
sensors

Article

A Hybrid Lightweight System for Early Attack Detection in the
IoMT Fog

Shilan S. Hameed 1,2, Ali Selamat 1,3,4,5,* , Liza Abdul Latiff 6, Shukor A. Razak 3 , Ondrej Krejcar 5 ,
Hamido Fujita 7,8,* , Mohammad Nazir Ahmad Sharif 9 and Sigeru Omatu 10

����������
�������

Citation: Hameed, S.S.; Selamat, A.;

Abdul Latiff, L.; Razak, S.A.; Krejcar,

O.; Fujita, H.; Ahmad Sharif, M.N.;

Omatu, S. A Hybrid Lightweight

System for Early Attack Detection in

the IoMT Fog. Sensors 2021, 21, 8289.

https://doi.org/10.3390/s21248289

Academic Editors: YangQuan Chen,

Subhas Mukhopadhyay,

Nunzio Cennamo, M. Jamal Deen,

Junseop Lee and Simone Morais

Received: 11 October 2021

Accepted: 2 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Malaysia-Japan International Institute of Technology (MJIIT), University Teknologi Malaysia,
Kuala Lumpur 54100, Malaysia; hameed.s@graduate.utm.my

2 Directorate of Information Technology, Koya University, Koya 44023, Iraq
3 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;

shukorar@utm.my
4 Media and Games Center of Excellence (MagicX), Universiti Teknologi Malaysia,

Skudai 81310, Malaysia
5 Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec

Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; ondrej.krejcar@uhk.cz
6 Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia,

Kuala Lumpur 54100, Malaysia; liza.kl@utm.my
7 i-SOMET Incorporated Association, Morioka 020-0104, Japan
8 Regional Research Center, Iwate Prefectural University, Takizawa 020-0693, Japan
9 Institute of IR4.0, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; mnazir@ukm.edu.my
10 Graduate School, Hiroshima University, Kagamiyama, Higashihiroshima 739-8511, Japan;

omtsgr@gmail.com
* Correspondence: aselamat@utm.my (A.S.); HFujita-799@acm.org (H.F.)

Abstract: Cyber-attack detection via on-gadget embedded models and cloud systems are widely used
for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the
latter has a long detection time. Fog-based attack detection is alternatively used to overcome these
problems. However, the current fog-based systems cannot handle the ever-increasing IoMT’s big data.
Moreover, they are not lightweight and are designed for network attack detection only. In this work,
a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT
fog. In an adaptive online setting, six different incremental classifiers were implemented, namely
a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN),
Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes
(HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with
seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The
results showed that the proposed system worked well on the lightweight fog devices with ~100%
accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria
comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to
the concept drift.

Keywords: IoMT; IoT; hybrid attack detection; incremental learning; machine learning; sensor’s data;
NetFlow data; NIDS; HIDS; fog computing

1. Introduction

Smart health systems such as the Internet of Medical Things (IoMT) and Medical
Cyber–Physical Systems (MCPSs) are a subset of the Internet of Things (IoTs) [1]. They
are gaining popularity via simple fitness gadgets connecting athletes to their smartphone
devices and cloud services [2]. IoMT is a broad technology, incorporating various prod-
ucts and platforms, including implanted devices, eldercare wearables for monitoring [3],
internet-connected clinical equipment, and remote-surgery hospital rooms [4]. Medical

Sensors 2021, 21, 8289. https://doi.org/10.3390/s21248289 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9746-8459
https://orcid.org/0000-0002-8824-6069
https://orcid.org/0000-0002-5992-2574
https://orcid.org/0000-0001-5256-210X
https://doi.org/10.3390/s21248289
https://doi.org/10.3390/s21248289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248289
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248289?type=check_update&version=1


Sensors 2021, 21, 8289 2 of 25

gadgets and devices are classified into four groups, based on their closeness to the patient’s
body and their safety levels [5], as illustrated in Table 1.

Table 1. Types of Medical IoT devices with their descriptions and examples.

Type Description Examples

Implantable

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

gadgets and devices are classified into four groups, based on their closeness to the pa-
tient’s body and their safety levels [5], as illustrated in Table 1. 

Table 1. Types of Medical IoT devices with their descriptions and examples. 

Type Description Examples 
Implantable  

 

They are implanted in human organs. 
Hip implants, cardiac pacemakers, im-

planted insulin pumps, and hearing im-
planted devices. 

Wearable 

 

Humans wear these devices. Smartwatch, fitness devices, etc. 

Ambient 

 

These devices are for monitoring hu-
man behaviors. 

Telemetry devices for patient and remote el-
derly monitoring. 

Stationary 

 

These devices are used inside hospitals. Imaging devices with connectivity, such as 
X-rays and lab devices. 

Medical biosensor devices monitor biological vitals and send enormous volumes of 
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal 
databases, such as cellphones and laptops, or other devices such as routers and access 
points at the fog layer [7]. Subsequently, the pre-processed data are landed in massive 
hospital servers, which can act as the cloud databases. Generally, machine learning tech-
nologies are employed at the cloud or hospital server for attack detection. Fog computing 
is a new technology invented to overcome the cloud’s delay, centralization, and privacy 
concerns. As a result, some cloud computing duties have been moved to the closest area 
to the smart devices. This new concept seems to be very compatible with the medical IoT. 
It speeds up the patient data analytics at the fog layer and protects data from privacy 
vulnerabilities, because the information does not need to be transferred to the cloud 
[6,8,9]. It is undeniable that these innovations contribute to the enhancement of care sys-
tems, thereby providing a healthier life, and an increased life expectancy [1,10]. Neverthe-
less, most clinical and consumer medical equipment are vulnerable to numerous cyber-
attacks [4,11,12]. The causes of these vulnerabilities include hardware and software de-
fects [13], such as the lack of security measures in small personal devices and installing 
outdated operating systems and susceptible apps on clinical devices [12,14]. Moreover, 
software updates are not always possible and applicable for use by healthcare staff, 
whereas hackers are always devising new and sophisticated cyber-attacks. [15]. Further-
more, some recent applications, such as virtual assistants on medical devices, which are 

They are implanted in human organs.
Hip implants, cardiac pacemakers,

implanted insulin pumps, and hearing
implanted devices.

Wearable

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

gadgets and devices are classified into four groups, based on their closeness to the pa-
tient’s body and their safety levels [5], as illustrated in Table 1. 

Table 1. Types of Medical IoT devices with their descriptions and examples. 

Type Description Examples 
Implantable  

 

They are implanted in human organs. 
Hip implants, cardiac pacemakers, im-

planted insulin pumps, and hearing im-
planted devices. 

Wearable 

 

Humans wear these devices. Smartwatch, fitness devices, etc. 

Ambient 

 

These devices are for monitoring hu-
man behaviors. 

Telemetry devices for patient and remote el-
derly monitoring. 

Stationary 

 

These devices are used inside hospitals. Imaging devices with connectivity, such as 
X-rays and lab devices. 

Medical biosensor devices monitor biological vitals and send enormous volumes of 
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal 
databases, such as cellphones and laptops, or other devices such as routers and access 
points at the fog layer [7]. Subsequently, the pre-processed data are landed in massive 
hospital servers, which can act as the cloud databases. Generally, machine learning tech-
nologies are employed at the cloud or hospital server for attack detection. Fog computing 
is a new technology invented to overcome the cloud’s delay, centralization, and privacy 
concerns. As a result, some cloud computing duties have been moved to the closest area 
to the smart devices. This new concept seems to be very compatible with the medical IoT. 
It speeds up the patient data analytics at the fog layer and protects data from privacy 
vulnerabilities, because the information does not need to be transferred to the cloud 
[6,8,9]. It is undeniable that these innovations contribute to the enhancement of care sys-
tems, thereby providing a healthier life, and an increased life expectancy [1,10]. Neverthe-
less, most clinical and consumer medical equipment are vulnerable to numerous cyber-
attacks [4,11,12]. The causes of these vulnerabilities include hardware and software de-
fects [13], such as the lack of security measures in small personal devices and installing 
outdated operating systems and susceptible apps on clinical devices [12,14]. Moreover, 
software updates are not always possible and applicable for use by healthcare staff, 
whereas hackers are always devising new and sophisticated cyber-attacks. [15]. Further-
more, some recent applications, such as virtual assistants on medical devices, which are 

Humans wear these devices. Smartwatch, fitness devices, etc.

Ambient

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

gadgets and devices are classified into four groups, based on their closeness to the pa-
tient’s body and their safety levels [5], as illustrated in Table 1. 

Table 1. Types of Medical IoT devices with their descriptions and examples. 

Type Description Examples 
Implantable  

 

They are implanted in human organs. 
Hip implants, cardiac pacemakers, im-

planted insulin pumps, and hearing im-
planted devices. 

Wearable 

 

Humans wear these devices. Smartwatch, fitness devices, etc. 

Ambient 

 

These devices are for monitoring hu-
man behaviors. 

Telemetry devices for patient and remote el-
derly monitoring. 

Stationary 

 

These devices are used inside hospitals. Imaging devices with connectivity, such as 
X-rays and lab devices. 

Medical biosensor devices monitor biological vitals and send enormous volumes of 
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal 
databases, such as cellphones and laptops, or other devices such as routers and access 
points at the fog layer [7]. Subsequently, the pre-processed data are landed in massive 
hospital servers, which can act as the cloud databases. Generally, machine learning tech-
nologies are employed at the cloud or hospital server for attack detection. Fog computing 
is a new technology invented to overcome the cloud’s delay, centralization, and privacy 
concerns. As a result, some cloud computing duties have been moved to the closest area 
to the smart devices. This new concept seems to be very compatible with the medical IoT. 
It speeds up the patient data analytics at the fog layer and protects data from privacy 
vulnerabilities, because the information does not need to be transferred to the cloud 
[6,8,9]. It is undeniable that these innovations contribute to the enhancement of care sys-
tems, thereby providing a healthier life, and an increased life expectancy [1,10]. Neverthe-
less, most clinical and consumer medical equipment are vulnerable to numerous cyber-
attacks [4,11,12]. The causes of these vulnerabilities include hardware and software de-
fects [13], such as the lack of security measures in small personal devices and installing 
outdated operating systems and susceptible apps on clinical devices [12,14]. Moreover, 
software updates are not always possible and applicable for use by healthcare staff, 
whereas hackers are always devising new and sophisticated cyber-attacks. [15]. Further-
more, some recent applications, such as virtual assistants on medical devices, which are 

These devices are for monitoring human
behaviors.

Telemetry devices for patient and remote
elderly monitoring.

Stationary

Sensors 2021, 21, x FOR PEER REVIEW 2 of 25 
 

 

gadgets and devices are classified into four groups, based on their closeness to the pa-
tient’s body and their safety levels [5], as illustrated in Table 1. 

Table 1. Types of Medical IoT devices with their descriptions and examples. 

Type Description Examples 
Implantable  

 

They are implanted in human organs. 
Hip implants, cardiac pacemakers, im-

planted insulin pumps, and hearing im-
planted devices. 

Wearable 

 

Humans wear these devices. Smartwatch, fitness devices, etc. 

Ambient 

 

These devices are for monitoring hu-
man behaviors. 

Telemetry devices for patient and remote el-
derly monitoring. 

Stationary 

 

These devices are used inside hospitals. Imaging devices with connectivity, such as 
X-rays and lab devices. 

Medical biosensor devices monitor biological vitals and send enormous volumes of 
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal 
databases, such as cellphones and laptops, or other devices such as routers and access 
points at the fog layer [7]. Subsequently, the pre-processed data are landed in massive 
hospital servers, which can act as the cloud databases. Generally, machine learning tech-
nologies are employed at the cloud or hospital server for attack detection. Fog computing 
is a new technology invented to overcome the cloud’s delay, centralization, and privacy 
concerns. As a result, some cloud computing duties have been moved to the closest area 
to the smart devices. This new concept seems to be very compatible with the medical IoT. 
It speeds up the patient data analytics at the fog layer and protects data from privacy 
vulnerabilities, because the information does not need to be transferred to the cloud 
[6,8,9]. It is undeniable that these innovations contribute to the enhancement of care sys-
tems, thereby providing a healthier life, and an increased life expectancy [1,10]. Neverthe-
less, most clinical and consumer medical equipment are vulnerable to numerous cyber-
attacks [4,11,12]. The causes of these vulnerabilities include hardware and software de-
fects [13], such as the lack of security measures in small personal devices and installing 
outdated operating systems and susceptible apps on clinical devices [12,14]. Moreover, 
software updates are not always possible and applicable for use by healthcare staff, 
whereas hackers are always devising new and sophisticated cyber-attacks. [15]. Further-
more, some recent applications, such as virtual assistants on medical devices, which are 

These devices are used inside hospitals. Imaging devices with connectivity, such
as X-rays and lab devices.

Medical biosensor devices monitor biological vitals and send enormous volumes of
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal
databases, such as cellphones and laptops, or other devices such as routers and access points
at the fog layer [7]. Subsequently, the pre-processed data are landed in massive hospital
servers, which can act as the cloud databases. Generally, machine learning technologies
are employed at the cloud or hospital server for attack detection. Fog computing is a new
technology invented to overcome the cloud’s delay, centralization, and privacy concerns.
As a result, some cloud computing duties have been moved to the closest area to the smart
devices. This new concept seems to be very compatible with the medical IoT. It speeds up
the patient data analytics at the fog layer and protects data from privacy vulnerabilities,
because the information does not need to be transferred to the cloud [6,8,9]. It is undeniable
that these innovations contribute to the enhancement of care systems, thereby providing
a healthier life, and an increased life expectancy [1,10]. Nevertheless, most clinical and
consumer medical equipment are vulnerable to numerous cyber-attacks [4,11,12]. The
causes of these vulnerabilities include hardware and software defects [13], such as the lack
of security measures in small personal devices and installing outdated operating systems
and susceptible apps on clinical devices [12,14]. Moreover, software updates are not always
possible and applicable for use by healthcare staff, whereas hackers are always devising
new and sophisticated cyber-attacks [15]. Furthermore, some recent applications, such as
virtual assistants on medical devices, which are not secure, will put the devices at risk [16].



Sensors 2021, 21, 8289 3 of 25

Hence, securing the whole system of the IoMT system requires all the stakeholders to
secure the main three layers of the system. There are different possible attacks on the
IoMT, targeting different system layers. The most recurrent and known attacks against
the device and network layer are given in Table 2. Consequently, developing defensive
systems such as threat intelligence and intrusion detection systems that employ machine
learning technologies are of great importance.

Table 2. The attack targeted devices and networks in IoMT.

Layer Attacks References

Device

Physical sensor/node tampering [17]
False data injection [18,19]

Resource depletion attacks (battery drain, sleep deprivation, buffer overflow) [20]
Side-channel [7,21]

Hardware Trojan [22,23]
Eavesdropping [24]
Ransomware [25,26]

Network

Denial of Service (DoS) and distributed DoS (DDoS) [24,27]
Man in the middle (MIM) [27]

Eavesdropping attack [24]
Replay [27,28]
Botnet [29]

Jamming [14]
Flooding [24,30]

Various strategies in machine learning (ML) have been applied to detect attacks [25,31].
Nevertheless, the attack detection in the IoMT devices is challenging because ML-based
heavy techniques put too much burden on these devices [4]. Therefore, in some studies, the
use of external gadgets is considered as a solution. For instance, in study [21], the authors
installed their model on an external device to detect radio frequency signals received and
sent by medical devices using a multi-layer threat detection, by which all attacks can
be detected. The authors of [32] proposed a statistical-based solution, using an external
hardware device to detect code injection attacks. It was seen that the system did not impose
extra overhead on medical devices. Moreover, edge devices such as Raspberry Pi3 and
deep learning (DL) were used for detecting false data injections in the implantable brain
devices [33]. In another study, multi-layer perceptron (MLP) and field-programmable gate
array (FPGA) chips were used for attack detection in insulin pumps [34]. Furthermore,
authors in [35] used principal component analysis (PCA) and a correlation coefficient (CC)
feature selection to detect false sensor readings using mobile computing. On the other hand,
the researchers of [36] used mobile computing and Markov model-based techniques to inject
false data, using ECG data. Nevertheless, the device’s performance was limited, which
made them unusable for the ever-growing sensor data unless a lightweight incremental
method was used. Therefore, cloud-based attack detection was alternatively proposed
to detect attacks against medical devices. For instance, researchers proposed a cloud-
based system to detect and prevent resource depletion attacks targeting an implantable
cardioverter-defibrillator [37], in which the system was divided into six sub-layers. One
layer was devoted to the ML technique using one-class SVM; however, the experiments on
the actual healthcare data showed that one class SVM could not achieve a super detection
rate, due to insufficient attack samples.

Nevertheless, attack detection at the cloud is characterized by delay, and it is also
not distributed, making it less effective for distributed and time-sensitive systems such
as the medical IoT. Fog-based attack detection is more compatible with the IoMT system.
This is because it does not utilize the medical devices themselves for heavy computation.
Furthermore, it is much closer to the medical devices, leading to an instant response when
there is an attack in a distributed manner. Therefore, a fog-based attack detection that



Sensors 2021, 21, 8289 4 of 25

is distributed and closer to the edge network can solve the above limitations. Related
to the fog-based attack detection in other domains, a group of researchers focused on
implementing deep learning on fog devices for the DDoS attack detection [38–40]. However,
their proposed systems cannot be installed on lightweight devices. In another study,
researchers developed a lightweight model using MLP and network traffic data in the fog
layer [41], showing the effectiveness of the fog-based system for network attack detection.
However, the proposed system was not hybrid. The authors of [42] proposed a fog-
based data intrusion detection system (DataIDS) to detect false data injection in medical
devices. An attack tree was also considered as a threat model of Fog/IoT scenarios with
heterogeneous devices. Their fog-based model was able to reduce the overhead on medical
devices. However, the model was not validated to be lightweight. De Donno et al. [43]
proposed an anti-malware solution that used fog computing to safeguard IoT devices from
DDoS Mirai attacks. They specifically examined the system’s architecture and development,
such as security considerations, components of the system, and their interaction. However,
the proposed approach was a prototype, and it has not been validated using ML techniques.

In the medical IoT, fog-based attack detection has been employed in only a handful of
research [44–46]. Alrashdi et al. [44] proposed a fog computing-based intrusion detection
system using an online sequential extreme learning machine (EOS-ELM) for a smart
medical system. They proved that their distributed fog-based architecture was better than
cloud-computing-based architecture, as it had a lower detection time and a higher detection
rate. Moreover, the authors of [45] built an intrusion detection system for network attack
detection in smart medical systems, utilizing fog–cloud architecture. Their experiment used
an ensemble of Decision Tree, Naïve Bayes, and Random Forest to form XGBoost, whereas
cloud computing and fog computing were used for the training and testing processes.
Moreover, an ensemble incremental learning approach was also employed for the network
intrusion detection of fog devices in the medical IoT, using the NSL-KDD dataset [46]. As
such, the current work was motivated by the outcome of an extensive literature review,
which led to the identification of the following problems.

Firstly, previous studies have focused on either a host-based or network-based attack
detection system. However, having a hybrid detection system is essential for the simulta-
neous detection of malicious sensor and network data. Second, the previous models are
not lightweight, making them incompatible with fog devices. This is because the sensor
and network data of the IoMT system have increased with time (yielding big data), and
hence the fog devices are unable to hold them.

Consequently, it would be beneficial to use data incrementally and adaptively to
avoid a retraining process. Therefore, the main objective of this work is to build a hybrid
lightweight and adaptive fog-based attack detection system for medical devices and their
networks (hybrid system). The system comprises five single online incremental learning
methods and a novel ensemble technique. This is the first work presented that employs
adaptive incremental learning for hybrid attack detection in the IoMT fog, to the best of our
knowledge. In this way, the model can detect early attacks, due to its incremental featured
nature. Furthermore, it uses multi-sensor and NetFlow data, which is more compatible with
medical systems as it does not use payload analysis, thereby avoiding privacy violation.
Hence, the contributions of this work can be summarized as follows:

• A fog-computing architecture for the IoMT system is proposed, representing moderate
to large healthcare organizations.

• We propose a hybrid (for host and network) lightweight fog-based multi-attack de-
tection system with early detection capability, due to adaptive learning techniques.
These methods are novel Weighted Hoeffding Tree Ensemble (WHTE); Incremental
Naïve Bayes (INB); Hoeffding Tree Majority Class (HTMC); Hoeffding Tree Naïve
Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The model is
unique because it was performed by an adaptive incremental setting, which does not
impose any overhead on the devices. Consequently, the proposed model is suitable



Sensors 2021, 21, 8289 5 of 25

for real-world circumstances, with ever-increasing IoT-infected sensors and NetFlow
data with multiple attacks arriving at the fog devices.

Therefore, the advantage of this approach is two-fold: first, the attacks can be iden-
tified as soon as they arrive at the sensors and the network (hybrid and early detection);
second, the detection model uses a short memory (lightweight). Additionally, the detection
system is adaptive to the new incoming sensor and network traffic since it does not forget
the model’s current detection ability. Instead, it updates the model based on the new
incoming data.

The remainder of the paper is organized as follows: the proposed systems, their
methods, and architecture are given in Section 2, while in Section 3, the results and details
of the findings are discussed. Finally, the conclusions along with limitations and future
works are drawn.

2. Materials and Methods
2.1. Proposed Fog-Based Hybrid Attack Detection System

We followed the IEEE standard for the IoMT fog-based system in the proposed
architecture, as illustrated in Figure 1. Any devices with computing and storage capability
such as gateways, embedded devices, and personal servers can be used as a fog node in
this architecture [47]. Furthermore, this functions as the first security point for tiny medical
devices with no security measures [48]. One can see from Figure 1 that the proposed
fog architecture consists of one head cluster, followed by a lower layer of more than one
sub-head cluster, until it reaches the edge devices. Additionally, the analytical ability
decreases from the top to the bottom of the architecture, with increased raw data.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 25 
 

 

impose any overhead on the devices. Consequently, the proposed model is suitable 
for real-world circumstances, with ever-increasing IoT-infected sensors and NetFlow 
data with multiple attacks arriving at the fog devices. 
Therefore, the advantage of this approach is two-fold: first, the attacks can be identi-

fied as soon as they arrive at the sensors and the network (hybrid and early detection); 
second, the detection model uses a short memory (lightweight). Additionally, the detec-
tion system is adaptive to the new incoming sensor and network traffic since it does not 
forget the model’s current detection ability. Instead, it updates the model based on the 
new incoming data. 

The remainder of the paper is organized as follows: the proposed systems, their 
methods, and architecture are given in section two, while in section three, the results and 
details of the findings are discussed. Finally, the conclusions along with limitations and 
future works are drawn. 

2. Materials and Methods 
2.1. Proposed Fog-Based Hybrid Attack Detection System 

We followed the IEEE standard for the IoMT fog-based system in the proposed ar-
chitecture, as illustrated in Figure 1. Any devices with computing and storage capability 
such as gateways, embedded devices, and personal servers can be used as a fog node in 
this architecture [47]. Furthermore, this functions as the first security point for tiny medi-
cal devices with no security measures [48]. One can see from Figure 1 that the proposed 
fog architecture consists of one head cluster, followed by a lower layer of more than one 
sub-head cluster, until it reaches the edge devices. Additionally, the analytical ability de-
creases from the top to the bottom of the architecture, with increased raw data. 

 
Figure 1. The proposed architecture of fog computing-based medical IoT is inspired by the IEEE standard [48]. 

The main framework of the system, combining the architecture and the overall 
flowchart steps of the detection system, is illustrated in Figure 2. As can be seen in Figure 2, 

Figure 1. The proposed architecture of fog computing-based medical IoT is inspired by the IEEE standard [48].

The main framework of the system, combining the architecture and the overall
flowchart steps of the detection system, is illustrated in Figure 2. As can be seen in
Figure 2, the red unlocked icon indicates missing security protocols at the edge devices
and network connections among edge devices and fog nodes. Hence, the devices at the



Sensors 2021, 21, 8289 6 of 25

edge layer and the network connection between them and the fog layer are vulnerable to
multiple cyber-attacks (details are given in Section 2.2), due to the lack of security measures
at that layer. Therefore, the hackers can easily break the system and flood it with attacks.
Furthermore, the sensor data which is transmitted by the network to the fog layer in
seconds is infected by such attacks. As such, the steps of the proposed framework are
summarized as follows:

• Collecting and extracting the sensor and network data at the edge of the IoMT system.
The extracted datasets are explained in detail in Section 2.2.

• Preprocessing the collected data to remove noises, followed by utilizing a sliding
window to set the ML classifiers. By this, the memory is updated whenever a new
set of samples arrives, and set to the sliding window. The sliding window was set to
one thousand records and the memory frequency was set to five thousand records at
a time.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 25 
 

 

the red unlocked icon indicates missing security protocols at the edge devices and net-
work connections among edge devices and fog nodes. Hence, the devices at the edge layer 
and the network connection between them and the fog layer are vulnerable to multiple 
cyber-attacks (details are given in Section 2.2), due to the lack of security measures at that 
layer. Therefore, the hackers can easily break the system and flood it with attacks. Fur-
thermore, the sensor data which is transmitted by the network to the fog layer in seconds 
is infected by such attacks. As such, the steps of the proposed framework are summarized 
as follows: 
• Collecting and extracting the sensor and network data at the edge of the IoMT sys-

tem. The extracted datasets are explained in detail in Section 2.2. 
• Preprocessing the collected data to remove noises, followed by utilizing a sliding win-

dow to set the ML classifiers. By this, the memory is updated whenever a new set of 
samples arrives, and set to the sliding window. The sliding window was set to one 
thousand records and the memory frequency was set to five thousand records at a time. 

 
Figure 2. The framework of the proposed hybrid attack detection system. 

Thus, when many instances are used, they will be discarded from memory and re-
placed by the following five thousand records. The arc with the update label in Figure 2 
indicates restarting the process continuously, once data arrives. Then, a combination of 
single incremental classifiers with the ensemble WHTE is used for the purpose of learning 
and prediction, in which a prequential learning approach is employed to include every 
single sample for training and testing. The employed machine learning classifiers, their 
parameter tuning, and further details, are given below: 
1. Incremental K-Nearest Neighbour (IKNN): This is an incremental modified version of 

the original K-Nearest Neighbour, a supervised machine learning technique for classi-
fication and regression problems. It uses the concept of similarities (also known as dis-
tance), such as finding the distance between two points or two objects on a surface. The 
KNN technique assumes that the samples close to each other belong to the same class. 
The parameters to be fed to this technique are the K-value, and the number of nearest 
neighbours that decide whether an instance belongs to those nearest neighbors’ class. 

Figure 2. The framework of the proposed hybrid attack detection system.

Thus, when many instances are used, they will be discarded from memory and
replaced by the following five thousand records. The arc with the update label in Figure 2
indicates restarting the process continuously, once data arrives. Then, a combination of
single incremental classifiers with the ensemble WHTE is used for the purpose of learning
and prediction, in which a prequential learning approach is employed to include every
single sample for training and testing. The employed machine learning classifiers, their
parameter tuning, and further details, are given below:

1. Incremental K-Nearest Neighbour (IKNN): This is an incremental modified version
of the original K-Nearest Neighbour, a supervised machine learning technique for
classification and regression problems. It uses the concept of similarities (also known
as distance), such as finding the distance between two points or two objects on a
surface. The KNN technique assumes that the samples close to each other belong to
the same class. The parameters to be fed to this technique are the K-value, and the
number of nearest neighbours that decide whether an instance belongs to those nearest
neighbors’ class. Another parameter is the mathematical method for calculating the



Sensors 2021, 21, 8289 7 of 25

distance. In this work, the value of N was set to 10, and the mathematical approach
was a linear model. Figure 3 illustrates how IKNN predicts new samples when they
arrive at the system. If we take a smaller circle, in which the K value is five, the labels
of the five nearest samples are examined. Then, based on the most repeatable class, it
will decide the class of the new sample. Therefore, when K is five in the smaller circle,
the incoming sample will be considered a threat, because the nearest samples are at
least three. However, if the K value is 11, as shown in the larger circle, the incoming
new sample will be considered normal, because there are six near-normal samples.

2. Incremental Naïve Bayes: Naïve Bayesian classification is a common classification
system used to analyze large sizes of data. In this work, Naïve Bayes incremental
learning is used to handle massive datasets on resource-limited fog devices. The
method’s success is that it can be supplemented with updated data without storing
the entire dataset in the memory. Because of its incremental feature, the algorithm is
well suited for detecting and classifying attacks quickly and accurately [49]. The basic
formula of Naïve Bayes is as follows:

P(y|X) =
P(X|y)P(y)

P(X)
(1)

where, y is the class, which takes values considering the type of attacks and normal
class, and X is the list of features, in which X can be a list of components identified as
X = {x1, x2, x3, x4 . . . xn}. If this list is replaced by the variable X, the equation can be
updated as follows:

P(y|x1, . . . , xn) =
P(x1|y) . . . . . . P(xn|y)P(y)

P(x1) . . . P(xn)
(2)

Since the denominator of the above equation remains static, we can remove it and
proportionally inject it into the equation as follows:

P(y | x1, . . . , xn) ∝ P(y)
n

∏
i=1

P(xi | y) (3)

This is for binary classes; however, we have eight classes in our datasets. Hence, the
class with the highest probability or likelihood should be chosen by:

y = argmaxyP(y)
n

∏
i=1

P(xi | y) (4)

From Equation (4), we can predict the class value for a list of features.
3. Hoeffding Tree-based classifiers: Different forms of the original Hoeffding Tree (HT)

are implemented in this study. The details of these classifiers are explained below:

• Hoeffding Tree-Based Majority Class (HTMC): Conventional tree-based classi-
fiers have a significantly restricted number of training instances, because they
presume that the real data should be saved in memory at once [50]. Hoeffding
Tree (HT) is an efficient and straightforward tree-based classifier, designed to
stream big data. This tree-based classifier assumes a constant distribution of data.
This method works based on Hoeffding Bound’s theory. The Hoeffding Tree
has a theoretically appealing feature that other incremental tree-based learners
do not have. It provides a solid efficiency guarantee. HT is initially designed
for big data streams. Hoeffding Tree-based Majority Class (HTMC) is a form of
HT that uses the majority class technique to decide about the classes of the tree
branches [51].

• Hoeffding Tree Naïve Bayes: There are some efforts to improve the accuracy of
this classifier by using other techniques at the HT leaves. Using Naïve Bayes
classifiers rather than the majority class classifier improves the HT classification



Sensors 2021, 21, 8289 8 of 25

performance. Most of the class approach utilizes information on classes patterns,
only to categorize a test sample without searching for feature values. This
only makes use of a small portion of the information given, and it is a rough
estimation of the pattern of instances. However, Naïve Bayes considers both the
prior distributions of the classes and the likelihoods of a feature, given the class.
This allows for far better utilization of the available information [51]. The sample
is traversed from the root to the leaf, to classify new samples. It uses the splitting
test and feature values to establish a correct path. When the sample reaches
any leaf, it will classify the sample. Here, the classifier will be a Naïve Bayes
classifier. It uses information gained during the classification process without
adding overhead [51].

• Hoeffding Tree Naïve Bayes Adaptive (HTNBA): At the presence of noise in
cyber-attack infected datasets, Naïve Bayes at leaves may not tolerate well, and
its performance is not better than the HTMC. Therefore, a hybrid of majority class
and Naïve Bayes is proposed to overcome both techniques’ shortcomings, called
Hoeffding Tree Naïve Bayes Adaptive (HTNBA) [52]. The HTNBA method uses
Naïve Bayes Adaptive to classify the instances based on their discriminative
features. It also uses the Gain value to decide the class of the incoming instances
(Holmes et al., 2005). After predicting the new instances by both Naïve Bayes
and the majority class, the hybrid method chooses one of them based on their
prediction value.

4. Weighted Majority Hoeffding Tree Ensemble (WHTE): single classifiers which were
explained previously may not work similarly well on different types of input data.
Therefore, their ensemble can be used to maximize their performance and minimize
their weaknesses. Since sensor and network data change in their features and sample
statistics, applying one type of classifier may not always bring the best result. There-
fore, we propose a new ensemble approach, combining a group of single classifiers;
specifically, the different types of Hoeffding Tree classifiers (HTMC, HTNB, HTNBA).
The ensemble approach uses the weighted majority approach, which initially consid-
ers all the classifier’s decisions [53]. However, it will punish a classifier once they
make a wrong decision, by not considering their decisions to be as important as they
were [54]. All experts (classifiers) will have a vote, and initially these will be equally
weighted. Then, if one of those experts (classifiers) makes a mistake, their votes
will be cut down in proportional value, and weighting will be used for the overall
performance. Then, the final performance is optimal because the mistakes made by
the entire algorithm will be close to the constant mistake made by the best technique.
When the expert makes a mistake in the original weighted majority algorithm, the
weighted value will be multiplied by 1

2 . Hence, the error bound equation is as follows:

M ≤ 2.41(m + log N) (5)

where m is the number of mistakes made by the best classifier, M is the number
of errors made by the ensemble, and N is the number of classifiers in the pool.
One can see that the minimum constant factor (coefficient of the right-hand side
of Equation (5)) is greater than two. However, this can be reduced by performing
the randomized form of weighted majority algorithm in which Beta (β) is used as
a penalty value to minimize the constant value to be close to one. Therefore, in our
WHTE algorithm, the error will be counted as follows:

M ≤
m ln

(
1
β

)
+ ln N

1− β
(6)



Sensors 2021, 21, 8289 9 of 25

In our study, we have set the value of β to be 0.5. Hence, the value of M for each
iteration or a sample at a time will be counted by:

M ≤ 1.39m + 2 ln N (7)

A simplified flowchart of our ensemble method is presented in Figure 4, whereas the
pseudo code of the entire system is shown in Algorithm 1.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 25 
 

 

Another parameter is the mathematical method for calculating the distance. In this 
work, the value of N was set to 10, and the mathematical approach was a linear model. 
Figure 3 illustrates how IKNN predicts new samples when they arrive at the system. If 
we take a smaller circle, in which the K value is five, the labels of the five nearest sam-
ples are examined. Then, based on the most repeatable class, it will decide the class of 
the new sample. Therefore, when K is five in the smaller circle, the incoming sample 
will be considered a threat, because the nearest samples are at least three. However, if 
the K value is 11, as shown in the larger circle, the incoming new sample will be con-
sidered normal, because there are six near-normal samples. 

 
Figure 3. The IKNN method predicts new data as an attack or normal, based on different K-values 
and distance equations. 

2. Incremental Naïve Bayes: Naïve Bayesian classification is a common classification 
system used to analyze large sizes of data. In this work, Naïve Bayes incremental 
learning is used to handle massive datasets on resource-limited fog devices. The 
method’s success is that it can be supplemented with updated data without storing 
the entire dataset in the memory. Because of its incremental feature, the algorithm is 
well suited for detecting and classifying attacks quickly and accurately [49]. The basic 
formula of Naïve Bayes is as follows: 𝑃(𝑦|𝑋) = 𝑃(𝑋|𝑦)𝑃(𝑦)𝑃(𝑋)  (1)

where, 𝑦 is the class, which takes values considering the type of attacks and normal class, 
and 𝑋 is the list of features, in which X can be a list of components identified as 𝑋 =ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ … 𝑥ሽ. If this list is replaced by the variable 𝑋, the equation can be updated 
as follows: 𝑃(𝑦|𝑥ଵ, … , 𝑥) = 𝑃(𝑥ଵ|𝑦) … . . 𝑃(𝑥|𝑦)𝑃(𝑦)𝑃(𝑥ଵ) … 𝑃(𝑥)  (2)

Since the denominator of the above equation remains static, we can remove it and 
proportionally inject it into the equation as follows: 

𝑃(𝑦 ∣ 𝑥ଵ, … , 𝑥) ∝ 𝑃(𝑦) ෑ  
ୀଵ 𝑃(𝑥 ∣ 𝑦) (3)

Figure 3. The IKNN method predicts new data as an attack or normal, based on different K-values
and distance equations.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 25 
 

 

once they make a wrong decision, by not considering their decisions to be as im-
portant as they were [54]. All experts (classifiers) will have a vote, and initially these 
will be equally weighted. Then, if one of those experts (classifiers) makes a mistake, 
their votes will be cut down in proportional value, and weighting will be used for 
the overall performance. Then, the final performance is optimal because the mistakes 
made by the entire algorithm will be close to the constant mistake made by the best 
technique. When the expert makes a mistake in the original weighted majority algo-
rithm, the weighted value will be multiplied by ½. Hence, the error bound equation 
is as follows: 𝑀  2.41(𝑚  log 𝑁) (5)

where 𝑚 is the number of mistakes made by the best classifier, 𝑀 is the number of errors 
made by the ensemble, and 𝑁 is the number of classifiers in the pool. 

One can see that the minimum constant factor (coefficient of the right-hand side of 
Equation (5)) is greater than two. However, this can be reduced by performing the ran-
domized form of weighted majority algorithm in which Beta (β) is used as a penalty value 
to minimize the constant value to be close to one. Therefore, in our WHTE algorithm, the 
error will be counted as follows: 

𝑀  𝑚 ln ൬1𝛽൰  ln 𝑁1 െ 𝛽    (6)

In our study, we have set the value of 𝛽 to be 0.5. Hence, the value of 𝑀 for each 
iteration or a sample at a time will be counted by: 𝑀  1.39𝑚  2ln 𝑁 (7)

A simplified flowchart of our ensemble method is presented in Figure 4, whereas the 
pseudo code of the entire system is shown in Algorithm 1. 

 
Figure 4. The flowchart of the proposed ensemble WHTE method. 

  

Figure 4. The flowchart of the proposed ensemble WHTE method.



Sensors 2021, 21, 8289 10 of 25

Algorithm 1. Hybrid Lightweight Attack Detection System

Input
Si as a set of single sensor datasets, N as NetFlow dataset,
Cj as set of single incremental classifiers (INB, IKNN, HTMC, HTNB, HTNBA),
and W as ensemble WHTE

Output
Pk set of performance metrics (average accuracy, average memory, average CPU time, kappa
statistic, precision, recall, concept drift sensitivity)

Begin
At fog devices close to the edge in framework 1
Collect infected sensor data S in Si
Collect infected NetFlow N
for N and each S in Si

while there is data record in S and N
Do

Pre-process the data
Set the sliding window to 1K records
Set the maximum memory to 5K records
Set the initial parameters of each C classifier in Ci
Set the parameters of each C in W

for each record in S and N
Do

Prequential train and test using W and each C in Ci
Compute each P in Pk
return average Pk
Update parameters of W and each C in Ci

end for
end while

for each C in Ci and W
for each P in Pk

Compute one-way ANOVA
Assume that all population means are equal

Initialise p value
if (p < 0.05).
then reject

else accept
return statistical metrics
end if

end for
end for

end for
End

2.2. Sensor and Network Datasets for IoMT Fog

In this study, we used seven sensors and telemetry data infected with multiple attacks
for the host attack detection, whereas for the network detection, NetFlow data of the same
fog-oriented framework was used. The datasets were created in a real environment of an
IoT network, such as the fog-based architecture presented in Section 2.1. Therefore, the
dataset represents the heterogeneous nature of the IoT system. Both sensor and network
data were extracted from the same fog-based architecture while infected by the recent
attacks. The details of the extracted datasets are as follows:

1. ToN-IoT: The first form of the dataset was a collection of sensors datasets gathered
from the seven different sensors. It held data of about seven IoT cyber-attacks with
legitimate device data. Each dataset had different features on the devices. The total
samples of all datasets were 401,119 (fridge: 59,944, Garage door: 59,587, GPS: 58,960,
Modbus: 51,106, Motion light: 59,488, Thermostat: 52,774, Weather: 59,260). The



Sensors 2021, 21, 8289 11 of 25

attacks in this dataset were (backdoor, distributed denial of service (DDoS), injection,
password, ransomware, scanning, and cross-site scripting (XSS)) [55]. Figure 5a shows
the number of attack samples among all the sensor datasets.

2. NetFlow_ToN-IoT: The second form of dataset was the network traffic of the IoT
system, in which network traffic packets were transformed to NetFlow files [56].
NetFlow format network traffic was less heavy than its payloads (packets) because it
used the traffic features, rather than the content of the packets. This dataset consisted
of 14 features and 1,379,274 samples. This big data included all the attacks which
existed in its sensor telemetry datasets, such as injection, DDoS, scanning, password,
XSS, backdoor, and ransomware, with another two attacks of denial of service (DoS),
and man in the middle (MiM), which mainly target the network layer. Additionally,
the attacks at NetFlow had a different number of samples, compared with those in the
sensor dataset. Figure 5b shows the number of attack samples in the NetFlow dataset.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 25 
 

 

1. ToN-IoT: The first form of the dataset was a collection of sensors datasets gathered 
from the seven different sensors. It held data of about seven IoT cyber-attacks with 
legitimate device data. Each dataset had different features on the devices. The total 
samples of all datasets were 401,119 (fridge: 59,944, Garage door: 59,587, GPS: 58,960, 
Modbus: 51,106, Motion light: 59,488, Thermostat: 52,774, Weather: 59,260). The at-
tacks in this dataset were (backdoor, distributed denial of service (DDoS), injection, 
password, ransomware, scanning, and cross-site scripting (XSS)) [55]. Figure 5a 
shows the number of attack samples among all the sensor datasets. 

2. NetFlow_ToN-IoT: The second form of dataset was the network traffic of the IoT sys-
tem, in which network traffic packets were transformed to NetFlow files [56]. NetFlow 
format network traffic was less heavy than its payloads (packets) because it used the 
traffic features, rather than the content of the packets. This dataset consisted of 14 fea-
tures and 1,379,274 samples. This big data included all the attacks which existed in its 
sensor telemetry datasets, such as injection, DDoS, scanning, password, XSS, backdoor, 
and ransomware, with another two attacks of denial of service (DoS), and man in the 
middle (MiM), which mainly target the network layer. Additionally, the attacks at Net-
Flow had a different number of samples, compared with those in the sensor dataset. 
Figure 5b shows the number of attack samples in the NetFlow dataset. 

 

 
Figure 5. Number of attack samples in the sensor datasets (a) and NetFlow dataset (b). 

  

Figure 5. Number of attack samples in the sensor datasets (a) and NetFlow dataset (b).

2.3. Evaluation Metrics

• Average accuracy: This is the average of all the sliding windows’ accuracies at the end
of the analysis. In incremental learning, accuracy is not calculated in this way in batch
learning, because there is a high possibility for the samples to fall within a single class
in one sliding window.



Sensors 2021, 21, 8289 12 of 25

Average accuracy =
∑i acc

N
(8)

In which acc is the accuracy for the samples in each i sliding window over N (the total
number of the sliding windows), whereas acc can be defined by:

acc =
Cc
M

(9)

where Cc is the correctly classified instance, and M is the total number of samples at
that time.

• Average time (s): The average CPU time taken by the incremental learning method for
each sliding window dataset’s training and evaluation process.

• Precision: Is the ratio of true positive over predicted positive samples.
• Recall: This is the ratio of true positive over total positives in the dataset.
• Kappa Static: It measures how well the samples identified by the classifier resembled

the data labeled as ground truth, while adjusting for the performance of a random-
ized classifier as evaluated by anticipated accuracy. It will add more information to
the accuracy of a model, especially when the incoming samples are more skewed
(imbalanced).

• ANOVA test: To evaluate the significant differences among the performances of the
used classifiers, one-way ANOVA is used.

2.4. Experimental Environment

The proposed system was designed for an IoMT framework, as presented in Section 2.1
The detection system can be installed on any device or agent that is close to the edge of
the network. Hence, the used devices in our experiment were set to be at the lower tier of
the fog layer. An example of that is a PC with Corei5 5200U (4 CPUs ≈ 2.2 GHz, and 8 GB
memory). Furthermore, we set the window size to 5000 samples, which was compatible
with lightweight devices. The incremental data collection and analysis simulation was
performed using well-known machine learning tools, such as Python and the associated
incremental learning package scikit-multiflow, combined with a java-based MOA package.

3. Results and Discussion
3.1. Host-Based Attack Detection

The detection system needed to simultaneously use all the IoT sensor readings to
capture any malicious readings for the host-based attack detection. Hence, the readings of
the infected IoT sensors were used in the detection system, and their results were analyzed
and compared accordingly. It was seen that the proposed model was able to achieve a
high average accuracy close to 100% for all the datasets, indicating that the system could
detect all the attacks at the same time. It can be noticed from Table 3 that all the classifiers
performed well, where the bolded accuracies are the highest ones. However, the ensemble
WHTE was generally better than the other methods. Additionally, the INB and HTNBA
performed better than the IKNN, HTNB, and HTMC.



Sensors 2021, 21, 8289 13 of 25

Table 3. The average accuracy, CPU time, and memory usage of the incremental learning methods applied on the ToNT-
IoT dataset.

Individual Sensor Dataset Method Average Accuracy (%) Average Time (s) Average Memory (MiB)

IoT-fridge

IKNN 99.72 8.96 2.8
INB 99.93 3.16 1.80

HTMC 99.42 1.97 0.61
HTNB 99.92 2.08 0.61

HTNBA 99.92 2.04 0.61
WHTE 99.95 5.58 2.90

Garage door

IKNN 99.80 9.08 2.51
INB 99.98 2.78 2.30

HTMC 98.19 2.37 0.71
HTNB 99.98 3.30 0.71

HTNBA 99.96 2.28 0.71
WHTE 99.99 8.68 3.99

GPS tracker

IKNN 99.79 9.32 2.46
INB 99.34 3.25 2.53

HTMC 90.34 32.32 0.79
HTNB 99.73 42.13 0.79

HTNBA 99.76 25.96 0.79
WHTE 99.80 80.15 4.19

Modbus

IKNN 100.00 9.85 3.16
INB 100.00 2.70 2.82

HTMC 100.00 0.67 0.48
HTNB 100.00 1.15 0.48

HTNBA 100.00 1.05 0.48
WHTE 100.00 3.74 3.87

Motion light

IKNN 99.80 10.59 3.04
INB 98.42 3.92 3.23

HTMC 96.55 13.60 0.95
HTNB 96.55 13.55 0.95

HTNBA 99.87 11.78 0.95
WHTE 99.90 40.46 5.25

Thermostat

IKNN 99.90 8.38 3.00
INB 100.00 2.96 2.94

HTMC 100.00 1.52 0.72
HTNB 100.00 2.05 0.72

HTNBA 100.00 1.90 0.72
WHTE 100.00 5.67 4.45

Weather sensor

IKNN 99.82 9.51 2.75
INB 99.95 2.83 1.81

HTMC 99.98 1.24 0.54
HTNB 99.95 1.75 0.54

HTNBA 99.97 1.58 0.54
WHTE 100.0 5.83 3.68

Since the proposed system used incremental learning instead of batch learning, it is
informative to show how each technique in the system reacted with increasing instances.
This helped in identifying the accuracy for each sliding window. Therefore, the GPS-Tacker
sensor dataset was chosen and analyzed to observe the range of the total accuracy for
each classifier, and to notice how they were updated by adding up the new samples in
the sliding windows. It was seen from Figure 6 that the INB and HTNBA performance
fluctuated during different sample frequencies, showing that these two techniques were not
stable, and were affected by concept drift in the data. Nevertheless, the other techniques,
especially the WHTE ensemble, remained stable throughout the sample frequencies.



Sensors 2021, 21, 8289 14 of 25Sensors 2021, 21, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 6. The incremental accuracy of the applied methods for each subset of data samples per slide 
window for the GPS-tracker sensor dataset. 

Compared with the models reported in the literature, the system proposed herein 
showed a lightweight nature. It was seen from the results of the CPU time complexity 
shown in Figure 7 that the average memory usage was located between 0.48 and 0.95 MiB 
for all the datasets using the HTMC, HTNB, and HTNBA methods, whereas it was be-
tween 2.46 and 3.16 MiB, and between 1.80 and 3.16 MiB for the IKNN, and INB methods, 
respectively. This memory usage was seen to be slightly larger for the WHTE algorithm, 
(2.9 to 5.25 MiB) because it was an ensemble of three techniques. Nevertheless, the maxi-
mum memory usage was less than 6 MiB, making it suitable for the lightweight nature of 
the fog devices. This ensures that the system can be installed on a mobile phone or a rasp-
berry Pi device without adding overhead on the device. 

 
Figure 7. The comparison of the proposed methods in terms of average memory usage among all 
the datasets. 

In addition to the lightweight feature of the proposed system, the system needs to 
rapidly detect the attacks in an early phase. Hence, the techniques were evaluated using 
the CPU time in terms of time complexity. It was seen that due to the adaptive sliding 
window, the processing time of the methods was significantly low, as shown in Figure 8. 
It is noteworthy that the average CPU time was found to be between 1.05 and 11 s. This 

0 10,000 20,000 30,000 40,000 50,000 60,000

65

70

75

80

85

90

95

100

105

110

In
cr

em
ne

ta
l a

cc
ur

ac
y 

(%
)

Incremental sensor data instances

 IKKN
 INB
 HTMC
 HTNB
 HTNBA
 WHTE

IKNN INB HTMC HTNB HTNBA WHTE
0

1

2

3

4

5

6

Av
er

ag
e 

m
em

or
y 

(M
iB

)

Classifier

 IoT-fridge  Garage door  GPS tracker
 Modbus     Motion light   Thermostat
 Weather sensor

Figure 6. The incremental accuracy of the applied methods for each subset of data samples per slide
window for the GPS-tracker sensor dataset.

Compared with the models reported in the literature, the system proposed herein
showed a lightweight nature. It was seen from the results of the CPU time complexity
shown in Figure 7 that the average memory usage was located between 0.48 and 0.95 MiB
for all the datasets using the HTMC, HTNB, and HTNBA methods, whereas it was between
2.46 and 3.16 MiB, and between 1.80 and 3.16 MiB for the IKNN, and INB methods,
respectively. This memory usage was seen to be slightly larger for the WHTE algorithm, (2.9
to 5.25 MiB) because it was an ensemble of three techniques. Nevertheless, the maximum
memory usage was less than 6 MiB, making it suitable for the lightweight nature of the fog
devices. This ensures that the system can be installed on a mobile phone or a raspberry Pi
device without adding overhead on the device.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 6. The incremental accuracy of the applied methods for each subset of data samples per slide 
window for the GPS-tracker sensor dataset. 

Compared with the models reported in the literature, the system proposed herein 
showed a lightweight nature. It was seen from the results of the CPU time complexity 
shown in Figure 7 that the average memory usage was located between 0.48 and 0.95 MiB 
for all the datasets using the HTMC, HTNB, and HTNBA methods, whereas it was be-
tween 2.46 and 3.16 MiB, and between 1.80 and 3.16 MiB for the IKNN, and INB methods, 
respectively. This memory usage was seen to be slightly larger for the WHTE algorithm, 
(2.9 to 5.25 MiB) because it was an ensemble of three techniques. Nevertheless, the maxi-
mum memory usage was less than 6 MiB, making it suitable for the lightweight nature of 
the fog devices. This ensures that the system can be installed on a mobile phone or a rasp-
berry Pi device without adding overhead on the device. 

 
Figure 7. The comparison of the proposed methods in terms of average memory usage among all 
the datasets. 

In addition to the lightweight feature of the proposed system, the system needs to 
rapidly detect the attacks in an early phase. Hence, the techniques were evaluated using 
the CPU time in terms of time complexity. It was seen that due to the adaptive sliding 
window, the processing time of the methods was significantly low, as shown in Figure 8. 
It is noteworthy that the average CPU time was found to be between 1.05 and 11 s. This 

0 10,000 20,000 30,000 40,000 50,000 60,000

65

70

75

80

85

90

95

100

105

110

In
cr

em
ne

ta
l a

cc
ur

ac
y 

(%
)

Incremental sensor data instances

 IKKN
 INB
 HTMC
 HTNB
 HTNBA
 WHTE

IKNN INB HTMC HTNB HTNBA WHTE
0

1

2

3

4

5

6

Av
er

ag
e 

m
em

or
y 

(M
iB

)

Classifier

 IoT-fridge  Garage door  GPS tracker
 Modbus     Motion light   Thermostat
 Weather sensor

Figure 7. The comparison of the proposed methods in terms of average memory usage among all
the datasets.

In addition to the lightweight feature of the proposed system, the system needs to
rapidly detect the attacks in an early phase. Hence, the techniques were evaluated using
the CPU time in terms of time complexity. It was seen that due to the adaptive sliding
window, the processing time of the methods was significantly low, as shown in Figure 8.
It is noteworthy that the average CPU time was found to be between 1.05 and 11 s. This



Sensors 2021, 21, 8289 15 of 25

was from 8.38 to 25.96 s, 0.67 to 32.32 s, 1.15 to 42.11 s, 2.70 to 3.90 s and 3.74 to 80.15 s for
the HTNBA, IKNN, HTMC, HTNB, INB, and WHTE, respectively, among all the datasets.
Therefore, the HTMC method recorded the lowest single CPU time. However, the INB
method showed the lowest range of CPU time. Nevertheless, taking the method time into
account, the detection time of all attacks was within a few seconds of their first appearance
in the IoMT system, as shown in Table 3.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25 
 

 

was from 8.38 to 25.96 s, 0.67 to 32.32 s, 1.15 to 42.11 s, 2.70 to 3.90 s and 3.74 to 80.15 s for 
the HTNBA, IKNN, HTMC, HTNB, INB, and WHTE, respectively, among all the datasets. 
Therefore, the HTMC method recorded the lowest single CPU time. However, the INB 
method showed the lowest range of CPU time. Nevertheless, taking the method time into 
account, the detection time of all attacks was within a few seconds of their first appearance 
in the IoMT system, as shown in Table 3. 

 
Figure 8. The comparison of the proposed classifiers in terms of average CPU time among all the 
datasets. 

To further study the proposed technique tolerance to the increased sample size, one 
can investigate the CPU time values. It is well known that increasing the number of in-
stances acts upon increasing the CPU time. We chose the Modbus sensor dataset for this 
illustration, because all the methods were similarly accurate when applied to that dataset. 
One can see from Figure 9 that the computation time of the methods increased when the 
Modbus sensor learning instances arrived incrementally. This is more pronounced for the 
IKKN method than for the other methods. This can be related to the fact that the IKNN 
method becomes slower when new data samples are received [57]. 

IKNN INB HTMC HTNB HTNBA WHTE

2.7
5.4
8.1

10.8
2.7
5.4
8.1

10.8
22
44
66
88
2.7
5.4
8.1

10.8
11
22
33
44
2.3
4.6
6.9
9.2
2.6
5.2
7.8

10.4

8.96
3.16 1.97 2.08 2.04

5.58

9.08

2.78 2.37 3.3 2.28

8.68

9.32 3.25
32.32 42.13 25.96

80.15

9.85

2.7 0.67 1.15 1.05
3.74

10.59 3.92 13.6 13.55 11.78

40.46

8.38

2.96 1.52 2.05 1.9
5.67

9.51

2.83 1.24 1.75 1.58
5.83

Io
T-

fri
dg

e

Classifier

G
ar

ag
e 

do
or

Avg. CPU time (s) vs Classifier
G

PS
 tr

ac
ke

rM
od

bu
sM

ot
io

n 
lig

htTh
er

m
os

ta
t

 
W

ea
th

er
 s

en
so

r

Figure 8. The comparison of the proposed classifiers in terms of average CPU time among all
the datasets.

To further study the proposed technique tolerance to the increased sample size, one
can investigate the CPU time values. It is well known that increasing the number of
instances acts upon increasing the CPU time. We chose the Modbus sensor dataset for this
illustration, because all the methods were similarly accurate when applied to that dataset.
One can see from Figure 9 that the computation time of the methods increased when the
Modbus sensor learning instances arrived incrementally. This is more pronounced for the
IKKN method than for the other methods. This can be related to the fact that the IKNN
method becomes slower when new data samples are received [57].



Sensors 2021, 21, 8289 16 of 25Sensors 2021, 21, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 9. The comparison of the CPU time for all the methods applied on the dataset of the Modbus 
sensor. 

To identify a significant difference among the performance of the different classifiers, 
we have performed a detailed statistical analysis. The single-factor variance analysis 
(ANOVA) was used to investigate the statistically significant difference between the uti-
lized classifiers in terms of accuracy, time complexity, and memory usage. In this analysis, 
the null hypothesis assumes that all population means are equal; the alternative hypoth-
esis is at least one mean difference. Therefore, the null hypothesis is rejected at the prob-
ability of less than 5% (p < 0.05). Table 4 shows the statistical results obtained when accu-
racy was considered the independent variable among the classifiers used. It was found 
that the average accuracy of the classifiers over the seven datasets was trivially changed, 
with the highest accuracy being for the WHTE method. It is noteworthy that the statistical 
result led to the calculation of a p-value of 0.10. Therefore, the null hypothesis was ac-
cepted, and hence there was no statistically significant difference between the algorithm’s 
performance in terms of accuracy. However, the proposed WHTE outperformed the other 
techniques when the overall accuracy was not considered statistically. 

Table 4. The ANOVA test results, where accuracy is the independent variable. 

 
Classifiers  

IKNN INB HTMC HTNB HTNBA WHTE 
Number of Datasets  7 7 7 7 7 7 

Sum 698.83 697.62 684.48 696.13 699.48 699.62 
Average 99.83 99.66 97.78 99.45 99.93 99.95 

Details of Result  

 
Source  SS df MS F p-value 

Between classifiers 24.08 5 4.82 2.00 0.10 
Within classifiers 86.52 36 2.40 - - 

Total 110.61 41 - - - 

Table 5 shows the statistical results when computation time was the independent 
variable among the used classifiers. It was seen that each algorithm consumed different 
times to carry out the computation on the other datasets. Concludingly, the classifiers did 

0 10,000 20,000 30,000 40,000 50,000

0

2

4

6

8

10

12

14

16

18

C
PU

 ti
m

e(
s)

Learning instances

 IKKN
 INB
 HTMC
 HTNB
 HTNBA
 WHTE

Figure 9. The comparison of the CPU time for all the methods applied on the dataset of the Mod-
bus sensor.

To identify a significant difference among the performance of the different classifiers,
we have performed a detailed statistical analysis. The single-factor variance analysis
(ANOVA) was used to investigate the statistically significant difference between the utilized
classifiers in terms of accuracy, time complexity, and memory usage. In this analysis, the
null hypothesis assumes that all population means are equal; the alternative hypothesis is
at least one mean difference. Therefore, the null hypothesis is rejected at the probability
of less than 5% (p < 0.05). Table 4 shows the statistical results obtained when accuracy
was considered the independent variable among the classifiers used. It was found that the
average accuracy of the classifiers over the seven datasets was trivially changed, with the
highest accuracy being for the WHTE method. It is noteworthy that the statistical result
led to the calculation of a p-value of 0.10. Therefore, the null hypothesis was accepted, and
hence there was no statistically significant difference between the algorithm’s performance
in terms of accuracy. However, the proposed WHTE outperformed the other techniques
when the overall accuracy was not considered statistically.

Table 4. The ANOVA test results, where accuracy is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Number of Datasets 7 7 7 7 7 7

Sum 698.83 697.62 684.48 696.13 699.48 699.62
Average 99.83 99.66 97.78 99.45 99.93 99.95

Details of Result

Source SS df MS F p-value

Between classifiers 24.08 5 4.82 2.00 0.10

Within classifiers 86.52 36 2.40 - -

Total 110.61 41 - - -



Sensors 2021, 21, 8289 17 of 25

Table 5 shows the statistical results when computation time was the independent
variable among the used classifiers. It was seen that each algorithm consumed different
times to carry out the computation on the other datasets. Concludingly, the classifiers
did not significantly differ in their time to perform the computational process. It is worth
mentioning that the mean square (MS) of the variances within the classifiers was higher
than that between the classifiers. One can observe that the p-value was 0.30, which was
higher than 0.05.

Table 5. The ANOVA test results, where computation time is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Datasets # 7 7 7 7 7 7
Sum 65.69 21.60 53.69 66.01 46.59 150.11

Average 9.38 3.09 7.67 9.43 6.66 21.44

Details of Result

Source SS df MS F p-value

Between classifiers 1366.34 5 273.27 1.27 0.30
Within classifiers 7743.23 36 215.09 - -

Total 9109.57 41 - - -

Table 6 tabulates the calculated statistical results when the classifiers used memory
usage as the independent variable. It was found that there was a relatively significant
difference in the average value of memory usage between the classifiers. However, this
difference was highly related to the IKNN, INB, and WHTE classifiers, compared with
the other classifiers. Additionally, the variances in memory within the classifiers were
low compared with that obtained between the classifiers. The HTMC, HTNB, HTNBA
classifiers took less memory to perform computational tasks than the IKNN, INB, and
WHTE ones. Consequently, the very small p-value of 2.5× 10−19 rejects the null hypothesis
and supposes a statistically significant difference between the classifiers in memory usage.
The above significance analysis showed that the proposed system could be confirmed as a
lightweight detection system for the host and sensor devices with a high detection rate.

Table 6. The ANOVA test results, where memory usage is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Datasets # 7 7 7 7 7 7

Sum 19.72 17.43 4.80 4.80 4.80 28.33

Average 2.82 2.49 0.69 0.69 0.69 4.05

Details of Result

Source SS df MS F p-value

Between classifiers 71.56 5 14.31 88.33 2.5 × 10−19

Within classifiers 5.83 36 0.16 - -

Total 77.39 41 - - -

3.2. Network-Based Attack Detection

After analyzing the sensor datasets, the NetFlow format of the network traffic of the
testbed system was collected and analyzed, as was explained in the methodology section.
The same techniques were applied to the NetFlow dataset, and results were obtained
accordingly. It was seen that the proposed methods achieved high accuracy with low



Sensors 2021, 21, 8289 18 of 25

CPU time and memory usage. As shown in Table 7, the average accuracy of the proposed
model was 100% for the ensemble WHTE. Additionally, the HTMC and HTNBA methods
recorded the second-highest accuracy of 99.01%. The average memory usage was 0.37 MiB
for the WHTE method and 1.15 MiB for the IKNN, whereas it was 0.08 MiB for the HTNBA,
HTNB, and HTMC methods. This concluded that the network analysis of the attacks took
less than 2 MiB, making it compatible with very lightweight devices. On the other hand,
the average CPU time that was consumed for detecting all the attacks was only 12.89 s
for the WHTE method, 5.02 s for the HTNBA method, and 3.90 s for the HTNBA method.
However, the time complexity was high for the IKNN method.

Table 7. The average accuracy, CPU time, and memory usage of the incremental learning methods applied on the NetFlow-
ToNIoT dataset.

Dataset Method
Average
Accuracy

(%)

Average
Time (s)

Average
Memory

(MiB)

Average
Precision
(Normal)

Average
Precision
(Attack)

Average
Recall

(Normal)

Average
Recall

(Attack)

NetFlow-
ToNIoT

IKNN 98.79 184.69 1.15 98.8 98.9 98.82 88.22
INB 97.62 8.47 0.22 96.7 95.3 94.4 98.7

HTMC 99.01 3.90 0.08 99.6 99.6 99.6 99.6
HTNB 98.94 5.75 0.08 99.5 98.2 98.91 99.7

HTNBA 99.01 5.02 0.08 99.7 99.7 98.99 99.1
WHTE 100.00 12.89 0.37 100.00 100.00 100.00 100.00

It is known that network traffic data contains higher samples of normal traffic than
attacks, which was the case for our datasets. Besides, in the incremental data analysis,
there is always a high possibility that the data at any sliding window is skewed towards
one of the classes. We also need to observe how the models precisely detect the attacks,
by taking the precision and recall values. From Table 8, one can see that for normal traffic
data the precision was more than the recall, whereas the attack precision was lower than
the recall for the INB and HTNB. This indicated that most classifiers presented a higher
detection rate for the normal rather than the attack samples. Noticeably, the ensemble
WHTE showed a balanced recall and precision for both classes.

The accuracy value can be more viable when it matches the kappa statistic in these
cases. Therefore, further analysis has been done using each classifier’s incremental kappa
statistic values. It can be seen from Figure 10 that the ensemble WHTE method had the
highest and most stable kappa value, throughout all the sample frequencies. Addition-
ally, the HTMC and HTNBA models achieved a more stable kappa value among the
other techniques.



Sensors 2021, 21, 8289 19 of 25

Table 8. The comparison between the main results of this study and those reported in the literature.

Ref. Domain Architecture Lightweight Device Specs Detection Best Testing
Accuracy (%)

Type/Name of
Dataset

Classification
Type

Type of
Learning

Details on
IoMT

System and
Fog

Architecture

Complexity
Metrics

Statistical
Comparison

Splitting
Method

[45] IoMT Cloud-Fog No

CPU 2.20 GHz (10
cores, 13.75 MB L3

Cache), and
128 GB RAM

Network-
based 96.35 Network

packet/ToNIoT Binary Batch No Not
considered No

Holdout
Train-test

(80:20)

[44] IoMT Fog No
Intel core i7 CPU

processor and
16 GB RAM.

Network-
based 98.19 Network

packet/NSL-KDD Binary Batch No Not
considered No

Holdout
Train-test

(80:20)

[38] Agriculture
4.0 Fog No

Google
Collaboratory

supplied by GPU

Network-
based 98.00

Network packet
(CIC-DDoS2019

TON_IoT)
Multiclass Batch No Not

considered No
Holdout
Train-test

(80:20)

[39] IoT Fog No
Core (TM) i7-

6700 processor
with 16 GB RAM

Network-
based 93.44 Network packet

(Bot-IoT) Multiclass Batch No Not
considered No Holdout

Train-test

[40] IoT Fog No - Network-
based 98.88 Network packet

(Hogzilla Dataset) Binary Batch No Not
considered No Holdout

Train-test

This
work IoMT Edge-Fog Yes

CPUs ≈ 2.2 GHz
(4 cores, 3 MB L3
Cache), and 8 GB

RAM

Hybrid (Host
and Network-

based)
100.00

NetFlow and
Sensors datasets
(ToNIoT sensors

and
NetFlowToNIoT)

Multiclass for
sensors and
binary for
NetFlow

Incremental yes Considered Yes Windowing
(test-train)



Sensors 2021, 21, 8289 20 of 25

Sensors 2021, 21, x FOR PEER REVIEW 18 of 25 
 

 

attacks took less than 2 MiB, making it compatible with very lightweight devices. On the 
other hand, the average CPU time that was consumed for detecting all the attacks was 
only 12.89 s for the WHTE method, 5.02 s for the HTNBA method, and 3.90 s for the 
HTNBA method. However, the time complexity was high for the IKNN method. 

Table 7. The average accuracy, CPU time, and memory usage of the incremental learning methods applied on the Net-
Flow-ToNIoT dataset. 

Dataset Method  
Average 
Accuracy 

(%)  

Average 
Time (s) 

Average 
Memory 

(MiB) 

Average 
Precision 
(Normal) 

Average Precision 
(Attack) 

Average 
Recall 

(Normal) 

Average Recall 
(Attack) 

NetFlow-To-
NIoT 

IKNN 98.79 184.69 1.15 98.8 98.9 98.82 88.22 
INB 97.62 8.47 0.22 96.7 95.3 94.4 98.7 

HTMC 99.01 3.90 0.08 99.6 99.6 99.6 99.6 
HTNB 98.94 5.75 0.08 99.5 98.2 98.91 99.7 

HTNBA 99.01 5.02 0.08 99.7 99.7 98.99 99.1 
WHTE 100.00 12.89 0.37 100.00 100.00 100.00 100.00 

It is known that network traffic data contains higher samples of normal traffic than 
attacks, which was the case for our datasets. Besides, in the incremental data analysis, 
there is always a high possibility that the data at any sliding window is skewed towards 
one of the classes. We also need to observe how the models precisely detect the attacks, 
by taking the precision and recall values. From Table 8, one can see that for normal traffic 
data the precision was more than the recall, whereas the attack precision was lower than 
the recall for the INB and HTNB. This indicated that most classifiers presented a higher 
detection rate for the normal rather than the attack samples. Noticeably, the ensemble 
WHTE showed a balanced recall and precision for both classes. 

The accuracy value can be more viable when it matches the kappa statistic in these 
cases. Therefore, further analysis has been done using each classifier’s incremental kappa 
statistic values. It can be seen from Figure 10 that the ensemble WHTE method had the 
highest and most stable kappa value, throughout all the sample frequencies. Additionally, 
the HTMC and HTNBA models achieved a more stable kappa value among the other 
techniques. 

 
Figure 10. The classifier’s kappa statistic was compared per 5K sliding window samples in the Net-
Flow-ToNIoT dataset. For clear visualization, the kappa value was averaged for every 100K sam-
ples. 

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M 1.4M
50

60

70

80

90

100

Ka
pp

a 
st

at
is

tic
(%

)

Learning instances

 IKNN
 INB
 HTMC
 HTNB
 HNBA
 WHTE

Figure 10. The classifier’s kappa statistic was compared per 5K sliding window samples in the NetFlow-
ToNIoT dataset. For clear visualization, the kappa value was averaged for every 100K samples.

To show how each classifier performed on the dataset when they arrived in an incre-
mental fashion, a figure of the online learning techniques was conceptualized when the
network traffic data was loaded to the system. One can observe from Figure 11 that the
INB method faced a fluctuation in its accuracy, where an apparent variation can be seen in
its accuracy spectra against different instances. Comparably, the other classifiers did not
show significant sensitivity to the change in the dataset samples in the current form. This is
because the ripples in the figure were suppressed due to the high variance in INB accuracy.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 25 
 

 

To show how each classifier performed on the dataset when they arrived in an incre-
mental fashion, a figure of the online learning techniques was conceptualized when the 
network traffic data was loaded to the system. One can observe from Figure 11 that the 
INB method faced a fluctuation in its accuracy, where an apparent variation can be seen 
in its accuracy spectra against different instances. Comparably, the other classifiers did 
not show significant sensitivity to the change in the dataset samples in the current form. 
This is because the ripples in the figure were suppressed due to the high variance in INB 
accuracy. 

 
Figure 11. The incremental accuracy of the applied methods per 5K sliding window samples for the 
NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for every 100K sam-
ples. 

Therefore, to see the sensitivity of the other classifiers to the data variance (concept drift), 
a new plot was produced without the presence of the INB result, as shown in Figure 12. One 
can see that the HTNB and IKNN were slightly more sensitive to the concept drift than 
the other classifiers. The WHTE method attained the most stable performance with 100% 
accuracy for all the sample frequencies. Additionally, the HTMC and HTNBA showed a 
stable accuracy with less fluctuation than the other techniques. Hence, the WHTE, HTMC 
and HTNBA were the most reliable and durable classifiers in terms of sensitivity to the 
concept drift for the NetFlow-ToNIoT dataset. 

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M 1.4M
86

88

90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

Learning instances

 IKNN
 INB
 HTMC
 HTNB
 HNBA
 WHTE

Figure 11. The incremental accuracy of the applied methods per 5K sliding window samples for the
NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for every 100K samples.

Therefore, to see the sensitivity of the other classifiers to the data variance (concept
drift), a new plot was produced without the presence of the INB result, as shown in
Figure 12. One can see that the HTNB and IKNN were slightly more sensitive to the concept
drift than the other classifiers. The WHTE method attained the most stable performance
with 100% accuracy for all the sample frequencies. Additionally, the HTMC and HTNBA



Sensors 2021, 21, 8289 21 of 25

showed a stable accuracy with less fluctuation than the other techniques. Hence, the WHTE,
HTMC and HTNBA were the most reliable and durable classifiers in terms of sensitivity to
the concept drift for the NetFlow-ToNIoT dataset.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 12. The incremental accuracy of the applied methods, except INB, per 5K sliding window 
samples for the NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for 
every 100K samples. 

Further comparison was performed among the utilized techniques by using the Net-
Flow dataset. We had previously shown that the classifier’s CPU time was varied when 
the data was increased by time (see Figure 8). The same comparison was made for the 
NetFlow dataset utilizing a 3D colourmap surface, as shown in Figure 13. One can notice 
that the IKNN classifier was significantly affected by the increasing number of the in-
stances in the dataset, where the surface colour is extended from light purple to dark 
brown, representing a higher slope of the relation, and hence a more significant increment 
rate. However, the other classifiers’ CPU time was not affected much by the increasing 
instances. More specifically, the CPU time was increased linearly with the increase in the 
sample load. However, the increment rate was more significant for the IKNN classifier 
than the other classifiers. It was seen from Figure 13 that the CPU time in the case of using 
the HTMC classifier was less affected by the increased instances. This is because the 
HTMC uses few mathematical operations. Noticeably, in the low range of the incremented 
samples, the CPU times for the HTMC and HTNBA were almost similarly increased. 
However, in the high range of the incremented samples, the CPU consumption for the 
HTNBA was larger than that of the HTMC method. Furthermore, the CPU time for the 
WHTE and INB methods was increased by adding the samples in each window. 

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M 1.4M

99.6

99.7

99.8

99.9

100.0
Ac

cu
ra

cy
(%

)

Learning instances

 IKNN
 HTMC
 HTNB
 HNBA
 WHTE

Figure 12. The incremental accuracy of the applied methods, except INB, per 5K sliding window
samples for the NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for
every 100K samples.

Further comparison was performed among the utilized techniques by using the
NetFlow dataset. We had previously shown that the classifier’s CPU time was varied
when the data was increased by time (see Figure 8). The same comparison was made for
the NetFlow dataset utilizing a 3D colourmap surface, as shown in Figure 13. One can
notice that the IKNN classifier was significantly affected by the increasing number of the
instances in the dataset, where the surface colour is extended from light purple to dark
brown, representing a higher slope of the relation, and hence a more significant increment
rate. However, the other classifiers’ CPU time was not affected much by the increasing
instances. More specifically, the CPU time was increased linearly with the increase in the
sample load. However, the increment rate was more significant for the IKNN classifier
than the other classifiers. It was seen from Figure 13 that the CPU time in the case of using
the HTMC classifier was less affected by the increased instances. This is because the HTMC
uses few mathematical operations. Noticeably, in the low range of the incremented samples,
the CPU times for the HTMC and HTNBA were almost similarly increased. However, in
the high range of the incremented samples, the CPU consumption for the HTNBA was
larger than that of the HTMC method. Furthermore, the CPU time for the WHTE and INB
methods was increased by adding the samples in each window.

Since the proposed work is a fog-based framework that uses incremental and ensemble
adaptive learning for the host and network early attack detection, it is not common to
compare every single result with the previous works that used batch learning. However,
some generalized criteria can be used to compare the system to the related studies presented
in Section 1. Table 8 shows a comparison of our achieved results with those reported in the
literature. It was found that the accuracy (100%) and overall performance of our proposed
model outperformed those reported in the literature. The proposed model was lightweight,
considering the complexity of memory usage and CPU time approaches. Furthermore,
as the device performance in the current study was considerably lower than those of the
previous studies, the proposed model could be more compatible with less efficient devices
at the fog layer, as shown in Table 8.



Sensors 2021, 21, 8289 22 of 25
Sensors 2021, 21, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 13. The 3D colormap surface compares the classifiers based on the CPU time for each subset 
of data samples per slide window in the NetFlow-ToNIoT dataset. 

Since the proposed work is a fog-based framework that uses incremental and ensem-
ble adaptive learning for the host and network early attack detection, it is not common to 
compare every single result with the previous works that used batch learning. However, 
some generalized criteria can be used to compare the system to the related studies pre-
sented in Section 1. Table 8 shows a comparison of our achieved results with those re-
ported in the literature. It was found that the accuracy (100%) and overall performance of 
our proposed model outperformed those reported in the literature. The proposed model 
was lightweight, considering the complexity of memory usage and CPU time approaches. 
Furthermore, as the device performance in the current study was considerably lower than 
those of the previous studies, the proposed model could be more compatible with less 
efficient devices at the fog layer, as shown in Table 8. 

Additionally, the proposed model was designed for hybrid (network-based and host-
based) multi-attack detection. On the contrary, the previous studies were designed for 
network-based attack detection only. Furthermore, our lightweight model’s computation 
did not affect the performance of the devices when it was installed as a host-based attack 
detector. When the model was used for attack detection at the networks of such devices, 
it did not impose any overhead on the bandwidth and communication links between the 
devices. Moreover, the designed model could handle the ever-increasing IoT data of sen-
sors and networks. 

It is worth mentioning that this study provides a comprehensive comparative analy-
sis for the applied methods in terms of complexity and performance metrics, followed by 
statistical investigations. The results of this study were also compared with those of the 
previous works, based on extra factors which are shown in Table 8, where our proposed 
model outperformed the earlier works, thereby providing an efficient and lightweight fog 
model at the edge-fog layer. The model used incremental online learning, using six differ-
ent classifiers, and can be used for hybrid multi-attack detection in IoMT devices and net-
works. 

 

Figure 13. The 3D colormap surface compares the classifiers based on the CPU time for each subset
of data samples per slide window in the NetFlow-ToNIoT dataset.

Additionally, the proposed model was designed for hybrid (network-based and host-
based) multi-attack detection. On the contrary, the previous studies were designed for
network-based attack detection only. Furthermore, our lightweight model’s computation
did not affect the performance of the devices when it was installed as a host-based attack
detector. When the model was used for attack detection at the networks of such devices,
it did not impose any overhead on the bandwidth and communication links between
the devices. Moreover, the designed model could handle the ever-increasing IoT data of
sensors and networks.

It is worth mentioning that this study provides a comprehensive comparative analysis
for the applied methods in terms of complexity and performance metrics, followed by
statistical investigations. The results of this study were also compared with those of the
previous works, based on extra factors which are shown in Table 8, where our proposed
model outperformed the earlier works, thereby providing an efficient and lightweight
fog model at the edge-fog layer. The model used incremental online learning, using six
different classifiers, and can be used for hybrid multi-attack detection in IoMT devices
and networks.

4. Limitations and Future Work

The proposed system was designed for multiple attack detection in sensors and
network data, using lightweight fog devices. Since the system uses incremental learning,
it may be affected by the concept drift, especially when the data has many features, and
the features are constantly changed. Therefore, when the IoMT fog-based architecture has
efficient fog devices, the proposed attack detection system could use batch learning to
improve accuracy. Furthermore, in fog computing, collaborative attack detection is more
compatible with its distributed nature. Therefore, a collaborative distributed learning could
be considered in the future.

5. Conclusions

A new hybrid lightweight fog-based attack detection system was successfully estab-
lished and proposed for IoMT devices and networks. The intelligent model comprised
six incremental classifiers, including a novel ensemble incremental method called WHTE.
Results on the recent fog-based sensor and network datasets showed that the system had



Sensors 2021, 21, 8289 23 of 25

achieved an accuracy of ~100% and low CPU time. Furthermore, the usage of memory was
less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble
was more accurate and less sensitive to concept drift issues. The proposed hybrid attack
detection system can be installed on lightweight devices across the edge-fog layer without
any overhead on the performance of the devices. This can be attributed to its adaptive incre-
mental nature. Consequently, the proposed model outperformed the previously reported
methods, in terms of performance and complexity.

Author Contributions: Conceptualization, S.S.H. and A.S.; methodology, S.S.H. and A.S.; software,
S.S.H.; validation, S.S.H., A.S., L.A.L., S.A.R., O.K., H.F., M.N.A.S., S.O.; formal analysis, S.S.H.;
investigation, S.S.H. and A.S.; resources, S.S.H.; data curation, S.S.H.; writing—original draft prepa-
ration, S.S.H.; writing—review and editing, S.S.H., A.S., L.A.L., S.A.R., O.K., H.F., M.N.A.S., S.O.;
visualization, S.S.H. and A.S.; supervision, A.S., L.A.L., S.A.R.; funding acquisition, A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Teknologi Malaysia (UTM), grant number Vot-
20H04, Malaysia Research University Network (MRUN), grant number Vot 4L876, and Ministry of
Higher Education Malaysia, grant number Vot (FRGS/1/2018/ICT04/UTM/01/1). The work and
the contribution were also supported by the SPEV project, University of Hradec Kralove, Faculty
of Informatics and Management, Czech Republic (ID: 2102–2021), “Smart Solutions in Ubiquitous
Computing Environments”. We are also grateful for the support of students Sebastien Mambou in
consultations regarding application aspects.

Acknowledgments: The authors wish to thank Universiti Teknologi Malaysia (UTM) for its support
under Research University Grant Vot-20H04, Malaysia Research University Network (MRUN) Vot
4L876, and the Fundamental Research Grant Scheme (FRGS) Vot (FRGS/1/2018/ICT04/UTM/01/1)
supported by the Ministry of Higher Education Malaysia. The work and the contribution were
also supported by the SPEV project, University of Hradec Kralove, Faculty of Informatics and
Management, Czech Republic (ID: 2102–2021), “Smart Solutions in Ubiquitous Computing Envi-
ronments”. We are also grateful for the support of students Sebastien Mambou in consultations
regarding application aspects.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gatouillat, A.; Badr, Y.; Massot, B.; Sejdic, E. Internet of Medical Things: A Review of Recent Contributions Dealing with

Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [CrossRef]
2. Pandey, P.; Litoriya, R. Elderly care through unusual behavior detection: A disaster management approach using IoT and

intelligence. IBM J. Res. Dev. 2020, 64, 15:1–15:11. [CrossRef]
3. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. Continuous Patient Monitoring with a Patient–Centric Agent: A Block

Architecture. IEEE Access 2018, 6, 32700–32726. [CrossRef]
4. Hameed, S.S.; Hassan, W.H.; Latiff, L.A.; Ghabban, F. A systematic review of security and privacy issues in the internet of medical

things; the role of machine learning approaches. PeerJ Comput. Sci. 2021, 7, e414. [CrossRef] [PubMed]
5. Nanayakkara, N.; Halgamuge, M.; Syed, A. Security and Privacy of Internet of Medical Things (IoMT) Based Healthcare

Applications: A Review. In Proceedings of the International Conference on Advances in Business Management and Information
Technology, Istanbul, Turkey, 11 June–11 July 2019.

6. Dang, L.M.; Piran, M.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics
2019, 8, 768. [CrossRef]

7. Newaz, A.; Sikder, A.K.; Rahman, M.A.; Uluagac, A.S. A Survey on Security and Privacy Issues in Modern Healthcare Systems:
Attacks and Defenses. ACM Trans. Comput. Healthc. 2021, 2, 27. [CrossRef]

8. Firouzi, F.; Rahmani, A.M.; Mankodiya, K.; Badaroglu, M.; Merrett, G.V.; Wong, P.; Farahani, B. Internet-of-Things and big data
for smarter healthcare: From device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018, 78, 583–586.
[CrossRef]

9. Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the
edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [CrossRef]

10. Wei, K.; Zhang, L.; Guo, Y.; Jiang, X. Health Monitoring Based on Internet of Medical Things: Architecture, Enabling Technologies,
and Applications. IEEE Access 2020, 8, 27468–27478. [CrossRef]

11. Gupta, S.; Venugopal, V.; Mahajan, V.; Gaur, S.; Barnwal, M.; Mahajan, H. HIPAA, GDPR and Best Practice Guidelines for
preserving data security and privacy-What Radiologists should know. In Proceedings of the European Congress of Radiology-
ECR 2020, Vienna, Austria, 26 February–1 March 2020. Poster Number C-13220.

http://doi.org/10.1109/JIOT.2018.2849014
http://doi.org/10.1147/JRD.2019.2947018
http://doi.org/10.1109/ACCESS.2018.2846779
http://doi.org/10.7717/peerj-cs.414
http://www.ncbi.nlm.nih.gov/pubmed/33834100
http://doi.org/10.3390/electronics8070768
http://doi.org/10.1145/3453176
http://doi.org/10.1016/j.future.2017.09.016
http://doi.org/10.1016/j.future.2017.02.014
http://doi.org/10.1109/ACCESS.2020.2971654


Sensors 2021, 21, 8289 24 of 25

12. Jaigirdar, F.T.; Rudolph, C.; Bain, C. Can I Trust the Data I See? A Physician’s Concern on Medical Data in IoT Health Architectures.
In Proceedings of the Australasian Computer Science Week Multiconference, Sydney, Australia, 29–31 January 2019; pp. 1–10.

13. Goud, N. Malware and Ransomware Attack on Medical Devices. Available online: https://www.cybersecurity-insiders.com/
malware-and-ransomware-attack-on-medical-devices/ (accessed on 28 April 2021).

14. Sun, Y.; Lo, F.P.-W.; Lo, B. Security and Privacy for the Internet of Medical Things Enabled Healthcare Systems: A Survey. IEEE
Access 2019, 7, 183339–183355. [CrossRef]

15. Landau, O.; Cohen, A.; Gordon, S.; Nissim, N. Mind your privacy: Privacy leakage through BCI applications using machine
learning methods. Knowl.-Based Syst. 2020, 198, 105932. [CrossRef]

16. Bolton, T.; Dargahi, T.; Belguith, S.; Al-Rakhami, M.S.; Sodhro, A.H. On the security and privacy challenges of virtual assistants.
Sensors 2021, 21, 2312. [CrossRef]

17. Xing, K.; Srinivasan, S.S.R.; Jose, M.; Li, J.; Cheng, X. Attacks and countermeasures in sensor networks: A survey. In Network
Security; Springer: Berlin/Heidelberg, Germany, 2010; pp. 251–272.

18. Bostami, B.; Ahmed, M.; Choudhury, S. False Data Injection Attacks in Internet of Things. In Performability in Internet of Things;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–58.

19. Rahman, M.A.; Mohsenian-Rad, H. False data injection attacks with incomplete information against smart power grids. In
Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012;
pp. 3153–3158.

20. Hei, X.; Du, X.; Wu, J.; Hu, F. Defending resource depletion attacks on implantable medical devices. In Proceedings of the 2010
IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–5.

21. Zhang, M.; Raghunathan, A.; Jha, N.K. MedMon: Securing medical devices through wireless monitoring and anomaly detection.
IEEE Trans. Biomed. Circuits Syst. 2013, 7, 871–881. [CrossRef]

22. Qu, G.; Yuan, L. Design THINGS for the Internet of Things—An EDA perspective. In Proceedings of the 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 3–6 November 2014; pp. 411–416.

23. Mosenia, A.; Jha, N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016, 5, 586–602.
[CrossRef]

24. Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. Machine learning models for secure data analytics: A taxonomy and threat model.
Comput. Commun. 2020, 153, 406–440. [CrossRef]

25. Zuhair, H.; Selamat, A.; Krejcar, O. A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine
Learning. Appl. Sci. 2020, 10, 3210. [CrossRef]

26. Fernandez Maimo, L.; Huertas Celdran, A.; Perales Gomez, A.L.; Garcia Clemente, F.J.; Weimer, J.; Lee, I. Intelligent and dynamic
ransomware spread detection and mitigation in integrated clinical environments. Sensors 2019, 19, 1114. [CrossRef]

27. Yaacoub, J.-P.A.; Noura, M.; Noura, H.N.; Salman, O.; Yaacoub, E.; Couturier, R.; Chehab, A. Securing internet of medical things
systems: Limitations, issues and recommendations. Future Gener. Comput. Syst. 2020, 105, 581–606. [CrossRef]

28. Spiekermann, S. Ethical IT Innovation: A Value-Based System Design Approach; CRC Press: Boca Raton, FL, USA, 2015.
29. Bahşi, H.; Nõmm, S.; La Torre, F.B. Dimensionality reduction for machine learning based iot botnet detection. In Proceedings of

the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November
2018; pp. 1857–1862.

30. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. IoT malicious traffic identification using wrapper-based feature selection
mechanisms. Comput. Secur. 2020, 94, 101863. [CrossRef]

31. Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT security techniques based on machine learning: How do IoT devices use AI to
enhance security? IEEE Signal Process. Mag. 2018, 35, 41–49. [CrossRef]

32. Sehatbakhsh, N.; Alam, M.; Nazari, A.; Zajic, A.; Prvulovic, M. Syndrome: Spectral analysis for anomaly detection on medical iot
and embedded devices. In Proceedings of the 2018 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), Washington, DC, USA, 30 April–4 May 2018; pp. 1–8.

33. Abdaoui, A.; Al-Ali, A.; Riahi, A.; Mohamed, A.; Du, X.; Guizani, M. Secure medical treatment with deep learning on embedded
board. In Energy Efficiency of Medical Devices and Healthcare Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 131–151.

34. Rathore, H.; Wenzel, L.; Al-Ali, A.K.; Mohamed, A.; Du, X.; Guizani, M. Multi-layer perceptron model on chip for secure diabetic
treatment. IEEE Access 2018, 6, 44718–44730. [CrossRef]

35. Ben Amor, L.; Lahyani, I.; Jmaiel, M. AUDIT: Anomalous data detection and Isolation approach for mobile healThcare systems.
Expert Syst. 2020, 37, e12390. [CrossRef]

36. Khan, F.A.; Haldar, N.A.H.; Ali, A.; Iftikhar, M.; Zia, T.A.; Zomaya, A.Y. A continuous change detection mechanism to identify
anomalies in ECG signals for WBAN-based healthcare environments. IEEE Access 2017, 5, 13531–13544. [CrossRef]

37. Kintzlinger, M.; Cohen, A.; Nissim, N.; Rav-Acha, M.; Khalameizer, V.; Elovici, Y.; Shahar, Y.; Katz, A. CardiWall: A Trusted
Firewall for the Detection of Malicious Clinical Programming of Cardiac Implantable Electronic Devices. IEEE Access 2020, 8,
48123–48140. [CrossRef]

38. Ferrag, M.A.; Shu, L.; Djallel, H.; Choo, K.-K.R. Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack
in Agriculture 4.0. Electronics 2021, 10, 1257. [CrossRef]

39. NG, B.A.; Selvakumar, S. Anomaly detection framework for Internet of things traffic using vector convolutional deep learning
approach in fog environment. Future Gener. Comput. Syst. 2020, 113, 255–265.

https://www.cybersecurity-insiders.com/malware-and-ransomware-attack-on-medical-devices/
https://www.cybersecurity-insiders.com/malware-and-ransomware-attack-on-medical-devices/
http://doi.org/10.1109/ACCESS.2019.2960617
http://doi.org/10.1016/j.knosys.2020.105932
http://doi.org/10.3390/s21072312
http://doi.org/10.1109/TBCAS.2013.2245664
http://doi.org/10.1109/TETC.2016.2606384
http://doi.org/10.1016/j.comcom.2020.02.008
http://doi.org/10.3390/app10093210
http://doi.org/10.3390/s19051114
http://doi.org/10.1016/j.future.2019.12.028
http://doi.org/10.1016/j.cose.2020.101863
http://doi.org/10.1109/MSP.2018.2825478
http://doi.org/10.1109/ACCESS.2018.2854822
http://doi.org/10.1111/exsy.12390
http://doi.org/10.1109/ACCESS.2017.2714258
http://doi.org/10.1109/ACCESS.2020.2978631
http://doi.org/10.3390/electronics10111257


Sensors 2021, 21, 8289 25 of 25

40. Priyadarshini, R.; Barik, R.K. A deep learning based intelligent framework to mitigate DDoS attack in fog environment. J. King
Saud Univ.-Comput. Inf. Sci. 2019, in press. [CrossRef]

41. Sudqi Khater, B.; Wahab, A.; Bin, A.W.; Idris, M.Y.I.B.; Abdulla Hussain, M.; Ahmed Ibrahim, A. A lightweight perceptron-based
intrusion detection system for fog computing. Appl. Sci. 2019, 9, 178. [CrossRef]

42. Fantacci, R.; Nizzi, F.; Pecorella, T.; Pierucci, L.; Roveri, M. False data detection for fog and internet of things networks. Sensors
2019, 19, 4235. [CrossRef]

43. De Donno, M.; Donaire Felipe, J.M.; Dragoni, N. ANTIBIOTIC 2.0: A Fog-based Anti-Malware for Internet of Things. In
Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm, Sweden, 17–19
June 2019; pp. 11–20.

44. Alrashdi, I.; Alqazzaz, A.; Alharthi, R.; Aloufi, E.; Zohdy, M.A.; Ming, H. FBAD: Fog-based attack detection for IoT healthcare
in smart cities. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 515–522.

45. Kumar, P.; Gupta, G.P.; Tripathi, R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for
IoMT networks. Comput. Commun. 2021, 166, 110–124. [CrossRef]

46. Hameed, S.S.; Hassan, W.H.; Latiff, L.A. An Efficient Fog-Based Attack Detection Using Ensemble of MOA-WMA for Internet of
Medical Things. In Innovative Systems for Intelligent Health Informatics; Springer: Cham, Switzerland, 2021; pp. 774–785.

47. Cisco, C. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are. Электронный Ресурс. 2015.
Available online: https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf (accessed on
10 March 2019).

48. OpenFog Consortium Architecture Working Group. OpenFog reference architecture for fog computing. OPFRA001 2017, 162,
20817.

49. Alaei, P.; Noorbehbahani, F. Incremental anomaly-based intrusion detection system using limited labeled data. In Proceedings of
the 2017 3th International Conference on Web Research (ICWR), Tehran, Iran, 19–20 April 2017; pp. 178–184.

50. Muallem, A.; Shetty, S.; Pan, J.W.; Zhao, J.; Biswal, B. Hoeffding tree algorithms for anomaly detection in streaming datasets: A
survey. J. Inf. Secur. 2017, 8, 339–361. [CrossRef]

51. Gama, J.; Medas, P.; Rodrigues, P. Learning decision trees from dynamic data streams. In Proceedings of the 2005 ACM
Symposium on Applied computing, New York, NY, USA, 13–17 March 2005; pp. 573–577.

52. Holmes, G.; Kirkby, R.; Pfahringer, B. Stress-testing hoeffding trees. In Proceedings of the European Conference on Principles of
Data Mining and Knowledge Discovery, Porto, Portugal, 3–7 October 2005; pp. 495–502.

53. Kolter, J.Z.; Maloof, M.A. Dynamic weighted majority: An ensemble method for drifting concepts. J. Mach. Learn. Res. 2007, 8,
2755–2790.

54. Littlestone, N.; Warmuth, M.K. The weighted majority algorithm. Inf. Comput. 1994, 108, 212–261. [CrossRef]
55. Moustafa, N. New Generations of Internet of Things Datasets for Cybersecurity Applications based Machine Learning: Ton_iot

datasets. In Proceedings of the eResearch Australasia Conference, Brisbane, Australia, 21–25 October 2019. [CrossRef]
56. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. Netflow datasets for machine learning-based network intrusion detection

systems. arXiv 2020, arXiv:2011.09144.
57. Bhatia, N. Survey of nearest neighbor techniques. arXiv 2010, arXiv:1007.0085.

http://doi.org/10.1016/j.jksuci.2019.04.010
http://doi.org/10.3390/app9010178
http://doi.org/10.3390/s19194235
http://doi.org/10.1016/j.comcom.2020.12.003
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://doi.org/10.4236/jis.2017.84022
http://doi.org/10.1006/inco.1994.1009
http://doi.org/10.21227/fesz-dm97

	Introduction 
	Materials and Methods 
	Proposed Fog-Based Hybrid Attack Detection System 
	Sensor and Network Datasets for IoMT Fog 
	Evaluation Metrics 
	Experimental Environment 

	Results and Discussion 
	Host-Based Attack Detection 
	Network-Based Attack Detection 

	Limitations and Future Work 
	Conclusions 
	References

