ensure uniformity, the length
of each molecule was standardized to 120 characters by
padding the sequences. The letters “X” and “E” were included

in the vocabulary, denoting the start and end of molecules,
respectively. The letter “E” is repeated as needed to pad each
sequence to the desired length of 120 characters.
The final set consisted of approximately 198,962 molecules.

Their physicochemical properties, including MW, log P, TPSA,
HBA, HBD, RotB, were calculated using RDKit (see Figure 2).
For model tuning, we collected three data sets of

compounds active against CDK2, DPP-IV and PPARγ from
ChEMBL (version 33), including compounds with activity
values (IC50 for CDK2 and DPP-IV, EC50 for PPARγ) of at
least 10 μM. The resulting sets included 1352 CDK2
inhibitors, 3911 DPP-IV inhibitors, and 2588 PPARγ agonists.
The aforementioned filters were applied to these data sets, with
properties detailed in Table 1.

Figure 2. Distribution of calculated physicochemical properties across the final set of ChEMBL compounds. Panels (A−C) display kernel density
estimate plots for MW, log P, and TPSA, respectively. Panels (D−F) depict histograms for HBA, HBD, and RotB, respectively. These visualizations
highlight the diversity and distribution range of these properties within the data set.

Table 1. Physicochemical Properties for CDK2, DPP-IV, and PPARγ Datasets after Filtering

data set length of molecules MW log P TPSA HBA HBD RotB length of rings

CDK2 55.85 ± 9.14 393.98 ± 72.05 3.24 ± 1.19 94.02 ± 23.80 5.70 ± 1.79 2.27 ± 0.96 4.82 ± 2.29 3.74 ± 0.75
DDP-IV 52.84 ± 12.07 396.95 ± 80.81 2.25 ± 1.39 86.76 ± 27.34 5.24 ± 2.17 1.53 ± 0.78 4.91 ± 1.99 3.27 ± 1.00
PPARγ 62.39 ± 10.73 457.01 ± 72.39 5.25 ± 1.23 81.98 ± 21.37 5.05 ± 1.73 1.31 ± 0.65 8.85 ± 2.69 3.56 ± 0.97
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Similar procedures were followed for SELFIES representa-
tions, utilizing the same data set as for SMILES generation and
encoding each molecule using the SELFIES library.
CVAE Model Architecture and Training Process. The

VAE forms the foundational framework of our model. It
consists of an encoder-decoder neural network structure that
learns to generate new data samples resembling those in then
training data set by identifying a compact and continuous
representation known as the latent space. The VAE operates by
exploring a space x through a prior distribution over the latent
space z( ) and a conditional likelihood of generating a data
sample from the latent space x z( )| . The encoder maps the
input to the posterior density z x( )| over the latent variable z
u s i n g a mu l t i v a r i a t e G a u s s i a n d i s t r i b u t i o n

z x N( ) ( , )2| . The goal of the VAE is to learn the
marginal log-likelihood of the observed data in the generative
process. Given that directly computing the log-likelihood is
impractical, we rely on the Evidence Lower Bound (ELBO).
This bound ensures that the posterior distribution z x( )|
approximates the probability z x( )| :

D z x z x

E z x z x

( ) ( )

log ( ) log ( )z x

KL

( )

[ | | ]

= [ | | ]| (1)

where DKL non-negative Kullback−Leibler divergence loss and
E represents the expectation value. By applying Bayes’ theorem
and rearranging terms, eq 1 can be reformulated as

E z x D z x z

x D z x z x

log ( ) ( ( ) ( ))

log ( ) ( ( ) ( ))

z x( ) KL

KL

[ | ] |

= | |

|

(2)

The left-hand side of eq 2 is what we refer to as the ELBO.
The VAE seeks to minimize the reconstruction term so that
the encoder generates meaningful latent vectors for the
decoder to reconstruct. In essence, it aims to optimize θ and
ϕ to minimize the reconstruction error between the input and
output and to make z x( )| as close as possible to z x( )| .
Since maximizing the ELBO is equivalent to maximizing the
log-likelihood of the observed data and minimizing the
divergence between the approximate and true posterior,
remembering that the Kullback−Leibler divergence is a non-
negative function, the eq 2 can be rewritten as

x z E x z

D z x z

L x z

log( ( )) log( ( ))

( ) ( )

( , ; , )

z x( )

KL

| [ | ]

[ | ]

=

|

(3)

Instead, the decoder in a VAE is responsible for translating
the latent variables back into the original data space. This
means taking the sampled latent variables and producing an
output that must be as close as possible to the original input.
To achieve this, it focuses on maximizing the likelihood x z( )|
of the observed data x, given the latent variables z. The greater
this likelihood, the more proficient the decoder becomes at
reconstructing the original data from the latent space. Usually,
the most used optimization loss in this part is the sum squared
error:

x x x xSSE ( , ) ( )
i

D

i i
1

2 2=
= (4)

where x represents the initial data, x′ the final output and D the
size of them. Combining eqs 3 and 4, we derive the loss
function for VAE as

Figure 3. CVAE architecture for molecular generation. The chemical structure of a molecule is initially represented using SMILES or SELFIES,
which are converted into a machine-readable sequence of tokens encoding molecular properties such as MW, log P, TPSA, HBA, HBD, and RotB.
The encoder, consisting of three LSTM layers, transforms these descriptors into a latent space representation visualized as a probability distribution
function. The decoder, comprising additional LSTM layers, processes the latent representation to generate new chemical structures. A SoftMax
layer at the end of the decoder produces a probability distribution.
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L x x( ) min SSE ( , ) max ELBO= + (5)

Beginning with the VAE architecture, CVAE extends this
framework by incorporating explicit condition vectors into the
latent space representation, enabling the generation of
molecules with specific desired properties. The CVAE adapts
the latent vectors based on the condition vector without
altering the network architecture or loss function. Con-
sequently, the CVAE can control the dimensions of the latent
space corresponding to the target properties defined in the
condition vector. The ELBO objective function for CVAE is
defined as

L x z c E x z c

D z x c z c

( , ; , , ) log( ( , ))

( , ) ( )

z x( )

KL

= [ | ]

[ | | ]

|

(6)

where the primary distinction from the previous ELBO loss is
the inclusion of the condition vector c, representing the desired
molecular properties to be learned during molecule generation.
Therefore, the decoder of the trained CVAE model can
generate molecules with specified properties using both the
condition vector and the latent space vectors.
Given our string-based representation, we enhance the

CVAE architecture with Long Short-Term Memory (LSTM)
cells, a type of Recurrent Neural Network (RNN), tailored to
address the vanishing gradient problem inherent in sequential
data. LSTMs integrate cell state and three gating mechanisms:
the input gate, forget gate, and output gate. These gates
regulate the flow of information within the cell, enabling
effective handling of long-term dependencies. The input gate
controls the amount of new information that is integrated into
the cell state, while the forget gate determines which part of
the previous cell state should be discarded. On the other hand,
the output gate decides which portion of the cell state should
be output and passed to the next time step. By incorporating
these mechanisms, LSTM cells can effectively maintain and
update the cell state over long sequences, enabling the network
to capture long-term dependencies more efficiently.
Figure 3 illustrates the architecture of our model. LSTM

cells are employed in both the encoder and decoder of the
CVAE framework. After molecule embedding, the data
traverses through three LSTM layers, each dimensioned
according to specified hyperparameters such as unit size and
batch size (refer to Table 2). The encoder includes a dense
mean layer and a dense logarithmic variance layer to transform
data into a latent space representation. Conversely, the
decoder process utilizes another set of three LSTM layers,
mirroring the encoder’s dimensions to reverse this representa-

tion and generate new chemical compounds. At final output, a
SoftMax layer is applied, and cross-entropy is used as the cost
function to measure reconstruction error. Through joint
training of the encoder and decoder to minimize the CVAE’s
cost function, our model enhances its capacity to accurately
predict chemical compounds.
In our CVAE model, both the initial training and fine-tuning

of the model utilize two main input components: the
molecular representation vector x and the condition vector c.
The vector x represents the molecular structure in a string-
based format, such as SMILES or SELFIES. Each molecule is
encoded as a sequence of characters, where each character
represents a specific atomic symbol, bond type, or structural
feature. The sequence is then tokenized to create a machine-
readable input that captures the molecular structure’s essential
components. This input is further embedded to form a
numerical representation that can be processed by the model’s
encoder. The vector c encodes the desired molecular properties
that we aim to impose during the generation process. In our
model, this vector includes six molecular properties: MW, log P,
TPSA, HBA, HBD, and RotB. The model is trained to jointly
learn the latent z, which captures the underlying distribution of
molecular structures, and the condition vector c, which
enforces the desired properties. Together, x and c are input
into the encoder, where they are processed to generate a latent
representation z. Notably, no activity labels are included in
these inputs. This design allows the model to autonomously
learn additional chemical features while guiding the learning
process through the provided conditions, without the need for
explicit labels.
To generate a molecule with specified properties from the

condition vector, the decoder constructs the molecular
structure iteratively, token by token. Each character is sampled
based on its probability distribution, which is influenced by the
preceding character, until the molecule reaches the fixed length
of 120 characters. This process allows a single pair of latent and
condition vectors to generate multiple unique molecules. If the
termination character “E” is absent within this sequence, the
output is deemed invalid. The decoder outputs a probability
distribution for the subsequent characters in the sequence,
including “E”, which is then translated into the molecular
structure sequence. It is crucial to highlight that any incorrect
character can result in an invalid molecule.
The difference between the training and fine-tuning phases

lies in their specific objectives and data handling. During the
initial training phase, the model operates in an unsupervised
manner. Here, the model learns to capture the underlying
distribution of molecular representations and their associated
properties without being provided with any explicit activity
labels.
In the subsequent fine-tuning phase, the model undergoes

further adaptation to better fit a specific fine-tuning data set.
While this phase also does not involve direct supervision with
activity labels, it allows the model to adjust its learned
parameters to align more closely with the characteristics of the
fine-tuning data. Although the same six molecular properties
are used as conditions, their specific values may differ
according to the characteristics of the fine-tuning data set
(CDK2, DPP-IV, PPARγ). This variation enables the model to
better adapt to the new data while maintaining consistency in
the conditions imposed during both training stages.
All training procedures were executed on NVIDIA RTX

A6000, NVIDIA GeForce RTX 3090 and NVIDIA GeForce

Table 2. Hyperparameter Values and Epoch Times for
CVAE Model Training and Tuning

training tuning

epochs 1000 2000
patience 50 100
batch size 2048 120
unit size 512 512
latent size 200 200
sequence length 120 120
learning rate 1 × 10−4 1 × 10−5

number of conditions 6 6
time for epoch (s) ∼45 ∼0.1
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RTX 4090 GPUs. Table 2 details the configured hyper-
parameters and epoch durations for both training and tuning
phases.
Docking Studies. Protein and Ligand Preparation. The

crystal structures of CDK2 in complex with Dinaciclib (PDB
4KD1),32 PPARγ in complex with GL479 (PDB 4CI5),33 and
DPP-IV in complex with a heterocyclic inhibitor (PDB
4A5S)34 were sourced from the Protein Data Bank (PDB).
These structures were selected for docking studies based on
their high resolution, completeness, and overall quality.
To prepare these structures for further analysis, we

employed the Protein Preparation Wizard within Maestro
(Protein Preparation Wizard; Epik, Schrödinger, LLC, New
York, NY, 2021; Impact, Schrödinger, LLC, New York, NY;
Prime, Schrödinger, LLC, New York, NY, 2021). This involved
adding hydrogen atoms, determining bond orders, charges, and
atom types, and extensively sampling rotamers, tautomers, and
protonation states of titratable amino acids under neutral pH
conditions to optimize the hydrogen bonding network.
Subsequently, the protein structures underwent constrained
minimization using the Impref module and the OPLS4 force
field, maintaining a 0.3 RMSD limit from the original
coordinates. The generated compounds were filtered on
favorable quantitative estimate of drug-likeness (QED) and
synthetic accessibility (SA), resulting in a refined subset (Table
S1). These compounds were then prepared using LigPrep
(LigPrep, Schrödinger, LLC, New York, NY, 2021) to generate
suitable three-dimensional (3D) conformations and tautome-
rization states at pH 7, followed by energy minimization using
the OPLS4 force field.
Docking Simulations. The generated compounds were

docked using the Glide algorithm (Glide, Schrödinger, LLC,
New York, NY, 2021) in Standard Precision (SP) mode.35,36

Docking grids were generated with an inner box surrounding
the ligand binding cavity site of each target protein. Default
docking parameters were applied where not specified. The
Glide Score function was used to rank and score the predicted
binding poses. The top scoring compounds for each target
were carefully evaluated to assess their similarity to the binding
mode of cocrystallized ligands and the consistency of protein−
ligand interactions with experimental data. Before docking the
generated compounds, the entire procedure was validated by
redocking the cognate ligands for each target. This step
confirmed the ability of the docking protocol to reproduce
experimental binding modes. The redocking results displayed
favorable RMSD values of 0.498, 1.141, and 1.366 Å for DPP-
IV, CDK2, and PPARγ, respectively.
Enrichment Factor Calculation. Additionally, we assessed

the ability to prioritize active compounds in the docking
screens described above by calculating the Enrichment Factor
(EF) at various top score percentages: 1, 2, 5, 10, and 20%. For
this purpose, decoy molecules (50 decoys for each active
molecule) were generated using the DUD-E server37 for each
set of active compounds (CDK2 and DPP-IV inhibitors and
PPARγ agonists). This analysis offers insights into the
effectiveness of enriching active molecules over inactive ones
within targeted screening regions (see Table S2). Furthermore,
the performance of the binary classification model was
evaluated using the Receiver Operating Characteristic
(ROC) curve (Figure S2), which plots the true positive rate
against the false positive rate. The ROC values obtained for the
three sets were 0.76 for DPP-IV, 0.79 for PPARγ, and 0.83 for
CDK2.

■ RESULTS
Data Sets and Molecular Representation. Here, we

detail the implementation of a CVAE-based generative model
and its performance in generating compounds. Rather than
focusing solely on generating molecular structure, our aim was
to tackle a more complex challenge: generating compounds
potentially active against specific targets. Generative models
are recognized for their ability to provide viable starting points
for drug discovery programs.
During the model training phase, we first collected 327,660

molecules from ChEMBL (version 22). These were sub-
sequently filtered based on various criteria (see Experimental
Section), resulting in a data set of 198,962 molecules. We
explored two different molecular representations, namely
SMILES and SELFIES, to assess potential advantages in
terms of performance metrics during the molecular generation
phase (see Figure 1, phase 2) and overall molecule quality.
During the model fine-tuning phase, we curated three data sets
comprising 1352 CDK2 inhibitors, 3911 DPP-IV inhibitors,
and 2588 PPARγ agonists, selecting only those compounds
with activity thresholds of at least 10 μM. To align with the
CVAE architecture, all compound data sets were converted
into sequences of symbols using a predefined vocabulary.
Conditional Molecular Design. Before delving into the

experimental findings, we outline the metrics employed to
evaluate our model’s effectiveness. Specifically, we employed
the metrics implemented in MOSES to evaluate the generated
molecules.38 Molecule validity assessment involves adherence
to organic chemistry principles, ensuring accurate representa-
tion as legitimate chemical structures. Invalid molecules may
exhibit syntax errors or implausible chemical arrangements.
Conversely, uniqueness quantifies the variety of generated
samples by calculating the ratio of distinct samples within the
generated set. Novelty measures how generated samples differ
from those in the training data set. Internal diversity appraises
the assortment of the generated molecules based on their
chemical properties or structural characteristics. Table 3

presents validation metric outcomes for each target, revealing
distinct patterns across DPP-IV, CDK2, PPARγ, and
representation formats (SMILES and SELFIES). SELFIES-
generated molecules exhibit higher validity values compared to
SMILES-generated ones across all targets, implying stronger
adherence to syntax and chemical rules. Both formats
consistently exhibit high uniqueness (>99%), suggesting a
diverse and nonrepetitive collection of molecules. Novelty
values are consistently at 100%, indicating uniqueness from the
training data. Internal diversity varies among targets and
formats, but generally remain high, reflecting a range of
molecular structures in each set. Comparison of SELFIES with
SMILES highlights significant improvements in validity,
reconstruction accuracy, and molecule diversity. During

Table 3. Generated Compounds Metrics for Each Target:
CDK2, DPP-IV, PPARγ

files validity uniqueness novelty internal diversity

SMILES_CDK2 63.91 99.97 100.0 86.89
SELFIES_CDK2 71.11 99.82 100.0 88.75
SMILES_DPP-IV 73.12 99.92 100.0 85.32
SELFIES_DPP-IV 79.51 99.89 100.0 87.84
SMILES_PPARγ 73.88 99.97 100.0 84.55
SELFIES_PPARγ 84.62 99.85 100.0 87.66
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generation, we applied a “hypervalent” constraint to SELFIES,
allowing slight modifications in molecules, where one or more
main group elements can carry more than eight electrons in
their valence shell. This approach aimed to align molecules
closely with the optimization data set. However, as shown in
Table 3 SELFIES generation does not achieve 100% validity
due to potential deviations from standard chemical rules under
this constraint. Alternatively, imposing default or octet rule
constraints could alter molecules significantly, potentially
leading to a greater number of complex structures that are
more challenging to synthesize. In summary, our approach
balances generating molecules closer to the fine-tuning data set
structurally, while ensuring validity within acceptable limits.
This study utilized both molecular representations�SMILES

and SELFIES−separately, for comprehensive analysis and
validation.
Figure S1 illustrates representative samples of molecules

generated by the CVAE model for the three targets in both
SMILES and SELFIES format. It also includes QED39 and
SA40 values. QED measures similarity to known drugs (values
between 0 and 1), while SA estimates ease of synthesis (values
between 1 and 10). These parameters were used to filter
compounds with desirable drug-like properties (QED values
between 0.5 and 1) and feasible synthesis potential (SA values
between 1 and 5), optimizing them for subsequent docking
procedures.
Figure 4 depicts the distributions of molecular properties

(MW, log P, TPSA, HBA, HBD, and RotB) for SELFIES-
generated molecules compared to CDK2 inhibitors from the

Figure 4. Distribution of physicochemical properties between generated molecules using SELFIES grammar and fine-tuning set ligands (CDK2).
Panels (A−C) depict kernel density estimate plots for MW, log P, and TPSA, respectively. Panels (D−F) show histograms on a logarithmic scale for
HBA, HBD, and RotB, respectively.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08027
ACS Omega 2024, 9, 43963−43976

43969

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c08027/suppl_file/ao4c08027_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


fine-tuning data set. This analysis highlights the model’s ability
to generate molecules with properties closely resembling those
in the fine-tuning set, underscoring the efficacy of the CVAE
model in capturing and reproducing essential molecular
patterns. For a comprehensive analysis across all targets with
both grammar formats, refer to Figures S3−S7 in the
Supporting Information.
CVAE Model Comparisons with Other Generative

Models. We conducted a comparative analysis between our
model and the contemporary generative AI framework,
REINVENT4.21 Developed as an open-source platform,
REINVENT4 is tailored for creating small molecules in drug
discovery. It uses a combination of RNNs and transformer
models, structured into four subalgorithms. For a fair
comparison, we trained the De Novo Design algorithm using
the ChEMBL22 data set to teach the model molecular
grammar. The tuning phase was performed using the
Molecular Optimization subalgorithm. Since the primary
competitor to generative VAE model is the generative GAN
model, an additional comparative analysis was conducted using
the MOLGEN22 model. Given that both models exclusively
employ the SMILES grammar, the comparison was based on
this string representation. For each run, a set of 30,000
molecules was generated.
Table 4 shows that REINVENT4 and MOLGEN achieve

nearly 100% validity, but there is a notable decrease in the

uniqueness (for both REINVENT4 and MOLGEN) and
novelty (for REINVENT4) of the generated compounds. This
indicates that these models struggled to produce diverse
molecules, resulting in a predominantly similar output. In
contrast, our CVAE model, while having slightly lower validity,
excels in generating more unique and novel compounds.
Analyzing Table 5, we observe that the standard deviations of
the generated compounds’ chemical properties and lengths for
each target with REINVENT4 are consistently higher than
those generated with CVAE. This variance is due to the
inherent nature and methodologies of the two models.
The lower variability in CVAE-generated compounds is

attributed to the model’s dependency on initial conditions,
such as MW, log P, TPSA, HBA, HBD, and RotB. These
conditions are meticulously chosen to align with the statistical
median of the training data set, ensuring that CVAE-generated
molecules exhibit chemical properties similar to most
molecules in the data set, thus minimizing deviation.
Conversely, REINVENT4 operates with fewer constraints,
allowing for broader exploration of chemical space. Examining
the results shown in Tables 1 and 5, it can be observed that the
molecules generated by the MOLGEN model are quite diverse
with respect to the initial data sets in terms of physicochemical
properties. This highlights the model’s difficulty in capturing
the characteristics of the data set, with a stronger emphasis on
generating valid molecules.
As outlined in Section “Conditional Molecular Design”, we

defined selection criteria based on QED values ranging from
0.5 to 1 and synthetic accessibility (SA) values ranging from 1
to 5. Consequently, in graphs depicting these molecular
characteristics (Figure 5), only molecules in the upper-left
quadrant are considered potential candidates. The results (in
terms of number of generated molecules) within these
thresholds are as follows: for REINVENT4, CDK2 = 3059;
DDP-IV = 3446; PPARγ = 2060, for MOLGEN CDK2 =
3076; DDP-IV = 6125; PPARγ = 4643; while for our CVAE
model, they are CDK2 = 14,741; DDP-IV = 20,230; PPARγ =
14,705. These results indicate that the CVAE model generates
a significantly higher number of new molecules conforming to
the selected QED and SA values, suggesting a higher likelihood
of obtaining desirable molecules using the proposed model
compared to REINVENT4. It is worth noting that MOLGEN
generated molecules populate much less the upper-left
quadrant of the plot, with a higher percentage of molecules
falling under the 0.6 value of QED and distributed around
values of SA ranging from 2 to 6. On the other hand, there is
also a large fraction of molecules generated with CVAE falling

Table 4. Comparative Metrics of Generated Compounds for
Each Target Using REINVENT4, MOLGEN, and Our
CVAE Model

data set
validity
(%)

uniqueness
(%)

novelty
(%)

internal diversity
(%)

CDK2
REINVENT4

99.42 14.35 87.36 86.60

DDP-IV
REINVENT4

99.73 14.22 80.00 84.60

PPARγ
REINVENT4

99.79 17.36 71.73 82.47

CDK2MOLGEN 93.56 58.42 100 91.24
DDP-IV
MOLGEN

97.84 56.68 100 90.31

PPARγ MOLGEN 95.70 65.33 100 90.06
CDK2 Our 65.64 100 100 85.83
DDP-IV Our 73.05 100 100 85.52
PPARγ Our 73.88 100 100 84.77

Table 5. Comparative Metrics of Generated Compounds for Each Target Using REINVENT4, MOLGEN, and Our CVAE
Model

data set
length of
molecules MW log P TPSA HBA HBD RotB

length of
rings

CDK2 REINVENT4 44.96 ± 10.55 366.70 ± 84.13 3.25 ± 1.39 82.67 ± 30.34 4.88 ± 1.90 2.05 ± 1.14 4.62 ± 2.41 3.48 ± 0.97
DDP-IV
REINVENT4

46.26 ± 11.52 380.94 ± 88.31 2.54 ± 1.58 79.69 ± 30.41 4.54 ± 1.92 1.48 ± 0.97 5.06 ± 2.49 3.07 ± 1.04

PPARγ REINVENT4 51.16 ± 11.78 434.16 ± 94.57 5.02 ± 1.54 77.05 ± 26.53 4.65 ± 1.77 1.31 ± 0.83 8.40 ± 3.36 3.31 ± 1.08
CDK2MOLGEN 14.64 ± 1.77 121.97 ± 10.53 0.14 ± 0.83 46.33 ± 19.13 2.67 ± 0.96 1.07 ± 0.86 1.32 ± 1.30 3.57 ± 2.03
DDP-IV MOLGEN 14.82 ± 1.69 123.52 ± 7.99 0.63 ± 0.97 32.00 ± 18.87 1.92 ± 0.90 0.72 ± 0.73 1.11 ± 1.21 4.02 ± 2.00
PPARγ MOLGEN 15.47 ± 1.73 123.56 ± 8.10 0.31 ± 0.93 35.10 ± 17.69 2.16 ± 0.89 0.65 ± 0.70 0.80 ± 0.94 4.20 ± 1.28
CDK2 Our 46.98 ± 3.86 398.53 ± 16.54 4.37 ± 0.89 61.90 ± 11.89 3.90 ± 0.83 1.98 ± 0.77 6.77 ± 1.74 3.52 ± 0.80
DDP-IV Our 41.22 ± 3.19 352.93 ± 15.71 3.25 ± 0.88 60.11 ± 12.91 3.35 ± 0.70 2.02 ± 0.71 6.25 ± 1.75 2.79 ± 0.73
PPARγ Our 44.91 ± 3.54 389.24 ± 14.85 5.29 ± 0.82 48.12 ± 12.53 3.04 ± 0.72 1.14 ± 0.69 7.54 ± 1.81 3.16 ± 0.81
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within a suboptimal area, with a higher SA score. This might be
a consequence of the model’s ability to navigate different
regions of the chemical space with respect to REINVENT4,
and to achieve greater novelty. Although such molecules
populate an area of the space which is not necessarily the most
desirable (including molecules with lower synthetic accessi-
bility), they might still represent a source of “novel chemical
matter”, which can be a useful starting point for drug discovery.
Case Studies. In this section, we report and analyze the

results of docking screens against the three selected targets
(CDK2, DPP-IV, and PPARγ) for molecules generated using
either SMILES or SELFIES representations. Molecular

docking enables us to explore the molecular interactions
within the binding pocket of each target. Numerous studies
have utilized molecular docking as an additional filter to assess
newly generated compounds and guide the generative process,
thereby serving as a benchmark in conjunction with the
previously described metrics.41 For each target, we present the
binding mode of two representative compounds selected from
the top scoring ones and displaying relevant interactions with
residues that are known to be crucial for activity.
CDK2. CDK2, a member of the CDK family, is a

ubiquitously expressed serine/threonine kinase that regulates
cell cycle progression and transcription. Dysregulation of

Figure 5. Scatter plots visualizing QED versus SA. Panels (A−C) depict generation results for targets CDK2 (A), DDP-IV (B), and PPARγ (C)
using the REINVENT4 model. Panels (D−F) depict generation results for the same targets using MOLGEN, while panels (G−I) using our model.
Orange points indicate newly generated molecules (novel), while blue points represent molecules from the original data set (original).

Figure 6. (A) Overview of CDK2 structure depicted as a pale green ribbon model (PDB: 4KD1). The cocrystallized ligand dinaciclib is illustrated
as yellow sticks. (B) Predicted binding mode of the generated molecule 1 (represented in SMILES notation, shown as salmon sticks) within CDK2.
(C) Predicted binding mode of the generated molecule 2 (represented in SELFIES notation, shown as cyan sticks) within CDK2. Only amino acid
residues discussed in the main text are visualized as white sticks and labeled. Hydrogen bonds referenced in the text are depicted as dashed black
lines. Docking scores for each molecule are reported in blue.
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CDKs has been linked to various medical conditions,
underscoring their significance in cellular functions and disease
development. The monomeric structure of CDK2 comprises
an N-terminal lobe rich in β-sheets (N lobe), a larger C-
terminal lobe rich in α-helices (C lobe), and a deep cleft at the
interface of the two lobes where ATP binding and catalysis
occur (Figure 6A).42,43 The ATP molecule interacts with three
key residues�Lys33, Glu51, and Asp145�that form a
conserved catalytic triad found in all eukaryotic kinases,
playing a crucial role in positioning the ATP phosphate group
for catalysis. The binding pocket consists of five main regions:
adenine pocket, ribose pocket, hydrophobic region, phosphate
region, and solvent region.44 Figure 6B illustrates the binding
mode of a generated molecule (1) using the SMILES notation
within the CDK2 binding pocket.
The molecule achieved a docking score of −8.573 kcal/mol

and binds within the adenine pocket, particularly in the hinge
region, forming a hydrogen bond between the nitrogen of the
pyrazolidine moiety and Leu83. Asp145, located in the
phosphate pocket, and Gln131 in the ribose pocket, form
hydrogen bonds with the amide moiety, while Lys33 interacts
with the pyridine ring. Figure 6C shows the binding mode of
the generated molecule 2 using SELFIES notation. This
molecule achieved a docking score of −9.752 kcal/mol and is
more complex than the one previously analyzed, further
highlighting the inherent differences in the generative process.
It positions itself within the adenine pocket, forming numerous
hydrogen bonds: one between the nitrogen atom of the
compound and the CO backbone of Leu83, and two involving

the amide group with the backbone of Thr14 and the side
chain of Asp145. The latter is part of the DFG motif
(composed of Asp145, Phe146, and Glu147), which
constitutes a gateway determining the functionally important
DFG-in and DFG-out conformations that influence inhibitor
binding.45

DPP-IV. DPP-IV plays a crucial role in regulating the
biological functions of various peptide hormones, chemokines,
and neuropeptides, notably in maintaining glucose homeo-
stasis.46 The structure of DPP-IV (Figure 7A) comprises two
subunits forming a dimer, each with an α/β-hydrolase domain
and an eight-bladed β-helix domain, connected by a large
cavity accessible via two openings. The α/β-hydrolase domain
features a central β-sheet structure surrounded by α-helices,
which are arranged in contact with the β-helix.47 The eight-
bladed β-helix domain contains eight blades, each composed of
four antiparallel β-structures. The catalytic triad (Ser630,
His740, and Asp708) is positioned at the interface of the
propeller and hydrolase domains, playing a crucial role in
enzymatic activity.48 DPP-IV has five sites: S1, S2, S1′, S2′, and
S2 extensive. The S1 and S2 pockets are essential for inhibitory
activity, while modulation of the S1′, S2′, and S2 extensive
sites can enhance inhibitory potency.49 Figure 7B shows a
molecule generated using SMILES notation (docking score of
−10.478 kcal/mol), fitting well into the binding pocket and
extending to the S2′ pocket, where the pyrrolidine nitrogen
interacts with the CO backbone of Trp629. Critical residues
Glu205 and Glu206, part of the S2 subsite, frequently interact
with the ligand’s amine. The compound generated using

Figure 7. (A) Overview of the DPP-IV structure in its monomeric form depicted as a light-blue ribbon model (PDB: 4A5S). The cocrystallized
ligand 4i is illustrated as green sticks. (B) Predicted binding mode of the generated molecule 1 (represented in SMILES notation, shown as cyan
sticks) within DPP-IV. (C) Predicted binding mode of the generated molecule 2 (represented in SELFIES notation, shown as yellow sticks) within
DPP-IV. Only amino acid residues discussed in the main text are visualized as white sticks and labeled. Hydrogen bonds referenced in the text are
depicted as dashed black lines. Docking scores for each molecule are reported in blue.

Figure 8. (A) Overview of the PPARγ LBD structure depicted as a salmon ribbon model (PDB: 4CI5). The cocrystallized ligand GL479 is
illustrated as cyan sticks. (B) Predicted binding mode of the generated molecule 1 (represented in SMILES notation, shown as magenta sticks)
within PPARγ. (C) Predicted binding mode of the generated molecule 2 (represented in SELFIES notation, shown as orange sticks) within PPARγ.
Only amino acid residues discussed in the main text are visualized as white sticks and labeled. Hydrogen bonds referenced in the text are depicted
as dashed black lines. Docking scores for each molecule are reported in blue.
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SELFIES notation (Figure 7C) is also well positioned within
the binding pocket between the S1 and S2 subunits, achieving
a docking score of −8.804 kcal/mol. Ser630 forms a hydrogen
bond with the sulfonamide oxygen, while Tyr662 interacts with
the amine. Hydrogen bonds with Glu205 and Glu206 are
conserved, and π−π interactions, such as between chlorophe-
nol and Tyr666, are evident.
PPARγ. PPARs, known as lipid and glucose sensors, regulate

insulin sensitivity and energy metabolism. These nuclear
receptors have three distinct subtypes: PPARα, PPARβ/δ,
and PPARγ. Each subtype exhibits unique expression patterns
and functions depending on the specific organ and cell type.50

PPARγ is abundant in adipocytes and macrophages, high-
lighting its crucial role in various metabolic processes. Beyond
adipocyte differentiation and lipid storage, PPARγ modulates
insulin sensitivity and maintains glucose homeostasis, under-
scoring its importance in overall metabolic health.51 PPARγ
has two main functional domains: the central DNA-binding
domain, responsible for recognizing specific DNA sequences,
and the ligand-binding domain (LBD), essential for receptor
activation. The LBD (Figure 8A) consists of 12 α-helices
(H1−H12) highly conserved between human and mouse
orthologs.52 Thiazolidinediones, selective PPARγ agonists,
function as full agonists by forming hydrogen bonds with
PPARγ residues His323, His449, and Tyr473.53 These
interactions stabilize the AF2 surface and the H12 region,
enabling the LBD to bind coactivators and promote full gene
expression.
Figure 8B shows the predicted binding mode of a molecule

generated using SMILES notation, showing a docking score of
−10.850 kcal/mol. The carboxylic acid headgroup is oriented
toward helix 12, while the hydrophobic tail faces helix 5.
Strong hydrogen bonds form between the ligand and Ser289,
His449, His323, and Tyr473, highlighting key interactions for
receptor activation. The molecule generated using SELFIES
notation (docking score = −10.276 kcal/mol) also has a
carboxylic acid headgroup oriented toward helix 12. Hydrogen
bonds with His449, Ser289, and Tyr473 are preserved,
emphasizing these residues’ role in stabilizing the ligand
within the binding pocket. The ligand’s hydrophobic tail is
positioned between helix 3 and the β-sheet.
For each of the above-described therapeutic targets, we

compared the docking scores obtained for the generated
molecules by using our method (both SMILES and SELFIES
notation) and REINVENT4, with the docking scores of known
actives from ChEMBL. In particular we selected the top ranked
500 molecules resulting from each docking screen; the results
are reported in Figures S8−S10 (Supporting Information). In
docking screens, molecules with lower docking scores should
more likely be active and therefore are put at the top of the
hitlist.
As a general trend, the docking score values for known active

compounds span a significantly broader range. Interestingly,
the docking score median values for the molecules generated
with our method using SMILES notation are consistently
lower than the other methods for the three targets, possibly
denoting a higher possibility of desired biological activity.
Lastly, the generated molecules using (i) our method with
SELFIES notation and (ii) REINVENT4 showed similar
performances for CDK2 and PPARγ. Overall, the three
analyzed sets showed remarkably lower docking scores than
the known actives, suggesting that they might include good
binders.

■ DISCUSSION
The drug discovery process involves optimizing multiple
properties to design compounds with the desired character-
istics; however, altering one property through structural
modifications can inadvertently impact others.25 To address
this challenge, we employed a multiobjective generative model
based on the CVAE architecture. CVAE excels at capturing
complex data distributions while seamlessly integrating condi-
tional information.23−25 It extends the VAE framework by
incorporating explicit condition vectors into the latent space
representation, thereby allowing the generation of molecules
with specific properties. Additionally, the model was enhanced
with the LSTM cells for the encoder and decoder (Figure 3).
Overall, the model is easy to implement and can be trained in a
reasonable amount of time and computational power, with the
training procedure needing to be performed only once per data
set, and thus ensuring optimized operational workflows.
We placed particular emphasis on vocabulary optimization

and molecular representation using SMILES and SELFIES.
SELFIES exhibited higher validity, while both achieved high
uniqueness (>99%) and 100% novelty (Table 3), indicating
broad and nonrepetitive molecule generation. A comparison
with the REINVENT4 framework, using the same training set
to generate 30,000 molecules, revealed that while REIN-
VENT4 achieved nearly 100% validity, it exhibited lower
uniqueness and novelty compared to our model (Table 4).
Our CVAE model demonstrated higher structural diversity
despite slightly lower validity, with the generated compounds
closely matching the median properties of the training data set.
In contrast, REINVENT4 showed higher variability in
chemical properties. These differences can be attributed to
the intrinsic nature and methodologies of the models. The
comparison with the MOLGEN framework used the same
initial training set, and 30,000 molecules were generated. While
the model also achieved nearly 100% validity, it produced a
significant number of duplicates, resulting in approximately
55% uniqueness. Additionally, the generated molecules
exhibited structural forms that were substantially different
from those in the training data set. The diversity of generated
compounds may be influenced by the model’s dependence on
initial conditions (MW, log P, TPSA, HBA, HBD, and RotB),
which were chosen to closely align with the statistical median
of the training data set. This ensures that CVAE-generated
molecules exhibit chemical properties similar to most
molecules in the data set, minimizing deviation from the
norm. Conversely, REINVENT4 operates with less stringent
constraints, allowing for a broader exploration of chemical
space.
Finally, molecular docking analysis of the generated

molecules demonstrated that their predicted binding modes
closely resemble those of cocrystallized ligands. This similarity
suggests that our generated molecules can be accommodated
within the active sites of the selected target proteins,
underscoring their potential as biologically relevant com-
pounds. This methodology can be extended to other
therapeutically relevant targets.

■ CONCLUSIONS
In this work, we developed a CVAE model for the efficient and
accurate generation of drug-like molecules. We employed both
SMILES and SELFIES representations to evaluate potential
advantages in terms of performance metrics and overall
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molecule quality. The CVAE model successfully designed
novel compounds, and evaluation metrics such as validity,
uniqueness, novelty, and internal diversity were used to assess
the effectiveness of both SELFIES and SMILES representa-
tions. Our results indicate that the CVAE model is robust and
versatile, capable of generating a diverse array of chemically
valid and novel molecules with high uniqueness.
Future advancements in model architecture could explore

integrating more sophisticated neural network designs or
ensemble approaches to enhance coverage of chemical space
and molecular interactions. Additionally, leveraging transfer
learning or active learning techniques could further improve
the model’s performance, particularly in scenarios with limited
data, such as rare disease research or early stage drug discovery.
Currently, the CVAE is considered a “data-hungry” model,
requiring substantial training data to achieve optimal results.
This characteristic underscores the importance of robust data
collection and preprocessing methodologies to ensure the
model’s effectiveness. Incorporating additional conditioning
properties such as pharmacokinetic parameters, toxicity
profiles, or molecular stability indicators could further refine
the generative process, resulting in molecules with improved
drug-like properties. Furthermore, integrating real-time feed-
back loops from biological assays could enhance the iterative
design process, making the model even more responsive and
precise in generating candidate molecules. These enhance-
ments would collectively contribute to a more efficient and
targeted drug discovery process, expanding the potential
applications of the CVAE model in pharmaceutical research.

■ ASSOCIATED CONTENT
Data Availability Statement
The ChEMBL database (https://www.ebi.ac.uk/chembl/) is a
public domain data resource. Schrödinger Suite (https://www.
schrodinger.com), a licensed software for biomolecular
simulation and analysis, was used for docking studies.
PyMOL (https://pymol.org/), a molecular visualization tool
distributed under a license was used for displaying and
analyzing 3D structures and for figures preparation. The code
and data sets for the case studies are available at the following
link: https://github.com/MODAL-UNINA/Enhancing-De-
Novo-Drug-Design-Across-Multiple-Therapeutic-Targets-with-
CVAE-Generative-Models.git
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c08027.

Representative samples of molecules generated using the
CVAE model for the three targets (Figure S1);
generated compounds and filtered data set for docking
screens (Table S1); enrichment factor calculations for
the three targets (Table S2); ROC curves for DPP-IV,
PPARγ, CDK2 (Figure S2); properties distributions of
calculated physicochemical properties between gener-
ated molecules with the SMILES grammar and fine-
tuning set ligands (DDP-IV) (Figure S3); properties
distributions of calculated physicochemical properties
between generated molecules with the SMILES
grammar and fine-tuning set ligands (PPARγ) (Figure
S4); properties distributions of calculated physicochem-
ical properties between generated molecules with the
SMILES grammar and fine-tuning set ligands (CDK2)
(Figure S5); properties distributions of calculated

physicochemical properties between generated mole-
cules with the SELFIES grammar and fine-tuning set
ligands (DDP-IV) (Figure S6); properties distributions
of calculated physicochemical properties between
generated molecules with the SELFIES grammar and
fine-tuning set ligands (PPARγ) (Figure S7); box plot
comparing the docking score values for the top ranked
500 molecules generated by our method (using SMILES
or SELFIES) and REINVENT4, with respect to CDK2
known actives (Figure S8); box plot comparing the
docking score values for the top ranked 500 molecules
generated by our method (using SMILES or SELFIES)
and REINVENT4, with respect to DPP-IV known
actives (Figure S9), and box plot comparing the docking
score values for the top ranked 500 molecules generated
by our method (using SMILES or SELFIES) and
REINVENT4, with respect to PPARγ known actives
(Figure S10) (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Antonio Lavecchia − Department of Pharmacy, “Drug
Discovery Laboratory”, University of Naples Federico II,
Naples 80131, Italy; orcid.org/0000-0002-2181-8026;
Email: antonio.lavecchia@unina.it

Authors
Virgilio Romanelli − Department of Pharmacy, “Drug
Discovery Laboratory”, University of Naples Federico II,
Naples 80131, Italy

Daniela Annunziata − Department of Mathematics and
Applications “R. Caccioppoli”, University of Naples Federico
II, Naples 80126, Italy

Carmen Cerchia − Department of Pharmacy, “Drug Discovery
Laboratory”, University of Naples Federico II, Naples 80131,
Italy; orcid.org/0000-0002-6631-5000

Donato Cerciello − Department of Mathematics and
Applications “R. Caccioppoli”, University of Naples Federico
II, Naples 80126, Italy

Francesco Piccialli − Department of Mathematics and
Applications “R. Caccioppoli”, University of Naples Federico
II, Naples 80126, Italy

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c08027

Author Contributions
§V.R. and D.A. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
A.L. acknowledges funding from the Italian Ministry of
Education, University and Research (MIUR), Progetti di
Rilevante Interesse Nazionale (PRIN), grant no. 2022P5LPHS.
V.R. acknowledges the PhD scholarship funded by DM351/
2022 PNRR, CUP: E66E22000360006. C.C. acknowledges
PON R&I 2014−2020 Asse IV “Istruzione e Ricerca per il
recupero�REACT-EU” Azione IV.4 “Contratti di Ricerca su
tematiche dell’Innovazione” and support from the University
of Naples “Federico II” (Grant FRA 2022, Line C,
INITIATIVE).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08027
ACS Omega 2024, 9, 43963−43976

43974

https://www.ebi.ac.uk/chembl/
https://www.schrodinger.com
https://www.schrodinger.com
https://pymol.org/
https://github.com/MODAL-UNINA/Enhancing-De-Novo-Drug-Design-Across-Multiple-Therapeutic-Targets-with-CVAE-Generative-Models.git
https://github.com/MODAL-UNINA/Enhancing-De-Novo-Drug-Design-Across-Multiple-Therapeutic-Targets-with-CVAE-Generative-Models.git
https://github.com/MODAL-UNINA/Enhancing-De-Novo-Drug-Design-Across-Multiple-Therapeutic-Targets-with-CVAE-Generative-Models.git
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c08027/suppl_file/ao4c08027_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antonio+Lavecchia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2181-8026
mailto:antonio.lavecchia@unina.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Virgilio+Romanelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniela+Annunziata"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carmen+Cerchia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6631-5000
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Donato+Cerciello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francesco+Piccialli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c08027?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08027?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ REFERENCES
(1) Schneider, G.; Fechner, U. Computer-Based de Novo Design of
Drug-like Molecules. Nat. Rev. Drug Discovery 2005, 4, 649−663.
(2) Schneider, G.; Clark, D. E. Automated de Novo Drug Design:
Are We Nearly There Yet? Angew. Chem., Int. Ed. 2019, 58, 10792−
10803.
(3) Lavecchia, A. Machine-Learning Approaches in Drug Discovery:
Methods and Applications. Drug Discovery Today 2015, 20, 318−331.
(4) Lavecchia, A. Deep Learning in Drug Discovery: Opportunities,
Challenges and Future Prospects. Drug Discovery Today 2019, 24,
2017−2032.
(5) Cerchia, C.; Lavecchia, A. New Avenues in Artificial-Intelligence-
Assisted Drug Discovery. Drug Discovery Today 2023, 28, No. 103516.
(6) Radford, A.; Metz, L.; Chintala, S. In Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks, 4th
International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings; ICLR, 2016.
(7) van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals,
O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio, arXiv:1411.3232.
arXiv.org e-Print archive, 2016. https://arxiv.org/abs/1609.03499.
(8) Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefowicz, R.;
Bengio, S. In Generating Sentences from a Continuous Space, 20th
SIGNLL Conference on Computational Natural Language Learning,
Proceedings; CoNLL, 2016; pp 10−21.
(9) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of the
Size of Drug-like Chemical Space Based on GDB-17 Data. J. Comput.-
Aided Mol. Des. 2013, 27, 675−679.
(10) Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.;
Jiang, H.; Qiao, N.; Zheng, M. Generative Models for de Novo Drug
Design. J. Med. Chem. 2021, 64, 14011−14027.
(11) Romanelli, V.; Cerchia, C.; Lavecchia, A. Deep Generative
Models in the Quest for Anticancer Drugs: Ways Forward. Front.
Drug Discovery 2024, 4, No. 1362956.
(12) Romanelli, V.; Cerchia, C.; Lavecchia, A. Unlocking the
Potential of Generative Artificial Intelligence in Drug Discovery. In
Applications of Generative AI; Lyu, Z., Ed.; Springer International
Publishing: Cham, 2024; pp 37−63.
(13) Gangwal, A.; Lavecchia, A. Unleashing the Power of Generative
AI in Drug Discovery. Drug Discovery Today 2024, 29, No. 103992.
(14) Lavecchia, A. Advancing Drug Discovery with Deep Attention
Neural Networks. Drug Discovery Today 2024, 29, No. 104067.
(15) Mikolov, T.; Karafiát, M.; Burget, L.; Jan, C.; Khudanpur, S. In
Recurrent Neural Network Based Language Model, Proceedings of the
11th Annual Conference of the International Speech Communication
Association; Interspeech, 2010; pp 1045−1048.
(16) Gupta, A.; Müller, A. T.; Huisman, B. J. H.; Fuchs, J. A.;
Schneider, P.; Schneider, G. Generative Recurrent Networks for De
Novo Drug Design. Mol. Inf. 2018, 37, No. 1700111.
(17) Jiang, D.; Wu, Z.; Hsieh, C. Y.; Chen, G.; Liao, B.; Wang, Z.;
Shen, C.; Cao, D.; Wu, J.; Hou, T. Could Graph Neural Networks
Learn Better Molecular Representation for Drug Discovery? A
Comparison Study of Descriptor-Based and Graph-Based Models. J.
Cheminf. 2021, 13, No. 12.
(18) Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular
De-Novo Design through Deep Reinforcement Learning. J. Cheminf.
2017, 9, No. 48.
(19) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-
Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A.
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268−276.
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