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Abstract: Cyber-attack detection via on-gadget embedded models and cloud systems are widely used
for the Internet of Medical Things (IoMT). The former has a limited computation ability, whereas the
latter has a long detection time. Fog-based attack detection is alternatively used to overcome these
problems. However, the current fog-based systems cannot handle the ever-increasing IoMT’s big data.
Moreover, they are not lightweight and are designed for network attack detection only. In this work,
a hybrid (for host and network) lightweight system is proposed for early attack detection in the IoMT
fog. In an adaptive online setting, six different incremental classifiers were implemented, namely
a novel Weighted Hoeffding Tree Ensemble (WHTE), Incremental K-Nearest Neighbors (IKNN),
Incremental Naïve Bayes (INB), Hoeffding Tree Majority Class (HTMC), Hoeffding Tree Naïve Bayes
(HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The system was benchmarked with
seven heterogeneous sensors and a NetFlow data infected with nine types of recent attack. The
results showed that the proposed system worked well on the lightweight fog devices with ~100%
accuracy, a low detection time, and a low memory usage of less than 6 MiB. The single-criteria
comparative analysis showed that the WHTE ensemble was more accurate and was less sensitive to
the concept drift.

Keywords: IoMT; IoT; hybrid attack detection; incremental learning; machine learning; sensor’s data;
NetFlow data; NIDS; HIDS; fog computing

1. Introduction

Smart health systems such as the Internet of Medical Things (IoMT) and Medical
Cyber–Physical Systems (MCPSs) are a subset of the Internet of Things (IoTs) [1]. They
are gaining popularity via simple fitness gadgets connecting athletes to their smartphone
devices and cloud services [2]. IoMT is a broad technology, incorporating various prod-
ucts and platforms, including implanted devices, eldercare wearables for monitoring [3],
internet-connected clinical equipment, and remote-surgery hospital rooms [4]. Medical
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gadgets and devices are classified into four groups, based on their closeness to the patient’s
body and their safety levels [5], as illustrated in Table 1.

Table 1. Types of Medical IoT devices with their descriptions and examples.

Type Description Examples

Implantable
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Medical biosensor devices monitor biological vitals and send enormous volumes of
biodata in real-time [6]. Later, these data are aggregated and pre-processed in personal
databases, such as cellphones and laptops, or other devices such as routers and access points
at the fog layer [7]. Subsequently, the pre-processed data are landed in massive hospital
servers, which can act as the cloud databases. Generally, machine learning technologies
are employed at the cloud or hospital server for attack detection. Fog computing is a new
technology invented to overcome the cloud’s delay, centralization, and privacy concerns.
As a result, some cloud computing duties have been moved to the closest area to the smart
devices. This new concept seems to be very compatible with the medical IoT. It speeds up
the patient data analytics at the fog layer and protects data from privacy vulnerabilities,
because the information does not need to be transferred to the cloud [6,8,9]. It is undeniable
that these innovations contribute to the enhancement of care systems, thereby providing
a healthier life, and an increased life expectancy [1,10]. Nevertheless, most clinical and
consumer medical equipment are vulnerable to numerous cyber-attacks [4,11,12]. The
causes of these vulnerabilities include hardware and software defects [13], such as the lack
of security measures in small personal devices and installing outdated operating systems
and susceptible apps on clinical devices [12,14]. Moreover, software updates are not always
possible and applicable for use by healthcare staff, whereas hackers are always devising
new and sophisticated cyber-attacks [15]. Furthermore, some recent applications, such as
virtual assistants on medical devices, which are not secure, will put the devices at risk [16].



Sensors 2021, 21, 8289 3 of 25

Hence, securing the whole system of the IoMT system requires all the stakeholders to
secure the main three layers of the system. There are different possible attacks on the
IoMT, targeting different system layers. The most recurrent and known attacks against
the device and network layer are given in Table 2. Consequently, developing defensive
systems such as threat intelligence and intrusion detection systems that employ machine
learning technologies are of great importance.

Table 2. The attack targeted devices and networks in IoMT.

Layer Attacks References

Device

Physical sensor/node tampering [17]
False data injection [18,19]

Resource depletion attacks (battery drain, sleep deprivation, buffer overflow) [20]
Side-channel [7,21]

Hardware Trojan [22,23]
Eavesdropping [24]
Ransomware [25,26]

Network

Denial of Service (DoS) and distributed DoS (DDoS) [24,27]
Man in the middle (MIM) [27]

Eavesdropping attack [24]
Replay [27,28]
Botnet [29]

Jamming [14]
Flooding [24,30]

Various strategies in machine learning (ML) have been applied to detect attacks [25,31].
Nevertheless, the attack detection in the IoMT devices is challenging because ML-based
heavy techniques put too much burden on these devices [4]. Therefore, in some studies, the
use of external gadgets is considered as a solution. For instance, in study [21], the authors
installed their model on an external device to detect radio frequency signals received and
sent by medical devices using a multi-layer threat detection, by which all attacks can
be detected. The authors of [32] proposed a statistical-based solution, using an external
hardware device to detect code injection attacks. It was seen that the system did not impose
extra overhead on medical devices. Moreover, edge devices such as Raspberry Pi3 and
deep learning (DL) were used for detecting false data injections in the implantable brain
devices [33]. In another study, multi-layer perceptron (MLP) and field-programmable gate
array (FPGA) chips were used for attack detection in insulin pumps [34]. Furthermore,
authors in [35] used principal component analysis (PCA) and a correlation coefficient (CC)
feature selection to detect false sensor readings using mobile computing. On the other hand,
the researchers of [36] used mobile computing and Markov model-based techniques to inject
false data, using ECG data. Nevertheless, the device’s performance was limited, which
made them unusable for the ever-growing sensor data unless a lightweight incremental
method was used. Therefore, cloud-based attack detection was alternatively proposed
to detect attacks against medical devices. For instance, researchers proposed a cloud-
based system to detect and prevent resource depletion attacks targeting an implantable
cardioverter-defibrillator [37], in which the system was divided into six sub-layers. One
layer was devoted to the ML technique using one-class SVM; however, the experiments on
the actual healthcare data showed that one class SVM could not achieve a super detection
rate, due to insufficient attack samples.

Nevertheless, attack detection at the cloud is characterized by delay, and it is also
not distributed, making it less effective for distributed and time-sensitive systems such
as the medical IoT. Fog-based attack detection is more compatible with the IoMT system.
This is because it does not utilize the medical devices themselves for heavy computation.
Furthermore, it is much closer to the medical devices, leading to an instant response when
there is an attack in a distributed manner. Therefore, a fog-based attack detection that
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is distributed and closer to the edge network can solve the above limitations. Related
to the fog-based attack detection in other domains, a group of researchers focused on
implementing deep learning on fog devices for the DDoS attack detection [38–40]. However,
their proposed systems cannot be installed on lightweight devices. In another study,
researchers developed a lightweight model using MLP and network traffic data in the fog
layer [41], showing the effectiveness of the fog-based system for network attack detection.
However, the proposed system was not hybrid. The authors of [42] proposed a fog-
based data intrusion detection system (DataIDS) to detect false data injection in medical
devices. An attack tree was also considered as a threat model of Fog/IoT scenarios with
heterogeneous devices. Their fog-based model was able to reduce the overhead on medical
devices. However, the model was not validated to be lightweight. De Donno et al. [43]
proposed an anti-malware solution that used fog computing to safeguard IoT devices from
DDoS Mirai attacks. They specifically examined the system’s architecture and development,
such as security considerations, components of the system, and their interaction. However,
the proposed approach was a prototype, and it has not been validated using ML techniques.

In the medical IoT, fog-based attack detection has been employed in only a handful of
research [44–46]. Alrashdi et al. [44] proposed a fog computing-based intrusion detection
system using an online sequential extreme learning machine (EOS-ELM) for a smart
medical system. They proved that their distributed fog-based architecture was better than
cloud-computing-based architecture, as it had a lower detection time and a higher detection
rate. Moreover, the authors of [45] built an intrusion detection system for network attack
detection in smart medical systems, utilizing fog–cloud architecture. Their experiment used
an ensemble of Decision Tree, Naïve Bayes, and Random Forest to form XGBoost, whereas
cloud computing and fog computing were used for the training and testing processes.
Moreover, an ensemble incremental learning approach was also employed for the network
intrusion detection of fog devices in the medical IoT, using the NSL-KDD dataset [46]. As
such, the current work was motivated by the outcome of an extensive literature review,
which led to the identification of the following problems.

Firstly, previous studies have focused on either a host-based or network-based attack
detection system. However, having a hybrid detection system is essential for the simulta-
neous detection of malicious sensor and network data. Second, the previous models are
not lightweight, making them incompatible with fog devices. This is because the sensor
and network data of the IoMT system have increased with time (yielding big data), and
hence the fog devices are unable to hold them.

Consequently, it would be beneficial to use data incrementally and adaptively to
avoid a retraining process. Therefore, the main objective of this work is to build a hybrid
lightweight and adaptive fog-based attack detection system for medical devices and their
networks (hybrid system). The system comprises five single online incremental learning
methods and a novel ensemble technique. This is the first work presented that employs
adaptive incremental learning for hybrid attack detection in the IoMT fog, to the best of our
knowledge. In this way, the model can detect early attacks, due to its incremental featured
nature. Furthermore, it uses multi-sensor and NetFlow data, which is more compatible with
medical systems as it does not use payload analysis, thereby avoiding privacy violation.
Hence, the contributions of this work can be summarized as follows:

• A fog-computing architecture for the IoMT system is proposed, representing moderate
to large healthcare organizations.

• We propose a hybrid (for host and network) lightweight fog-based multi-attack de-
tection system with early detection capability, due to adaptive learning techniques.
These methods are novel Weighted Hoeffding Tree Ensemble (WHTE); Incremental
Naïve Bayes (INB); Hoeffding Tree Majority Class (HTMC); Hoeffding Tree Naïve
Bayes (HTNB), and Hoeffding Tree Naïve Bayes Adaptive (HTNBA). The model is
unique because it was performed by an adaptive incremental setting, which does not
impose any overhead on the devices. Consequently, the proposed model is suitable
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for real-world circumstances, with ever-increasing IoT-infected sensors and NetFlow
data with multiple attacks arriving at the fog devices.

Therefore, the advantage of this approach is two-fold: first, the attacks can be iden-
tified as soon as they arrive at the sensors and the network (hybrid and early detection);
second, the detection model uses a short memory (lightweight). Additionally, the detection
system is adaptive to the new incoming sensor and network traffic since it does not forget
the model’s current detection ability. Instead, it updates the model based on the new
incoming data.

The remainder of the paper is organized as follows: the proposed systems, their
methods, and architecture are given in Section 2, while in Section 3, the results and details
of the findings are discussed. Finally, the conclusions along with limitations and future
works are drawn.

2. Materials and Methods
2.1. Proposed Fog-Based Hybrid Attack Detection System

We followed the IEEE standard for the IoMT fog-based system in the proposed
architecture, as illustrated in Figure 1. Any devices with computing and storage capability
such as gateways, embedded devices, and personal servers can be used as a fog node in
this architecture [47]. Furthermore, this functions as the first security point for tiny medical
devices with no security measures [48]. One can see from Figure 1 that the proposed
fog architecture consists of one head cluster, followed by a lower layer of more than one
sub-head cluster, until it reaches the edge devices. Additionally, the analytical ability
decreases from the top to the bottom of the architecture, with increased raw data.
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The main framework of the system, combining the architecture and the overall
flowchart steps of the detection system, is illustrated in Figure 2. As can be seen in
Figure 2, the red unlocked icon indicates missing security protocols at the edge devices
and network connections among edge devices and fog nodes. Hence, the devices at the
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edge layer and the network connection between them and the fog layer are vulnerable to
multiple cyber-attacks (details are given in Section 2.2), due to the lack of security measures
at that layer. Therefore, the hackers can easily break the system and flood it with attacks.
Furthermore, the sensor data which is transmitted by the network to the fog layer in
seconds is infected by such attacks. As such, the steps of the proposed framework are
summarized as follows:

• Collecting and extracting the sensor and network data at the edge of the IoMT system.
The extracted datasets are explained in detail in Section 2.2.

• Preprocessing the collected data to remove noises, followed by utilizing a sliding
window to set the ML classifiers. By this, the memory is updated whenever a new
set of samples arrives, and set to the sliding window. The sliding window was set to
one thousand records and the memory frequency was set to five thousand records at
a time.
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Thus, when many instances are used, they will be discarded from memory and
replaced by the following five thousand records. The arc with the update label in Figure 2
indicates restarting the process continuously, once data arrives. Then, a combination of
single incremental classifiers with the ensemble WHTE is used for the purpose of learning
and prediction, in which a prequential learning approach is employed to include every
single sample for training and testing. The employed machine learning classifiers, their
parameter tuning, and further details, are given below:

1. Incremental K-Nearest Neighbour (IKNN): This is an incremental modified version
of the original K-Nearest Neighbour, a supervised machine learning technique for
classification and regression problems. It uses the concept of similarities (also known
as distance), such as finding the distance between two points or two objects on a
surface. The KNN technique assumes that the samples close to each other belong to
the same class. The parameters to be fed to this technique are the K-value, and the
number of nearest neighbours that decide whether an instance belongs to those nearest
neighbors’ class. Another parameter is the mathematical method for calculating the
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distance. In this work, the value of N was set to 10, and the mathematical approach
was a linear model. Figure 3 illustrates how IKNN predicts new samples when they
arrive at the system. If we take a smaller circle, in which the K value is five, the labels
of the five nearest samples are examined. Then, based on the most repeatable class, it
will decide the class of the new sample. Therefore, when K is five in the smaller circle,
the incoming sample will be considered a threat, because the nearest samples are at
least three. However, if the K value is 11, as shown in the larger circle, the incoming
new sample will be considered normal, because there are six near-normal samples.

2. Incremental Naïve Bayes: Naïve Bayesian classification is a common classification
system used to analyze large sizes of data. In this work, Naïve Bayes incremental
learning is used to handle massive datasets on resource-limited fog devices. The
method’s success is that it can be supplemented with updated data without storing
the entire dataset in the memory. Because of its incremental feature, the algorithm is
well suited for detecting and classifying attacks quickly and accurately [49]. The basic
formula of Naïve Bayes is as follows:

P(y|X) =
P(X|y)P(y)

P(X)
(1)

where, y is the class, which takes values considering the type of attacks and normal
class, and X is the list of features, in which X can be a list of components identified as
X = {x1, x2, x3, x4 . . . xn}. If this list is replaced by the variable X, the equation can be
updated as follows:

P(y|x1, . . . , xn) =
P(x1|y) . . . . . . P(xn|y)P(y)

P(x1) . . . P(xn)
(2)

Since the denominator of the above equation remains static, we can remove it and
proportionally inject it into the equation as follows:

P(y | x1, . . . , xn) ∝ P(y)
n

∏
i=1

P(xi | y) (3)

This is for binary classes; however, we have eight classes in our datasets. Hence, the
class with the highest probability or likelihood should be chosen by:

y = argmaxyP(y)
n

∏
i=1

P(xi | y) (4)

From Equation (4), we can predict the class value for a list of features.
3. Hoeffding Tree-based classifiers: Different forms of the original Hoeffding Tree (HT)

are implemented in this study. The details of these classifiers are explained below:

• Hoeffding Tree-Based Majority Class (HTMC): Conventional tree-based classi-
fiers have a significantly restricted number of training instances, because they
presume that the real data should be saved in memory at once [50]. Hoeffding
Tree (HT) is an efficient and straightforward tree-based classifier, designed to
stream big data. This tree-based classifier assumes a constant distribution of data.
This method works based on Hoeffding Bound’s theory. The Hoeffding Tree
has a theoretically appealing feature that other incremental tree-based learners
do not have. It provides a solid efficiency guarantee. HT is initially designed
for big data streams. Hoeffding Tree-based Majority Class (HTMC) is a form of
HT that uses the majority class technique to decide about the classes of the tree
branches [51].

• Hoeffding Tree Naïve Bayes: There are some efforts to improve the accuracy of
this classifier by using other techniques at the HT leaves. Using Naïve Bayes
classifiers rather than the majority class classifier improves the HT classification
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performance. Most of the class approach utilizes information on classes patterns,
only to categorize a test sample without searching for feature values. This
only makes use of a small portion of the information given, and it is a rough
estimation of the pattern of instances. However, Naïve Bayes considers both the
prior distributions of the classes and the likelihoods of a feature, given the class.
This allows for far better utilization of the available information [51]. The sample
is traversed from the root to the leaf, to classify new samples. It uses the splitting
test and feature values to establish a correct path. When the sample reaches
any leaf, it will classify the sample. Here, the classifier will be a Naïve Bayes
classifier. It uses information gained during the classification process without
adding overhead [51].

• Hoeffding Tree Naïve Bayes Adaptive (HTNBA): At the presence of noise in
cyber-attack infected datasets, Naïve Bayes at leaves may not tolerate well, and
its performance is not better than the HTMC. Therefore, a hybrid of majority class
and Naïve Bayes is proposed to overcome both techniques’ shortcomings, called
Hoeffding Tree Naïve Bayes Adaptive (HTNBA) [52]. The HTNBA method uses
Naïve Bayes Adaptive to classify the instances based on their discriminative
features. It also uses the Gain value to decide the class of the incoming instances
(Holmes et al., 2005). After predicting the new instances by both Naïve Bayes
and the majority class, the hybrid method chooses one of them based on their
prediction value.

4. Weighted Majority Hoeffding Tree Ensemble (WHTE): single classifiers which were
explained previously may not work similarly well on different types of input data.
Therefore, their ensemble can be used to maximize their performance and minimize
their weaknesses. Since sensor and network data change in their features and sample
statistics, applying one type of classifier may not always bring the best result. There-
fore, we propose a new ensemble approach, combining a group of single classifiers;
specifically, the different types of Hoeffding Tree classifiers (HTMC, HTNB, HTNBA).
The ensemble approach uses the weighted majority approach, which initially consid-
ers all the classifier’s decisions [53]. However, it will punish a classifier once they
make a wrong decision, by not considering their decisions to be as important as they
were [54]. All experts (classifiers) will have a vote, and initially these will be equally
weighted. Then, if one of those experts (classifiers) makes a mistake, their votes
will be cut down in proportional value, and weighting will be used for the overall
performance. Then, the final performance is optimal because the mistakes made by
the entire algorithm will be close to the constant mistake made by the best technique.
When the expert makes a mistake in the original weighted majority algorithm, the
weighted value will be multiplied by 1

2 . Hence, the error bound equation is as follows:

M ≤ 2.41(m + log N) (5)

where m is the number of mistakes made by the best classifier, M is the number
of errors made by the ensemble, and N is the number of classifiers in the pool.
One can see that the minimum constant factor (coefficient of the right-hand side
of Equation (5)) is greater than two. However, this can be reduced by performing
the randomized form of weighted majority algorithm in which Beta (β) is used as
a penalty value to minimize the constant value to be close to one. Therefore, in our
WHTE algorithm, the error will be counted as follows:

M ≤
m ln

(
1
β

)
+ ln N

1− β
(6)
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In our study, we have set the value of β to be 0.5. Hence, the value of M for each
iteration or a sample at a time will be counted by:

M ≤ 1.39m + 2 ln N (7)

A simplified flowchart of our ensemble method is presented in Figure 4, whereas the
pseudo code of the entire system is shown in Algorithm 1.
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Algorithm 1. Hybrid Lightweight Attack Detection System

Input
Si as a set of single sensor datasets, N as NetFlow dataset,
Cj as set of single incremental classifiers (INB, IKNN, HTMC, HTNB, HTNBA),
and W as ensemble WHTE

Output
Pk set of performance metrics (average accuracy, average memory, average CPU time, kappa
statistic, precision, recall, concept drift sensitivity)

Begin
At fog devices close to the edge in framework 1
Collect infected sensor data S in Si
Collect infected NetFlow N
for N and each S in Si

while there is data record in S and N
Do

Pre-process the data
Set the sliding window to 1K records
Set the maximum memory to 5K records
Set the initial parameters of each C classifier in Ci
Set the parameters of each C in W

for each record in S and N
Do

Prequential train and test using W and each C in Ci
Compute each P in Pk
return average Pk
Update parameters of W and each C in Ci

end for
end while

for each C in Ci and W
for each P in Pk

Compute one-way ANOVA
Assume that all population means are equal

Initialise p value
if (p < 0.05).
then reject

else accept
return statistical metrics
end if

end for
end for

end for
End

2.2. Sensor and Network Datasets for IoMT Fog

In this study, we used seven sensors and telemetry data infected with multiple attacks
for the host attack detection, whereas for the network detection, NetFlow data of the same
fog-oriented framework was used. The datasets were created in a real environment of an
IoT network, such as the fog-based architecture presented in Section 2.1. Therefore, the
dataset represents the heterogeneous nature of the IoT system. Both sensor and network
data were extracted from the same fog-based architecture while infected by the recent
attacks. The details of the extracted datasets are as follows:

1. ToN-IoT: The first form of the dataset was a collection of sensors datasets gathered
from the seven different sensors. It held data of about seven IoT cyber-attacks with
legitimate device data. Each dataset had different features on the devices. The total
samples of all datasets were 401,119 (fridge: 59,944, Garage door: 59,587, GPS: 58,960,
Modbus: 51,106, Motion light: 59,488, Thermostat: 52,774, Weather: 59,260). The
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attacks in this dataset were (backdoor, distributed denial of service (DDoS), injection,
password, ransomware, scanning, and cross-site scripting (XSS)) [55]. Figure 5a shows
the number of attack samples among all the sensor datasets.

2. NetFlow_ToN-IoT: The second form of dataset was the network traffic of the IoT
system, in which network traffic packets were transformed to NetFlow files [56].
NetFlow format network traffic was less heavy than its payloads (packets) because it
used the traffic features, rather than the content of the packets. This dataset consisted
of 14 features and 1,379,274 samples. This big data included all the attacks which
existed in its sensor telemetry datasets, such as injection, DDoS, scanning, password,
XSS, backdoor, and ransomware, with another two attacks of denial of service (DoS),
and man in the middle (MiM), which mainly target the network layer. Additionally,
the attacks at NetFlow had a different number of samples, compared with those in the
sensor dataset. Figure 5b shows the number of attack samples in the NetFlow dataset.
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2.3. Evaluation Metrics

• Average accuracy: This is the average of all the sliding windows’ accuracies at the end
of the analysis. In incremental learning, accuracy is not calculated in this way in batch
learning, because there is a high possibility for the samples to fall within a single class
in one sliding window.
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Average accuracy =
∑i acc

N
(8)

In which acc is the accuracy for the samples in each i sliding window over N (the total
number of the sliding windows), whereas acc can be defined by:

acc =
Cc
M

(9)

where Cc is the correctly classified instance, and M is the total number of samples at
that time.

• Average time (s): The average CPU time taken by the incremental learning method for
each sliding window dataset’s training and evaluation process.

• Precision: Is the ratio of true positive over predicted positive samples.
• Recall: This is the ratio of true positive over total positives in the dataset.
• Kappa Static: It measures how well the samples identified by the classifier resembled

the data labeled as ground truth, while adjusting for the performance of a random-
ized classifier as evaluated by anticipated accuracy. It will add more information to
the accuracy of a model, especially when the incoming samples are more skewed
(imbalanced).

• ANOVA test: To evaluate the significant differences among the performances of the
used classifiers, one-way ANOVA is used.

2.4. Experimental Environment

The proposed system was designed for an IoMT framework, as presented in Section 2.1
The detection system can be installed on any device or agent that is close to the edge of
the network. Hence, the used devices in our experiment were set to be at the lower tier of
the fog layer. An example of that is a PC with Corei5 5200U (4 CPUs ≈ 2.2 GHz, and 8 GB
memory). Furthermore, we set the window size to 5000 samples, which was compatible
with lightweight devices. The incremental data collection and analysis simulation was
performed using well-known machine learning tools, such as Python and the associated
incremental learning package scikit-multiflow, combined with a java-based MOA package.

3. Results and Discussion
3.1. Host-Based Attack Detection

The detection system needed to simultaneously use all the IoT sensor readings to
capture any malicious readings for the host-based attack detection. Hence, the readings of
the infected IoT sensors were used in the detection system, and their results were analyzed
and compared accordingly. It was seen that the proposed model was able to achieve a
high average accuracy close to 100% for all the datasets, indicating that the system could
detect all the attacks at the same time. It can be noticed from Table 3 that all the classifiers
performed well, where the bolded accuracies are the highest ones. However, the ensemble
WHTE was generally better than the other methods. Additionally, the INB and HTNBA
performed better than the IKNN, HTNB, and HTMC.
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Table 3. The average accuracy, CPU time, and memory usage of the incremental learning methods applied on the ToNT-
IoT dataset.

Individual Sensor Dataset Method Average Accuracy (%) Average Time (s) Average Memory (MiB)

IoT-fridge

IKNN 99.72 8.96 2.8
INB 99.93 3.16 1.80

HTMC 99.42 1.97 0.61
HTNB 99.92 2.08 0.61

HTNBA 99.92 2.04 0.61
WHTE 99.95 5.58 2.90

Garage door

IKNN 99.80 9.08 2.51
INB 99.98 2.78 2.30

HTMC 98.19 2.37 0.71
HTNB 99.98 3.30 0.71

HTNBA 99.96 2.28 0.71
WHTE 99.99 8.68 3.99

GPS tracker

IKNN 99.79 9.32 2.46
INB 99.34 3.25 2.53

HTMC 90.34 32.32 0.79
HTNB 99.73 42.13 0.79

HTNBA 99.76 25.96 0.79
WHTE 99.80 80.15 4.19

Modbus

IKNN 100.00 9.85 3.16
INB 100.00 2.70 2.82

HTMC 100.00 0.67 0.48
HTNB 100.00 1.15 0.48

HTNBA 100.00 1.05 0.48
WHTE 100.00 3.74 3.87

Motion light

IKNN 99.80 10.59 3.04
INB 98.42 3.92 3.23

HTMC 96.55 13.60 0.95
HTNB 96.55 13.55 0.95

HTNBA 99.87 11.78 0.95
WHTE 99.90 40.46 5.25

Thermostat

IKNN 99.90 8.38 3.00
INB 100.00 2.96 2.94

HTMC 100.00 1.52 0.72
HTNB 100.00 2.05 0.72

HTNBA 100.00 1.90 0.72
WHTE 100.00 5.67 4.45

Weather sensor

IKNN 99.82 9.51 2.75
INB 99.95 2.83 1.81

HTMC 99.98 1.24 0.54
HTNB 99.95 1.75 0.54

HTNBA 99.97 1.58 0.54
WHTE 100.0 5.83 3.68

Since the proposed system used incremental learning instead of batch learning, it is
informative to show how each technique in the system reacted with increasing instances.
This helped in identifying the accuracy for each sliding window. Therefore, the GPS-Tacker
sensor dataset was chosen and analyzed to observe the range of the total accuracy for
each classifier, and to notice how they were updated by adding up the new samples in
the sliding windows. It was seen from Figure 6 that the INB and HTNBA performance
fluctuated during different sample frequencies, showing that these two techniques were not
stable, and were affected by concept drift in the data. Nevertheless, the other techniques,
especially the WHTE ensemble, remained stable throughout the sample frequencies.
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Figure 6. The incremental accuracy of the applied methods for each subset of data samples per slide
window for the GPS-tracker sensor dataset.

Compared with the models reported in the literature, the system proposed herein
showed a lightweight nature. It was seen from the results of the CPU time complexity
shown in Figure 7 that the average memory usage was located between 0.48 and 0.95 MiB
for all the datasets using the HTMC, HTNB, and HTNBA methods, whereas it was between
2.46 and 3.16 MiB, and between 1.80 and 3.16 MiB for the IKNN, and INB methods,
respectively. This memory usage was seen to be slightly larger for the WHTE algorithm, (2.9
to 5.25 MiB) because it was an ensemble of three techniques. Nevertheless, the maximum
memory usage was less than 6 MiB, making it suitable for the lightweight nature of the fog
devices. This ensures that the system can be installed on a mobile phone or a raspberry Pi
device without adding overhead on the device.
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Figure 7. The comparison of the proposed methods in terms of average memory usage among all
the datasets.

In addition to the lightweight feature of the proposed system, the system needs to
rapidly detect the attacks in an early phase. Hence, the techniques were evaluated using
the CPU time in terms of time complexity. It was seen that due to the adaptive sliding
window, the processing time of the methods was significantly low, as shown in Figure 8.
It is noteworthy that the average CPU time was found to be between 1.05 and 11 s. This
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was from 8.38 to 25.96 s, 0.67 to 32.32 s, 1.15 to 42.11 s, 2.70 to 3.90 s and 3.74 to 80.15 s for
the HTNBA, IKNN, HTMC, HTNB, INB, and WHTE, respectively, among all the datasets.
Therefore, the HTMC method recorded the lowest single CPU time. However, the INB
method showed the lowest range of CPU time. Nevertheless, taking the method time into
account, the detection time of all attacks was within a few seconds of their first appearance
in the IoMT system, as shown in Table 3.
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Figure 8. The comparison of the proposed classifiers in terms of average CPU time among all
the datasets.

To further study the proposed technique tolerance to the increased sample size, one
can investigate the CPU time values. It is well known that increasing the number of
instances acts upon increasing the CPU time. We chose the Modbus sensor dataset for this
illustration, because all the methods were similarly accurate when applied to that dataset.
One can see from Figure 9 that the computation time of the methods increased when the
Modbus sensor learning instances arrived incrementally. This is more pronounced for the
IKKN method than for the other methods. This can be related to the fact that the IKNN
method becomes slower when new data samples are received [57].
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Figure 9. The comparison of the CPU time for all the methods applied on the dataset of the Mod-
bus sensor.

To identify a significant difference among the performance of the different classifiers,
we have performed a detailed statistical analysis. The single-factor variance analysis
(ANOVA) was used to investigate the statistically significant difference between the utilized
classifiers in terms of accuracy, time complexity, and memory usage. In this analysis, the
null hypothesis assumes that all population means are equal; the alternative hypothesis is
at least one mean difference. Therefore, the null hypothesis is rejected at the probability
of less than 5% (p < 0.05). Table 4 shows the statistical results obtained when accuracy
was considered the independent variable among the classifiers used. It was found that the
average accuracy of the classifiers over the seven datasets was trivially changed, with the
highest accuracy being for the WHTE method. It is noteworthy that the statistical result
led to the calculation of a p-value of 0.10. Therefore, the null hypothesis was accepted, and
hence there was no statistically significant difference between the algorithm’s performance
in terms of accuracy. However, the proposed WHTE outperformed the other techniques
when the overall accuracy was not considered statistically.

Table 4. The ANOVA test results, where accuracy is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Number of Datasets 7 7 7 7 7 7

Sum 698.83 697.62 684.48 696.13 699.48 699.62
Average 99.83 99.66 97.78 99.45 99.93 99.95

Details of Result

Source SS df MS F p-value

Between classifiers 24.08 5 4.82 2.00 0.10

Within classifiers 86.52 36 2.40 - -

Total 110.61 41 - - -
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Table 5 shows the statistical results when computation time was the independent
variable among the used classifiers. It was seen that each algorithm consumed different
times to carry out the computation on the other datasets. Concludingly, the classifiers
did not significantly differ in their time to perform the computational process. It is worth
mentioning that the mean square (MS) of the variances within the classifiers was higher
than that between the classifiers. One can observe that the p-value was 0.30, which was
higher than 0.05.

Table 5. The ANOVA test results, where computation time is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Datasets # 7 7 7 7 7 7
Sum 65.69 21.60 53.69 66.01 46.59 150.11

Average 9.38 3.09 7.67 9.43 6.66 21.44

Details of Result

Source SS df MS F p-value

Between classifiers 1366.34 5 273.27 1.27 0.30
Within classifiers 7743.23 36 215.09 - -

Total 9109.57 41 - - -

Table 6 tabulates the calculated statistical results when the classifiers used memory
usage as the independent variable. It was found that there was a relatively significant
difference in the average value of memory usage between the classifiers. However, this
difference was highly related to the IKNN, INB, and WHTE classifiers, compared with
the other classifiers. Additionally, the variances in memory within the classifiers were
low compared with that obtained between the classifiers. The HTMC, HTNB, HTNBA
classifiers took less memory to perform computational tasks than the IKNN, INB, and
WHTE ones. Consequently, the very small p-value of 2.5× 10−19 rejects the null hypothesis
and supposes a statistically significant difference between the classifiers in memory usage.
The above significance analysis showed that the proposed system could be confirmed as a
lightweight detection system for the host and sensor devices with a high detection rate.

Table 6. The ANOVA test results, where memory usage is the independent variable.

Classifiers

IKNN INB HTMC HTNB HTNBA WHTE

Datasets # 7 7 7 7 7 7

Sum 19.72 17.43 4.80 4.80 4.80 28.33

Average 2.82 2.49 0.69 0.69 0.69 4.05

Details of Result

Source SS df MS F p-value

Between classifiers 71.56 5 14.31 88.33 2.5 × 10−19

Within classifiers 5.83 36 0.16 - -

Total 77.39 41 - - -

3.2. Network-Based Attack Detection

After analyzing the sensor datasets, the NetFlow format of the network traffic of the
testbed system was collected and analyzed, as was explained in the methodology section.
The same techniques were applied to the NetFlow dataset, and results were obtained
accordingly. It was seen that the proposed methods achieved high accuracy with low
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CPU time and memory usage. As shown in Table 7, the average accuracy of the proposed
model was 100% for the ensemble WHTE. Additionally, the HTMC and HTNBA methods
recorded the second-highest accuracy of 99.01%. The average memory usage was 0.37 MiB
for the WHTE method and 1.15 MiB for the IKNN, whereas it was 0.08 MiB for the HTNBA,
HTNB, and HTMC methods. This concluded that the network analysis of the attacks took
less than 2 MiB, making it compatible with very lightweight devices. On the other hand,
the average CPU time that was consumed for detecting all the attacks was only 12.89 s
for the WHTE method, 5.02 s for the HTNBA method, and 3.90 s for the HTNBA method.
However, the time complexity was high for the IKNN method.

Table 7. The average accuracy, CPU time, and memory usage of the incremental learning methods applied on the NetFlow-
ToNIoT dataset.

Dataset Method
Average
Accuracy

(%)

Average
Time (s)

Average
Memory

(MiB)

Average
Precision
(Normal)

Average
Precision
(Attack)

Average
Recall

(Normal)

Average
Recall

(Attack)

NetFlow-
ToNIoT

IKNN 98.79 184.69 1.15 98.8 98.9 98.82 88.22
INB 97.62 8.47 0.22 96.7 95.3 94.4 98.7

HTMC 99.01 3.90 0.08 99.6 99.6 99.6 99.6
HTNB 98.94 5.75 0.08 99.5 98.2 98.91 99.7

HTNBA 99.01 5.02 0.08 99.7 99.7 98.99 99.1
WHTE 100.00 12.89 0.37 100.00 100.00 100.00 100.00

It is known that network traffic data contains higher samples of normal traffic than
attacks, which was the case for our datasets. Besides, in the incremental data analysis,
there is always a high possibility that the data at any sliding window is skewed towards
one of the classes. We also need to observe how the models precisely detect the attacks,
by taking the precision and recall values. From Table 8, one can see that for normal traffic
data the precision was more than the recall, whereas the attack precision was lower than
the recall for the INB and HTNB. This indicated that most classifiers presented a higher
detection rate for the normal rather than the attack samples. Noticeably, the ensemble
WHTE showed a balanced recall and precision for both classes.

The accuracy value can be more viable when it matches the kappa statistic in these
cases. Therefore, further analysis has been done using each classifier’s incremental kappa
statistic values. It can be seen from Figure 10 that the ensemble WHTE method had the
highest and most stable kappa value, throughout all the sample frequencies. Addition-
ally, the HTMC and HTNBA models achieved a more stable kappa value among the
other techniques.
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Table 8. The comparison between the main results of this study and those reported in the literature.

Ref. Domain Architecture Lightweight Device Specs Detection Best Testing
Accuracy (%)

Type/Name of
Dataset

Classification
Type

Type of
Learning

Details on
IoMT

System and
Fog

Architecture

Complexity
Metrics

Statistical
Comparison

Splitting
Method

[45] IoMT Cloud-Fog No

CPU 2.20 GHz (10
cores, 13.75 MB L3

Cache), and
128 GB RAM

Network-
based 96.35 Network

packet/ToNIoT Binary Batch No Not
considered No

Holdout
Train-test

(80:20)

[44] IoMT Fog No
Intel core i7 CPU

processor and
16 GB RAM.

Network-
based 98.19 Network

packet/NSL-KDD Binary Batch No Not
considered No

Holdout
Train-test

(80:20)

[38] Agriculture
4.0 Fog No

Google
Collaboratory

supplied by GPU

Network-
based 98.00

Network packet
(CIC-DDoS2019

TON_IoT)
Multiclass Batch No Not

considered No
Holdout
Train-test

(80:20)

[39] IoT Fog No
Core (TM) i7-

6700 processor
with 16 GB RAM

Network-
based 93.44 Network packet

(Bot-IoT) Multiclass Batch No Not
considered No Holdout

Train-test

[40] IoT Fog No - Network-
based 98.88 Network packet

(Hogzilla Dataset) Binary Batch No Not
considered No Holdout

Train-test

This
work IoMT Edge-Fog Yes

CPUs ≈ 2.2 GHz
(4 cores, 3 MB L3
Cache), and 8 GB

RAM

Hybrid (Host
and Network-

based)
100.00

NetFlow and
Sensors datasets
(ToNIoT sensors

and
NetFlowToNIoT)

Multiclass for
sensors and
binary for
NetFlow

Incremental yes Considered Yes Windowing
(test-train)
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Figure 10. The classifier’s kappa statistic was compared per 5K sliding window samples in the NetFlow-
ToNIoT dataset. For clear visualization, the kappa value was averaged for every 100K samples.

To show how each classifier performed on the dataset when they arrived in an incre-
mental fashion, a figure of the online learning techniques was conceptualized when the
network traffic data was loaded to the system. One can observe from Figure 11 that the
INB method faced a fluctuation in its accuracy, where an apparent variation can be seen in
its accuracy spectra against different instances. Comparably, the other classifiers did not
show significant sensitivity to the change in the dataset samples in the current form. This is
because the ripples in the figure were suppressed due to the high variance in INB accuracy.
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Figure 11. The incremental accuracy of the applied methods per 5K sliding window samples for the
NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for every 100K samples.

Therefore, to see the sensitivity of the other classifiers to the data variance (concept
drift), a new plot was produced without the presence of the INB result, as shown in
Figure 12. One can see that the HTNB and IKNN were slightly more sensitive to the concept
drift than the other classifiers. The WHTE method attained the most stable performance
with 100% accuracy for all the sample frequencies. Additionally, the HTMC and HTNBA
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showed a stable accuracy with less fluctuation than the other techniques. Hence, the WHTE,
HTMC and HTNBA were the most reliable and durable classifiers in terms of sensitivity to
the concept drift for the NetFlow-ToNIoT dataset.
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Figure 12. The incremental accuracy of the applied methods, except INB, per 5K sliding window
samples for the NetFlow-ToNIoT dataset. For clear visualization, the accuracy was averaged for
every 100K samples.

Further comparison was performed among the utilized techniques by using the
NetFlow dataset. We had previously shown that the classifier’s CPU time was varied
when the data was increased by time (see Figure 8). The same comparison was made for
the NetFlow dataset utilizing a 3D colourmap surface, as shown in Figure 13. One can
notice that the IKNN classifier was significantly affected by the increasing number of the
instances in the dataset, where the surface colour is extended from light purple to dark
brown, representing a higher slope of the relation, and hence a more significant increment
rate. However, the other classifiers’ CPU time was not affected much by the increasing
instances. More specifically, the CPU time was increased linearly with the increase in the
sample load. However, the increment rate was more significant for the IKNN classifier
than the other classifiers. It was seen from Figure 13 that the CPU time in the case of using
the HTMC classifier was less affected by the increased instances. This is because the HTMC
uses few mathematical operations. Noticeably, in the low range of the incremented samples,
the CPU times for the HTMC and HTNBA were almost similarly increased. However, in
the high range of the incremented samples, the CPU consumption for the HTNBA was
larger than that of the HTMC method. Furthermore, the CPU time for the WHTE and INB
methods was increased by adding the samples in each window.

Since the proposed work is a fog-based framework that uses incremental and ensemble
adaptive learning for the host and network early attack detection, it is not common to
compare every single result with the previous works that used batch learning. However,
some generalized criteria can be used to compare the system to the related studies presented
in Section 1. Table 8 shows a comparison of our achieved results with those reported in the
literature. It was found that the accuracy (100%) and overall performance of our proposed
model outperformed those reported in the literature. The proposed model was lightweight,
considering the complexity of memory usage and CPU time approaches. Furthermore,
as the device performance in the current study was considerably lower than those of the
previous studies, the proposed model could be more compatible with less efficient devices
at the fog layer, as shown in Table 8.
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Additionally, the proposed model was designed for hybrid (network-based and host-
based) multi-attack detection. On the contrary, the previous studies were designed for
network-based attack detection only. Furthermore, our lightweight model’s computation
did not affect the performance of the devices when it was installed as a host-based attack
detector. When the model was used for attack detection at the networks of such devices,
it did not impose any overhead on the bandwidth and communication links between
the devices. Moreover, the designed model could handle the ever-increasing IoT data of
sensors and networks.

It is worth mentioning that this study provides a comprehensive comparative analysis
for the applied methods in terms of complexity and performance metrics, followed by
statistical investigations. The results of this study were also compared with those of the
previous works, based on extra factors which are shown in Table 8, where our proposed
model outperformed the earlier works, thereby providing an efficient and lightweight
fog model at the edge-fog layer. The model used incremental online learning, using six
different classifiers, and can be used for hybrid multi-attack detection in IoMT devices
and networks.

4. Limitations and Future Work

The proposed system was designed for multiple attack detection in sensors and
network data, using lightweight fog devices. Since the system uses incremental learning,
it may be affected by the concept drift, especially when the data has many features, and
the features are constantly changed. Therefore, when the IoMT fog-based architecture has
efficient fog devices, the proposed attack detection system could use batch learning to
improve accuracy. Furthermore, in fog computing, collaborative attack detection is more
compatible with its distributed nature. Therefore, a collaborative distributed learning could
be considered in the future.

5. Conclusions

A new hybrid lightweight fog-based attack detection system was successfully estab-
lished and proposed for IoMT devices and networks. The intelligent model comprised
six incremental classifiers, including a novel ensemble incremental method called WHTE.
Results on the recent fog-based sensor and network datasets showed that the system had
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achieved an accuracy of ~100% and low CPU time. Furthermore, the usage of memory was
less than 6 MiB. The single-criteria comparative analysis showed that the WHTE ensemble
was more accurate and less sensitive to concept drift issues. The proposed hybrid attack
detection system can be installed on lightweight devices across the edge-fog layer without
any overhead on the performance of the devices. This can be attributed to its adaptive incre-
mental nature. Consequently, the proposed model outperformed the previously reported
methods, in terms of performance and complexity.
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