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Abstract

Aging is a complex process that involves dysfunction on multiple levels, all of which seem to 

converge on inflammation. Macrophages are intimately involved in initiating and resolving 

inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state 

of chronic, low-grade inflammation that develops during aging. Among the age-related changes 

that occur to macrophages are a heightened state of basal inflammation and diminished or 

hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic 

changes. In this review article we provide a brief overview of mitochondrial functions and age-

related changes that occur to macrophages, with an emphasis on how the inflammaging 

environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, 

and contribute to inflammaging and age-related pathologies.
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INTRODUCTION

Aging is the highest risk factor for the majority of chronic diseases—including 

cardiovascular disease, diabetes, stroke, and cancer [1], and a staggering 73% of all deaths 

worldwide in 2017 were attributable to chronic diseases [2]. Underlying most age-related 

pathologies is a sterile, chronic, systemic inflammatory state (inflammaging), which is likely 

a result of a host of factors that become dysregulated with age [3,4]. These “hallmarks of 

aging” include mitochondrial dysfunction, altered metabolic signaling, defective autophagy 
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and mitophagy, dysbiosis, diminished proteostasis, stem cell exhaustion, telomere attrition, 

epigenetic changes, genomic instability, and cellular and immune senescence [1,3,5]. These 

hallmarks are interconnected and co-occur with one another, but all converge on 

inflammation, as an impairment in any of these can promote inflammation and affect the 

other hallmarks [5]. The causal driver of inflammaging appears to be an accumulation of 

damage over time, alongside the gradual decrease in the body’s ability to repair from 

damage and maintain homeostasis [5,6]. Damaged cells, cell debris, and misfolded/

misplaced molecules (garbage) can be sensed by pattern recognition receptors (PRRs) of the 

innate immune system as damage-associated molecular patterns (DAMPs) and promote 

inflammation. Inflammaging and dysbiosis drive intestinal permeability resulting in 

increased circulating levels of bacterial products which further stimulate PRRs via their 

pathogen-associated molecular patterns (PAMPs) [7]. Chronic stimulation of PRRs and 

cytokine receptors by DAMPs, PAMPs, and inflammatory cytokines plays a major role in 

the development of inflammaging, and macrophages are central in this phenomenon [6]. 

Macrophages play a critical role in removing garbage and bacteria, maintaining homeostasis, 

and regulating inflammation, and undergo various changes with age which can contribute to 

age-related pathologies, largely by increasing inflammation. Several studies have 

demonstrated that macrophages can actively drive age-related pathologies, as depleting 

macrophages led to diminished inflammatory responses and improved survival outcomes [8–

11].

MACROPHAGE POLARIZATION

Macrophages exhibit exceptional plasticity and can adjust their phenotype in response to 

various signals in their environment. Traditionally, they have been classified as resting (M0), 

classically activated (M1), or alternatively activated (M2). Macrophages are generally 

polarized in vitro to a M1 phenotype using lipopolysaccharide (LPS), interferon-gamma 

(IFNγ), tumor necrosis factor alpha (TNFα) and/or other Toll-like receptor (TLR) ligands 

[12]. M1 macrophages have primarily been shown to be catabolic, pro-inflammatory, 

glycolytic, and bactericidal. They secrete a variety of inflammatory/bactericidal mediators 

including IL-6, TNFα, IL-1β, IL-12 and reactive oxygen species (ROS) [12], all of which 

increase in circulation with age [13,14]. M2 macrophages represent the opposite end of the 

polarization spectrum from M1 macrophages. They rely mainly on oxidative 

phosphorylation (OXPHOS) and fatty acid oxidation (FAO) for energy, are generally anti-

inflammatory, and are involved in tissue repair, angiogenesis, and phagocytosis [15]. This 

binary classification of macrophage phenotypes is still commonly used for simplification but 

is inaccurate as macrophage phenotypes exist in vivo across a wider spectrum [15,16].

The local microenvironment plays a critical role in shaping what genes are expressed [17], 

and macrophages can display both M1 and M2 markers in vivo and are not necessarily 

exclusively pro-inflammatory or anti-inflammatory [15]. For instance, there is evidence that 

M2-like macrophages can be pro-inflammatory [18], and that a pro-inflammatory M2 

phenotype seems to accumulate in some, but not all, tissues with age [19–24]. M2 

phenotypes have recently been divided into M2a, M2b, M2c, and other subdivisions by some 

authors based off the stimuli used to polarize them in vitro [15]. Traditionally, they have 

been polarized with IL-4 and IL-13 to the M2a subdivision and most studies generally refer 
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to this subtype when mentioning M2 macrophages. Since macrophages are heterogeneous 

and the various phenotypes are still being characterized, it is currently unknown exactly how 

the macrophage phenotypic landscape changes with age, but new metrics from various 

omics technologies may be able to help elucidate this in the near future [25]. Regardless, it 

does seem that macrophages increase in number in most, but not all, studied tissue types 

with age and display an altered physiology that often contribute to pathology [19,22–

24,26,27]. Several recent review articles describe these changes in detail [28–30], so we will 

only briefly mention some of the major changes here which are relevant to this discussion.

AGE-RELATED MACROPHAGE DYSFUNCTION

Among the age-related changes that occurs to macrophages is a decline in phagocytic ability 

which has been observed in multiple tissues including the peritoneum [31], lungs [32], bone 

marrow [33] and brain [34]. This dysfunction could be a consequence of several different 

factors including senescence [35], defective autophagy [36], reduced NAD availability [37], 

and impairments in mitochondrial functions such as reduced ATP production, mitochondrial 

membrane potential (ΔΨm), and increased reactive oxygen species (ROS) production 

[38,39]. Age-related alterations in macrophage phenotypes may also contribute, as M2-like 

macrophages are generally more phagocytic and are reduced in some tissues. For example, a 

recent study in Alzheimer’s patients reported an increase in M1 and a decline in the M2b 

phenotype, which is highly phagocytic [22]. Aging has also been shown to cause an 

increased number of bone marrow-derived macrophages (BMDMs) that are skewed towards 

a M1 phenotype and display impaired phagocytosis and cytokine production [24]. Extrinsic 

factors in the aging microenvironment likely also play a role, as peritoneal macrophages 

from young mice injected into the peritoneum of aged mice exhibited impaired phagocytic 

capacity [31]. It is likely that a combination of all these factors, as well as other aging 

hallmarks, contribute to phagocytic decline.

Many studies have reported altered TLR expression and cytokine production in macrophages 

as a result of aging. Macrophages from aged individuals generally exhibit increased basal 

inflammation and exist in a sustained activated state, likely as a result of chronic stimulation 

by the inflammaging environment [40]. Often accompanying this low-grade basal 

inflammation is a state of immune paralysis in which effector responses such as 

phagocytosis, antigen presentation, and wound healing are impaired [40]. There has been a 

number of contradictory findings reported in the literature with regards to cytokine 

production following stimulation in aged macrophages, which may be explained by differing 

study designs, tissue site of origin [41], or other factors. Several studies have shown 

increased cytokine, ROS, and/or nitric oxide production following stimulation in aged 

macrophages [8,42–44]. This may be partially due to an epigenetic rewiring process known 

as trained immunity, in which macrophages and other innate immune cells exhibit enhanced 

responsiveness to stimuli they have previously encountered [45]. Trained immunity requires 

a shift in metabolism towards a glycolytic state [46], as it promotes cholesterol synthesis, 

fumarate accumulation, and glutaminolysis which mediates epigenetic reprogramming [47]. 

This reprogramming is characterized by trimethylation of lysine 4 at histone 3 (H3K4me3) 

and acetylation of lysine 27 (H3K27ac) on the promotor region of genes involved in immune 

signaling and metabolism. This results in increased expression of proinflammatory genes 
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such as IL-6, TNFα, MCP-1, as well as key glycolytic genes such as hexokinase-2 and 

phosphofructokinase [48].

It has been proposed that lower doses of PAMPs and DAMPs may induce trained immunity, 

while higher doses can lead to an opposite effect known as immune tolerance [49]. Immune 

tolerance is characterized by a diminished responsiveness to stimuli, usually as a result of 

receptor desensitization [45], which has been demonstrated for various TLRs in 

macrophages [50]. In contrast to the studies mentioned above, several studies have shown 

that macrophages and monocytes have decreased responsiveness to stimuli [51–55], and 

these disparate findings could possibly be due to differences in the epigenetic state when 

analyzed. Immune tolerance and trained immunity have not been well studied in the context 

of aging, but it is likely that these epigenetic processes play a role in inflammaging. Aging 

involves a complex reshaping of the immune system, and persistent stimulation by DAMPs 

and PAMPs may drive non-uniform changes which cause some cellular responses to be 

impaired, some to be preserved, and others to be hyper-activated. As these epigenetic 

changes are largely dependent on bioenergetic processes, dysfunctional mitochondria and 

the resulting metabolic derangements may be central to this phenomenon. When PRR 

stimulation is relatively low, immune cells can efficiently respond by altering their 

metabolism to maintain adequate production of the necessary biomolecules needed to 

perform their functions. For instance, upregulating glycolysis to meet the energy demand for 

effective cytokine and ROS production to kill invading pathogens. Rising PRR stimulation 

and excessive oxidative stress that occur with aging may induce bioenergetic defects, as the 

cell cannot keep up with the energy demand, which dysregulates trained immunity and 

immune tolerance and may contribute to immunosenescence [49]. This has been 

demonstrated in BMDMs from aged mice which exhibited dysregulated immune tolerance 

due to an inability to shift from OXPHOS to glycolysis following LPS stimulation [51]. 

NAD decline with age, which is described in a later section of this review, likely contributes 

to these defects. NAD-dependent sirtuins play essential roles in regulating metabolic 

functions and were shown to be involved in initiating and resolving immune tolerance in 

monocytes via metabolic reprogramming [56,57]. How this precisely contributes to age-

related epigenetic changes and macrophage dysfunction has yet to be determined, but it is 

clear that metabolic dysregulation and mitochondrial impairments play an important role.

MITOCHONDRIA AND AGING

Mitochondria lie as the central hub for cellular metabolism. Historically, mitochondria have 

been viewed in the context of ATP generation as the site for the citric acid (TCA) cycle and 

OXPHOS, however; mounting evidence highlights their role as signaling propagators either 

through the release of proteins, metabolites, and ROS, or as a scaffold for signaling 

complexes [58]. Mitochondrial dysfunction contributes to inflammaging and 

immunosenescence and has been linked to a myriad of diseases including cardiovascular 

disease, cancer, metabolic diseases, and aging [59–62]. The underlying mechanism by which 

aging occurs is not fully understood, although many hypotheses have been ventured. 

Denham Harman put forth the free radical theory of aging in 1956, briefly summarized as 

the cumulative damage from ROS to DNA, lipids, and proteins which drives aging and age-

related diseases [63]. Challenges to this paradigm have arisen with the observations of ROS 
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in normal physiological processes, beneficial hormetic adaptions resulting from low grade 

exposure to ROS such as with exercise, and observed dysfunction in other organelles 

including the endoplasmic reticulum (ER) and lysosomes resulting in misfolded proteins 

[64–66]. Nevertheless, a mounting body of evidence have coalesced to highlight a 

relationship between aging and mitochondrial health.

Inflammatory activation of the immune system can be triggered through sensing by PRR of 

DAMPs or PAMPs. PRRs constitute a wide range of receptors including NOD-like receptors 

(NLRs), receptors for advanced glycation end-products (RAGEs), and TLRs that affect 

inflammatory responses. For instance, mitochondrial DNA (mtDNA), which shares many 

similarities with bacterial DNA due to their shared prokaryotic origins, can serve as an 

inflammatory stimulus by acting as a DAMP. The mitochondrial proteome is maintained by 

mtDNA, distinct from the nuclear genome. mtDNA is vulnerable to mutation and lesion 

from the hazardous ROS-rich mitochondrial environment as it lacks the protective histone 

structures of nuclear DNA. Despite this, mtDNA remains functional in the presence of high 

degrees of mutation load of 60–90% before defects in OXPHOS manifest [67–69]. However, 

mtDNA is released from apoptotic and stressed cells [70,71] and is a potent DAMP, 

activating innate immune cells in a TLR9 [72], NLRP3 inflammasome [73], and cGAS/

STING dependent fashion [74]. Indeed, mtDNA has been observed to stimulate immune 

activation following traumatic injury [72] and heart failure [75]. During aging, mtDNA has 

been observed to increase in tissues and circulation and correlates with inflammatory 

markers; further, mtDNA was shown to promote proinflammatory cytokine production in 

monocytes [76,77]. Understanding of mitochondrial structure and function may shed light 

on their contribution to inflammaging.

MITOCHONDRIAL STRUCTURE AND FUNCTION

Mitochondria are dynamic organelles, translocating around the cell and forming 

interconnected networks. Maintenance, transcription, and packaging of mtDNA is controlled 

by mitochondrial transcription factor A (TFAM) [78,79]. Mitochondria possess a double 

membrane, containing an outer mitochondrial membrane (OMM) and invaginated inner 

mitochondrial membrane (IMM) composed of cardiolipin to form cristae where the 

OXPHOS machinery is distributed throughout [80]. The electron transport chain (ETC) is 

composed of a series of 4 protein complexes, CI-CIV, on the lateral IMM. The final 

complex, F1F0 ATP synthase is the primary generator of cellular ATP. Briefly, NADH and 

FADH2 are reduced to NAD+ and FAD respectively by a series of redox reactions at 

complexes I-IV, whereby protons are pumped into the intramembrane space to create the 

electrochemical gradient ΔΨm (further reviewed [81]). F1F0 ATP synthase uses the ΔΨm to 

catalyze ATP generation from ADP. Besides fueling F1F0 ATP synthase, the ΔΨm serves as 

a buffer for Ca2+ and is an effective measure of mitochondrial quality. Maintenance of the 

ΔΨm is necessary for driving OXPHOS, maintaining the intramembrane space, and for 

cellular homeostasis. Interestingly, the ΔΨm has recently been observed to be heterogenous 

between cristae throughout mitochondria [80]. The varying ΔΨm throughout the 

mitochondria may serve to allow for different aspects to focus on various functions such as 

OXPHOS vs ROS generation. Similarly, it may serve as a protective mechanism to highlight 

damaged areas or prevent the spread of damage in defective OXPHOS.
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At the mitochondrial level, divergent stimuli elicit unique utilization of mitochondria to 

carry out cellular response. For example, during M1 polarization, nitric oxide induced 

blunting of oxidative phosphorylation allows for increased ROS production via reverse 

electron transport (RET) at CI, CIII, and CIV [82]. Additionally, the cessation of electron 

generation necessitates the use of glycolytically generated ATP to drive F1F0 ATP transport 

of protons to prevent ΔΨm depolarization, increasing the ΔΨm and preventing the release of 

the pro-apoptosis signal cytochrome c to the cytosol [83]. Furthermore, mitochondria are 

recruited to the lysosome to assist in phagosome breakdown with ROS production via the 

TRAF6-ECSIT complex [84]. Metabolically, succinate accumulates during OXPHOS 

impairment, resulting in HIF1α stabilization, inflammasome activation, and IL-1β 
production [85]. Conversely, OXPHOS is necessary for IL-4 mediated polarization. Active 

flux through OXPHOS promotes cellular α-ketoglutarate (a-KG), which has been shown to 

suppress inflammatory gene expression. a-KG impairs activation of the NF-κB pathway, 

destabilizing HIF1α, and suppresses activation of Jmjd3 while promoting further fatty-acid 

oxidation to fuel OXPHOS [86,87]. Interestingly, M1 macrophage polarization via LPS

+INF-γ results in reduced mitochondrial mass compared to M2 polarization via IL-4, 

potentially through incurred mitochondrial damage [88]. These observations suggest 

increased mitochondrial damage is associated with macrophage inflammatory activation. In 

contrast, during times of low glucose availability, upregulation of ATP production by 

OXPHOS may preserve inflammatory and immune functions [89,90].

MITOCHONDRIAL DYNAMICS

Macrophage responsiveness is reliant upon mitochondria function. Damaged mitochondria 

may result in a compromised immune response, disturbed ROS production, and/or 

senescence [91–93]. Partially damaged mitochondria can undergo fission to remove 

dysfunctional components or fusion to buffer transient mitochondrial defects [94]. The 

central regulators of fission and fusion are DRP1 and OPA1, MFN1, and MFN2 respectively 

[95–99]. Mitochondrial fission serves to remove damaged mitochondria that may aberrantly 

generate ROS, while fusion also serves to preserve and share mtDNA throughout the 

network. Mitochondria dynamically undergo fission and fusion to remove dysfunctional 

mitochondria while preserving functional aspects.

More severe mitochondrial damage may necessitate its removal. Mitophagy is the organelle-

specific degradation of mitochondria that removes damaged or superfluous mitochondria. 

The most well-studied mitophagy pathway is ubiquitin-dependent PINK1-PRKN/PRK2. 

Briefly, increased ROS and loss of the ΔΨm results in PINK1 stabilization on the OMM, 

ubiquination, recruitment of E3 ligases PRKN/PRKN2 [100–104], and activation of ATGs 

[105]. Mitophagy may play a critical role in attenuating inflammatory responses. 

Endogenous and exogenous cellular danger signals such as ROS, TLR signaling, or mtDNA 

activation can serve to prime and activate the NLRP3 inflammasome and IL-1β secretion. 

Supporting this notion, inhibition of mitophagy proteins ATG15 or PRKN leads to increased 

IL-1β secretion following LPS stimulation [106–109]. Conversely, induction of mitophagy 

via ULK1 eliminates ΔΨm depolarization and mtROS to reduce caspase-1 activation and 

IL-1β secretion [110,111]. As such, mitophagy may be considered to control inflammation, 

as dysfunctional mitochondria are removed to minimize incidental inflammatory 
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stimulation. As mitophagy is impaired with age, its dysregulation likely contributes to 

inflammaging, and this has been associated with several age-related diseases including 

cardiovascular disease and sarcopenia [112–114]. A schematic of mitochondrial dynamics is 

shown in Figure 1.

INTER-ORGANELLE CROSSTALK

Mitochondrial dysfunction extends towards interactions with other organelles, so it is also 

important to consider their relationship during inflammaging. Mitochondria can migrate 

towards lysosomes for ion and metabolite transfer and to aid in inflammatory processes such 

as phagosome breakdown [115,116]. Chronic mitochondrial stress, which occurs during 

inflammaging, can impair lysosomal functions [117,118]. Lysosomal impairment leads to an 

accumulation of lipofuscin which can further dysregulate mitochondrial functions, including 

impaired mitophagy, increased ROS production, and reduced ATP generation [119]. 

Crosstalk between the ER and mitochondria also play an important role in aging. The ER is 

involved in protein synthesis and folding, and interaction between the ER and mitochondrial 

associated membranes regulates cellular Ca2+ [120,121]. ER stress triggers the unfolded 

protein response (UPR) to alleviate the protein burden and prevent misfolding, and chronic 

UPR activation by garbage in the inflammaging environment can lead to impaired 

proteostasis and acceleration of age-related diseases [122].

MITOCHONDRIAL DYSFUNCTION AND CELLULAR SENESCENCE

Cellular senescence is a generally irreversible state of stable growth-arrest in proliferative 

cells which is resistant to apoptosis and is accompanied by phenotypic changes that 

contribute to aging. Senescence was originally demonstrated to occur to human fibroblasts in 

culture after repeated passaging [123], which is now known to be due to telomere attrition 

[124]. This has since been shown to occur in multiple cell types including in post-mitotic 

cells, as a result of exposure to various stressors [125,126]. Senescence does have beneficial 

roles as it can prevent the spread of (and stimulate immune cells to remove) malignant cells 

[127], and it is also involved in embryonic development and wound healing [128,129]. 

However, the number of senescent cells (SCs) accumulate with age in multiple tissues [126] 

and has been causally implicated in age-related dysfunction [130]. Senescence has thus been 

proposed to have evolved as a form of antagonistic pleiotropy, being beneficial to survival in 

young age, but detrimental in older age, with species-specific selection pressures driving a 

balance between tissue repair on the one hand and tumor suppression on the other [131].

SCs impart their effects through their senescence-associated secretory phenotype (SASP), 

which is characterized by an upregulation and secretion of proinflammatory cytokines, 

chemokines, exosomes, and other biological modulators which have autocrine, paracrine and 

systemic effects [132]. The primary role of the SASP within younger individuals may be to 

prevent the spread of damaged, senescent, or oncogenic cells by signaling to the immune 

system for clearance, but during aging, cellular damage accumulation may cause SC 

abundance to exceed the capacity for clearance by the immune system [127,133]. In 

conjunction, immune dysfunction caused by aging and senescence can reduce the ability of 

immune cells to clear SCs, further amplifying the accumulation of SCs with age [127]. 
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There appears to be a threshold number of SCs above which age-related pathologies result, 

and this generally occurs around the ages of 60–70 years in humans [130]. SC accumulation 

promotes pathology on multiple levels. SCs contribute to inflammaging [134], can cause 

chronic damage to tissues and impair their normal physiological functions, and likely 

contribute to immune dysfunction [127].

During aging and senescence, the regulatory mechanisms governing mitochondrial quality 

are reduced. These changes are summarized in Table 1. Mitophagy and fission, as observed 

by a decrease in DRP1 and FIS1, are reduced during aging and mitochondria appear in 

hyper-fused states [135–137]. Senescent and aged cells display a decreased ΔΨm, increased 

proton leakage, aberrant ROS generation, and an increase in TCA intermediates 

[91,92,135,138]. These defects in cellular energy generation likely play a role in aberrant 

cytokine production and reduced immune competence. Furthermore, depletion of 

mitochondria via PINK1/Parkin induction eliminates the SASP [139]. While an extreme 

model that also resulted in cell cycle arrest, these data highlight a central role for 

mitochondria in cellular senescence. Thus, interventional strategies directed at restoring the 

mechanisms governing mitochondrial maintenance may serve as effective in combating the 

SASP and inflammaging. For instance, dysfunctional mitochondria in SCs were shown to 

drive formation of cytosolic chromatin fragments (CCFs) and the SASP via a ROS-JNK 

retrograde signaling pathway. Restoration of mitochondrial function via low-dose 

pharmaceutical class I and II histone deacetylase inhibitors (HDACi) were shown to 

suppress the SASP and formation of CCFs, while higher dosages were found to have 

senolytic activity [140]. A proposed mechanism for this effect is that the HDACi upregulate 

nuclear-encoded OXPHOS genes and suppress oxidative stress from ROS, although HDACi 

may also restore mitochondrial function by other means such as enhanced mitophagy [140]. 

Regardless, restoration of mitochondrial function through pharmacological or lifestyle 

interventions may present an effective strategy for reducing the harmful effects caused by 

SCs and may also serve as a preventative measure of SC accumulation with age.

MACROPHAGE NAD BIOSYNTHESIS AND CONSUMPTION

NAD plays key roles in biological processes and has become of major interest in the aging 

field. Declining NAD levels with age have been documented in most tissue and cell types, 

including macrophages [141], and this is linked with aging and its associated diseases [142]. 

NAD is a coenzyme mediating many redox reactions crucial to metabolism and is also an 

essential cofactor for several NAD-consuming enzymes implicated with aging, including 

sirtuins (SIRTs), poly-ADP-ribose polymerases (PARPs), and CD38 [142]. NAD can be 

obtained from tryptophan via the de novo biosynthesis pathway, also called the kynurenine 

pathway (KP), nicotinic acid (NA) through the Preiss-Handler pathway, and recycling from 

nicotinamide (NAM) via the salvage pathway [143]. The NAD precursors nicotinamide 

mononucleotide (NMN) and nicotinamide riboside (NR), which is converted into NMN, can 

also contribute to NAD production through the salvage pathway and are increasingly being 

used as an exogenous method to raise NAD levels, as they have better bioavailability than 

NA [144,145]. NAD decline with age has been proposed to be caused by reduced synthesis, 

recycling, and/or increased consumption of it [146]. However, plasma levels of NAD 

precursors like NA and NAM were recently shown to remain stable with age, though plasma 
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NAD levels were drastically reduced, which suggests NAD decline may be primarily due to 

an increase in the activity of NAD-consuming enzymes [147].

The majority of intracellular NAD in most cell types is thought to be obtained via the 

salvage pathway [148], although the relative contribution of each pathway to NAD levels in 

macrophages is currently unknown. Further, recent studies have reported conflicting data as 

to the primary sources of NAD in macrophages, and the main NAD-consuming enzymes 

which cause it to decline [37,141,149]. It is likely dependent on the type of macrophage 

studied, whether it has been polarized to an inflammatory state, the organism it was derived 

from and its age, or a number of other factors. The majority of de novo NAD synthesis was 

shown to primarily occur in the liver, which excretes NAM for use in other tissues [148], 

although Minhas et al. recently showed that macrophages also rely on de novo NAD 

synthesis, and the activity of this pathway decreases with age and causes macrophage 

dysfunction [37]. The salvage pathway (Figure 2) appears to be the major contributor to 

NAD production in macrophages after inflammatory insults, and the rate limiting enzyme of 

this pathway, NAMPT, has been shown to be induced by TNFα, IL-1β, LPS, IFNγ, and 

hypoxia, all of which increase with age [141,149,150]. NAMPT is likely induced in 

inflammatory macrophages to keep up with NAD demand due to increased expression of the 

NAD-consuming enzyme CD38, which also degrades NMN and thus may reduce the 

effectiveness of NAD-replacement therapies [141,151].

While the salvage pathway is likely the primary contributor to NAD production in activated 

M1 macrophages, the de novo pathway may play a significant role during resting conditions. 

Minhas et al. recently demonstrated that the de novo pathway accounts for 40% of basal 

NAD production in human monocyte-derived macrophages (hMDMs). Additionally, they 

showed that inhibition of IDO1, which catalyzes the first step in the de novo pathway, 

altered mitochondrial morphology, suppressed OCR, and increased glycolytic activity [37]. 

Inhibition of QPRT, which is downstream of IDO1 in the de novo pathway, caused similar 

changes to mitochondrial morphology and metabolism, led to increased proinflammatory 

factors, and impaired phagocytosis. QPRT converts quinolinic acid into nicotinic acid 

mononucleotide (NAMN) which is ultimately converted into NAD. Aged hMDMs showed a 

significant decline in QPRT expression, de novo NAD synthesis, and SIRT3 activity, with 

increased polarization towards a proinflammatory state. Overexpressing QPRT, or 

supplementing with NMN, reversed these effects [37].

AGE-RELATED NAD DECLINE: ROLE OF CD38 ACTIVATION IN 

MACROPHAGES

CD38 is a transmembrane protein involved in Ca2+ signaling and mobilization and mediates 

signal transduction, cell adhesion, activation, proliferation and differentiation, and has been 

found in nearly every cell type examined [152–154]. CD38 is necessary for effective 

immune responses, as CD38 deficient mice have increased susceptibility to infections [155]. 

CD38 is active both intra- and extracellularly and was originally thought to work primarily 

extracellularly, but recent evidence suggests the majority of CD38 activity is intracellular in 
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macrophages, with its primary function being the generation of cyclic ADP-ribose and 

NAADP for Ca2+ regulation [141,153].

CD38 expression increases in multiple tissue types with age, significantly contributes to 

NAD decline, and may be caused exclusively by activation of tissue-resident macrophages 

from the SASP and inflammaging environment [141,151]. In particular, TNFα, IL-10, and 

IL-6, as well as numerous PAMP TLR ligands including LPS, were each individually shown 

by Covarrubias et al. to significantly upregulate CD38 expression in M1 polarized 

macrophages, but not M2 or M0 [141,154,155]. Macrophages cultured in media from 

senescent fibroblast or preadipocyte cells also markedly upregulated CD38, but they did not 

significantly upregulate other NAD-consuming enzymes such as PARPs or SIRTs [141]. The 

senescent fibroblasts and preadipocyte cells themselves did not show significant 

upregulation in CD38 expression. Further, intraperitoneal (IP) injection of the drug 

doxorubicin, which induces senescence, caused an accumulation of CD38+ macrophages in 

white adipose and liver tissue, with an increase in senescent markers and proinflammatory 

cytokines, similar to that observed with aging [141]. Indeed, tissue-resident macrophages of 

the liver (Kupffer cells) accumulate with age, express greater amounts of CD38, show more 

signs of senescence, and are skewed towards a proinflammatory polarization [141]. Other 

immune populations in the liver and hepatocytes showed low CD38 expression. Endothelial 

cells were the only other population in the liver other than Kupffer cells which highly 

expressed CD38, but they showed only a marginal increase in CD38 expression with age 

[141]. Therefore, this evidence suggests macrophages may be primarily responsible for the 

age-related increase in CD38 expression and NAD decline seen in tissues with aging.

NAD decline caused by CD38 activation likely contributes to age-related pathologies on 

multiple levels. Overexpression of CD38, but not SIRT1 or PARP1, was shown to have 

detrimental impacts on mitochondrial function and morphology, causing a dramatic decrease 

in total respiratory capacity, mitochondrial-driven ATP synthesis, NAD levels, and oxygen 

consumption rate (OCR) [151]. These defects may be due in part to reduced NAD 

availability for SIRTs, especially the mitochondrial protein SIRT3, which is essential for 

mitochondrial metabolism and function [151,156]. We previously showed that classical 

monocytes from older adults have reduced respiratory capacity [157] and hypothesize that 

declining NAD levels as a result of activation of CD38 by the SASP may be a key 

contributing factor. Interestingly, the first successful intervention reported to reduce 

epigenetic age in humans showed that diminishing CD38+ monocyte concentrations, as a 

result of the intervention, correlated with reduced epigenetic age, and they hypothesized that 

a subsequent increase in NAD tissue availability may have been largely responsible [158]. 

Although CD38 activity in monocytes is understudied, it is known that most classical and 

intermediate monocytes express it, as it plays an important role in extravasation of 

monocytes into tissues [155]. While a fewer percentage of nonclassical monocytes express 

CD38, a minority of them were shown to highly express it and were associated with 

inflammatory disease activity [155]. As nonclassical monocytes increase with aging [157], 

are more prone to senescence than the other subsets [159], and senescence has been shown 

to increase CD38 expression in macrophages, senescent nonclassical monocytes may also 

contribute to NAD decline seen with aging both in tissues and in circulation.
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Besides being activated by the inflammaging environment, CD38 may also contribute to it, 

as overexpression promotes IL-1β, IL-6, IL-12, and glycolytic activity in hMDMs, and 

CD38 knockout (KO) mice have preserved mitochondrial function, SIRT3 activity, and were 

protected from NAD decline with age [155]. Although there is scant evidence on the 

interaction between CD38 and NF-κB, CD38 activation may increase NF-κB signaling. NF-

κB is likely the primary transcription factor involved in the appearance of the SASP, and 

most of the proinflammatory genes expressed in senescent cells require it [132,160]. 

Therefore, it is of little surprise that NF-κB can activate CD38 [161], though recent evidence 

suggests CD38 may further amplify NF-κB signaling. CD38 KO mice were found to have 

greatly diminished NF-κB signaling in an autoimmune arthritic mouse model [162]. Further, 

inhibition of CD38 by the senolytic flavonoid quercetin was shown to reduce NF-κB 

signaling and M1 macrophage polarization in kidney and spleen tissue following IP LPS 

administration [154]. Since CD38 degrades NAD and NMN, inhibition with quercetin, when 

used in conjunction with NMN or NR therapy may be a viable method for increasing NAD 

levels, reducing proinflammatory macrophage polarization and senescence, and improving 

age-related pathologies.

As PARP1 and SIRT1 levels were found to decrease in several tissues with aging, CD38 is 

likely the main NAD-consuming enzyme contributing to age-related NAD decline [151], 

though the role PARPs play is inconclusive due to the abundance of contradictory findings in 

the literature. There is evidence for PARP1 both contributing to aging pathologies on the one 

hand by reducing NAD levels, and as a longevity-promoter on the other, and we recommend 

several review articles for more information [163,164]. PARP1 activity in macrophages 

specifically may contribute to inflammaging as it has been demonstrated to promote NF-κB 

and HMGB1 activity following LPS-stimulation [165,166]. Further, PARP1 inhibition has 

been shown to have anti-inflammatory effects [167]. While Covarrubias et al. reported no 

significant upregulation in PARP expression from senescent media, or following LPS 

administration in mice (though there was a trend upwards) [141], Cameron et al. found that 

LPS acutely caused ROS generation and DNA damage in BMDM, which stimulated PARP 

activity and led to NAMPT activation to keep up with NAD demand [37]. Like Covarrubias 

et al., they did not find an increase in enzymes of the Preiss-Handler or de novo pathway, 

and inhibiting NAMPT with FK866 led to a significant suppression in NAD levels in M1 

macrophages, but not M0 or M2 [141,149]. Further, NAMPT inhibition diminished 

glycolytic activity and inflammatory mediators in M1 macrophages in vitro due to decreased 

GAPDH activity, which is NAD dependent [149]. This suggests NAD and NAMPT play 

critical roles during inflammatory activation in macrophages. The discrepancy between these 

two studies in PARP expression in M1 macrophages following LPS-stimulation may be due 

to the time point of analysis. It may be that early decreases in NAD macrophage 

concentrations after LPS-stimulation are due to oxidative stress and resulting PARP 

activation, whereas ongoing chronic depletion may be due to increased CD38 expression 

resulting from the inflammaging environment [141,149].

Table 2 contains an overview of major findings discussed above.
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CONCLUSION

Figure 3 outlines the major themes of this review. Accumulation of damage over time 

increases the number of DAMPs and PAMPs in circulation which seem to drive metabolic-

dependent epigenetic changes that alter macrophage functions during aging. Among these 

alterations is a heightened basal state of inflammation, diminished or hyperactive 

inflammatory responses, and impaired effector functions. A significant number of DAMPs 

are derived from malfunctioning mitochondria. With age mitochondrial dynamics, 

mitophagy, and inter-organelle crosstalk are impaired leading to enhanced oxidative stress, 

mtDNA excretion, altered metabolism, and impaired proteostasis. Agie-related NAD decline 

plays a major role in mitochondrial dysfunction and new evidence suggests this decline may 

be largely due to an upregulation of CD38 in tissue-resident macrophages caused by the 

SASP, PAMPs, and other proinflammatory factors in the inflammaging environment. CD38 

activation in monocytes may also play a significant role in NAD decline, but other immune 

cells such as lymphocytes and neutrophils do not seem to be a major contributor. Recently, 

there has been an ever-increasing amount of evidence demonstrating NAD supplementation 

to be effective in protecting against age-related pathologies [168]. The results reviewed here 

indicate that inhibition of CD38 in conjunction with NAD supplementation may be more 

effective than NAD supplementation alone as CD38 degrades both NAD and NMN.
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ABBREVIATIONS

ΔΨm mitochondrial membrane potential

BMDM bone marrow-derived macrophage

DAMP damage-associated molecular pattern

ER endoplasmic reticulum

ETC electron transport chain

FAO fatty acid oxidation

HDAC histone deacetylase

hMDM human monocyte-derived macrophage

IFN interferon

IL interleukin

IMM inner mitochondrial membrane
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KO knockout

KP kynurenine pathway

LPS lipopolysaccharide

mtDNA mitochondrial DNA

NA nicotinic acid

NAD nicotinamide adenine dinucleotide

NAM nicotinamide

NLR NOD-like receptor

NMN nicotinamide mononucleotide

NR nicotinamide riboside

OMM outer mitochondrial membrane

OXPHOS oxidative phosphorylation

PAMP pathogen-associated molecular pattern

PARP poly-ADP-ribose polymerase

PRR pattern recognition receptor

RAGE receptor for advanced glycation end products

RET reverse electron transport

ROS reactive oxygen species

SASP senescence-associated secretory phenotype

SC senescent cell

SIRT sirtuin

TCA citric acid cycle

TFAM mitochondrial transcription factor A

TNF tumor necrosis factor

TLR toll-like receptor
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Figure 1. 
The mitochondrial lifecycle. Fused mitochondria undergo fission through Fis1. Individual 

mitochondria can undergo fusion through the actions of Drp1, Opa1, Mfn1, and Mfn2, or 

can be shuttled to the mitophagy pathway via PINK1 and Parkin. Cellular senescence 

inhibits mitophagy to induce mitochondrial dysfunction.
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Figure 2. 
NAD salvage pathway.
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Figure 3. 
Schematic of an aging macrophage. Stimulation of the macrophage by SASP constituents, 

PAMPs, and DAMPs leads to intracellular signaling and propagation of the inflammatory 

state. Senescence-associated mitochondrial dysfunction, including increased ROS 

production and mitochondrial mass, mitochondrial hyperfusion, and decreased membrane 

potential, may also play a role in immunometabolic changes in aging macrophages. Finally, 

CD38 expression increases consumption of NAD through the salvage pathway, leading to 

lower tissue levels of NAD.
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Table 1.

Summary of age-related mitochondrial dysfunction.

Phenomenon Aging Effect

mtDNA release ↑

Mitophagy ↓

Fission ↓

Fusion ↑

∆ψm ↓

Proton leak ↑

mtROS production ↑

∆ψm: mitochondrial membrane potential. mtDNA: mitochondrial DNA. mtROS: mitochondrial reactive oxygen species.
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Table 2.

Macrophages, CD38, and nad metabolism.

Species Cell Type Stimulus/Condition Effect Reference

C57BL/6J mice BMDM Cytokines, TLR ligands LPS ↑ CD38 [141]

C57BL/6J mice WAT mϕ LPS ↑ CD38
↑ TNFα, IL-1β
↑ mϕ

[141]

C57BL/6J mice BMDM Senescent media ↑ CD38 [141]

C57BL/6J mice Liver and WAT mϕ Doxorubicin ↑ CD38+ mϕ [141]

C57BL/6J mice Kupffer cells Aging (25 months old compared to 
6 months)

↑ CD38, p21, NAMPT, IL-1β, IL-18, 
CCL2, HMGB1
↑ mϕ
↑ M1 polarization

[141]

Human (cell line) HEK293T CD38 overexpression ↓ mitochondrial respiratory capacity
↓ NAD Abnormal mitochondrial 
morphology

[151]

C57BL/6 mice Isolated liver 
mitochondria

CD38 KO vs WT ↑ respiratory rate
↑ NAD and NAD/NADH
↑ SIRT3

[151]

Human Monocytes Epigenetic age reversal intervention ↓ CD38+ monocytes [158]

Human (cell line) THP-1, U937 LPS + IFNγ ↑ CD38 vs M0 or M2 [155]

Human (cell line) THP-1, U937 CD38 inhibition via apigenin or 
rhein in M1 (LPS + IFNγ)

↓ IL-6, IL-12p40 [155]

C57BL/6 mice BMDC CD38 KO vs WT with collagen-
induced arthritis

↓ phospho-NFκB
↓ IL-1β, IL-4, IL-10

[162]

Mouse (cell line) RAW 264.7 LPS CD38 activation [154]

Mouse (cell line) RAW 264.7 LPS stimulation with CD38 
inhibition via quercetin

↓ phospho-NFκB
↓ M1 polarization

[154]

C57BL/6 mice Kidney mϕ LPS stimulation with CD38 
inhibition via quercetin

↓ mϕ accumulation
↓ CCL2 and TNFα
↓ M1 polarization
↓ phospho-NF-κB

[154]

BMDC: bone marrow-derived dendritic cells; BMDM: bone marrow-derived macrophages, CD: cluster of differentiation; IFN: interferon; IL: 
interleukin; KO: knockout; LPS: lipopolysaccharide; WAT: white adipose tissue; WT: wildtype.
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