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Abstract 
Rodent models in rats, mice, and guinea pigs have been extremely helpful to gain insight into pregnancy 
physiology and pathologies-related. Moreover, they have allowed understanding the mechanism that 
links an adverse intrauterine environment with the origin of adult disease. In this regard, the effects of 
diverse maternal conditions, such as undernutrition, obesity, hypoxia, and hyperandrogenism on 
placental function and its long-term consequences for the offspring, have been widely analyzed through 
rodents models involving dietary manipulations, modifications in environmental oxygen, surgical and 
pharmacological procedures that reduce uteroplacental blood flow and administrations of exogenous 
testosterone and dihydrotestosterone (DHT) mimicking maternal androgen excess. Both in human and 
in rodent models, these interventions induce modifications of placental morphology, transport of 
glucose, amino acid, and fatty acids, steroid synthesis, and signaling pathways control placental function. 
These changes are associated with the increase of pro-inflammatory and oxidative stress markers. For 
its part, offspring exhibit alterations in organs involved in metabolic control such as the hypothalamus, 
adipose tissue, liver, skeletal muscle, and pancreas altering the intake and preferences for certain foods, 
the metabolism of glucose and lipid, and hormonal function leading to fat accumulation, insulin 
resistance, fatty liver, dyslipidemia, and elevated glucose levels. Therefore, the present review discusses 
the evidence emerging from rodent models that relate maternal nutrition, hypoxia, and androgen 
exposure to the maternal mechanisms that lead to fetal programming and their metabolic 
consequences in postnatal life. 
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Introduction 

Fetal programming or the developmental origin of the health and disease (DOHaD) 
hypothesis postulate that adverse intrauterine environment induced by deleterious 
environments or the presence of pathologies during pregnancy trigger fetal adaptations and, 
in many cases, fetal growth restriction (FGR) and increased risk of developing chronic 
diseases as early as at adolescence or long-term during adulthood or aging (Perrone et al., 
2016). Among the factors that account for these phenomena are unhealthy maternal habits 
such as obesogenic diets, smoking, physical inactivity, and psychosocial stress. Complications 
related to pre-existing health problems or those that appear during pregnancy, like endocrine 
and metabolic diseases, also induce fetal programming (Perrone et al., 2016; Marciniak et al., 
2017). Interestingly, maternal obesity, polycystic ovary syndrome (PCOS), gestational 
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diabetes, and preeclampsia are related to abnormal steroid synthesis that increases 
androgen levels affecting fetal growth and risk of metabolic, reproductive, and psychiatric 
diseases. 

The placenta is the main organ of pregnancy that provides the growing fetus with 
nutrients, participates in gas exchanges, syntheses almost all peptides and steroid hormones, 
and removes fetal waste products. A substantial amount of evidence indicates the primary 
role of the placenta in the mechanism account of fetal programming. In this regard, the 
changes in the intrauterine environment influence oxygen and nutrient maternal-fetal 
transfer through alterations of metabolic and inflammatory pathways, modifications in 
steroid and cytokines synthesis, and lipid and protein oxidation (Sferruzzi-Perri and Camm, 
2016). Likewise, face to this environment, the fetus produces a redistribution of fetal blood 
flow to organs with higher metabolic demands like the heart and brain at the expense of 
others generating structural changes and regulating gene expression through epigenetic 
modifications of cell pathways that control the physiology of various organs causing fetal 
programming (Marciniak et al., 2017). 

Animal models provide invaluable information for elucidating the mechanisms involved in 
fetal programming because they allow testing controlled the maternal exposure to diverse 
conditions that include nutritional and oxygen modifications or surgical and pharmacological 
paradigms that mimic multiple pregnancy pathologies (Warner and Ozanne, 2010). Because 
of their short gestation and lifespan, rodents are helpful and standard models for pregnancy 
physiology and the consequences for the offspring even more than one generation. 
Moreover, it is possible to obtain tissue samples from the mother, placenta, fetus, or 
offspring during any stages of the exposure allowing more insight into the short- and long-
term relationships between mother and fetus in the development programming (Warner and 
Ozanne, 2010). In this regard, rats, mice, and guinea pigs are used widely for studies of 
nutritional interventions, maternal and fetal hypoxia, and prenatal androgen exposure. These 
rodent models share several similarities with the physiology of human pregnancy and 
placental function, giving essential information to understand the mechanism that affects 
fetal growth and development. However, they also show fundamental differences in the 
anatomy and physiology between them and in comparison to humans including uterine 
shape, the number of embryos, placental morphology, endocrine function, and metabolic 
requirements. Then, these differences should keep in mind when interpolating the findings in 
rodent models into human pregnancy. 

Therefore, we will review and discuss the evidence emerging from rodent models that 
relate maternal nutrition, hypoxia, and androgen exposure to the maternal mechanisms that 
lead to fetal programming and their consequences in postnatal life. 

Differences between rodent and human pregnancy 

Pregnancy in rodents has significant differences with humans; the most evident is the 
litter size (Table 1). In rats, it ranges from 10 to 16 pups; in mice is 6 to 8, and in guinea pigs, 
usually, the number of pups is 2 to 4 (Andersen et al., 2018). In addition, the length of 
pregnancy varies between species and strains, being the delivery, in rats and mice between 
gestational day (GD) 19 to 21, whereas in guinea pigs is 60 to 70 days (Andersen et al., 2018). 
According to the degree of maturation of bone, muscle, and nervous system at birth, species 
can be classified as precocial, giving birth to pups with well-developed sensory and locomotor 
skills systems like in humans, guinea pigs, and spiny mice. On the other hand, altricial such as 
the rat, mouse, or hamster, birth underdeveloped, relatively immobile, lack of hair, and 
closed eyes. Then, the correct selection of the rodent species is critical to early postnatal 
studies, mainly in the neurodevelopmental field. 

Placenta has a maternal portion, the decidua, and a fetal part, the chorion, and it consists 
of mesenchymal, immune, vascular, and trophoblast cells (cyto-and syncytiotrophoblast). 
Cytotrophoblasts fuse to form the syncytiotrophoblast, a specialized epithelium, carries out 
gas exchange and expresses nutrient transporters for glucose, amino acid, and fatty acid. 
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Among the species, there are differences in placental shape, degree of the relationship 
between the chorion and uterine wall, number of layers of trophoblast, and maternal-fetal 
interdigitation (villous, trabecular, or labyrinthine) 

Table 1. Main pregnancy and placental characteristics in human, mouse, rat and guinea pig. 

 Human Mouse Rat Guinea pig 
Homo sapiens Mus musculus Rattus norvegicus Cavia porcellus 

Pregnancy 
characteristics 

    

Pre-pregnancy 
weight (g) 6000 20 280 700 

Gestation length 
(days) 266-280 19-22 19-22 60-70 

Number of 
fetuses 1 6-8 10-16 2-4 

Neonate weight 
(g) 3200 1 6 80 

Neonatal 
maturity Precocial Altricial Altricial Precocial 

Placental 
characteristics 

    

Placental shape Discoid Discoid Discoid Discoid 
Placental barrier Hemomonochorial Hemotrichorial Hemotrichorial Hemomonochorial 
Fetal-maternal 
interdigitation Villous Labyrinthine Labyrinthine Labyrinthine 

Ovarian 
steroidogenesis 

Progesterone until 8 
wk 

Progesterone Progesterone Progesterone until 
mid-pregnancy 

Estrogen Estrogen Estrogen 
Placental 

steroidogenesis 
Progesterone 

Androstenedione Androstenedione Progesterone 
Estrogen 

According to the relationship between the chorion and uterine wall, the placenta is 
classified as epitheliochorial, in which fetal tissue is closely in contact with maternal uterine 
epithelium but does not invade it significantly. This type is found in horses, pigs, and 
ruminants. In contrast, those in which the trophoblast invades in different degrees the 
uterine wall are: the endotheliochorial that is present in eutherian mammals and carnivores, 
and it is characterized by a trophoblast invasion up to the level of the basal lamina of 
maternal endothelial cells. Humans and rodents possess a hemochorial placenta, in which 
cytotrophoblasts invade and replace endothelial and smooth muscle cells in spiral arteries 
remodeling from high-resistance/low-capacity to low-resistance/high-capacity vessels 
facilitating uterine blood flow and placental perfusion (Furukawa et al., 2014) (Figure 1). In 
guinea pigs and humans, there is only one layer of trophoblasts that separates the maternal 
blood space from the fetal capillaries; then, it is also classified as hemomonochorial 
(Figure 1a and b). In contrast, in mice and rats, the placenta is hemotrichorial because there 
are three layers, one of cytotrophoblast and two of syncytiotrophoblasts, between maternal 
blood space and fetal capillaries (Figure 1c) (Andersen et al., 2018). 
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Figure 1. Schematic representation of placenta from human (a); guinea pig (b); and mouse or rat (c). The 
inset shows a magnification of the placental barrier. 

The branching of the chorion forms the chorionic villi, which is the functional unit because 
it participates in maternal/ fetal exchange and hormone synthesis. Chorionic villi interdigitate 
into the intervillous space that receives maternal blood via the spiral arteries (Figure 1a). The 
placenta of guinea pigs is composed of labyrinthine lobes, where syncytiotrophoblast is 
embedded in maternal blood. The subplacenta connects the main placenta with the 
junctional zone and serves as the source of extravillous trophoblasts that invade the 
endometrium and have endocrine functions (Figure 1b) (Capellini et al., 2011). In rats and 
mice, the placenta contains a fetal part that includes the labyrinthine zone, which meets the 
same exchange function of intervillous space in humans, the junctional zone that participates 
in hormone synthesis, and the yolk sac, which is not present in humans. The maternal part is 
formed of the decidua and metrial gland (Figure 1c). 

Sex steroids play a central role in pregnancy, regulating immune tolerance, maternal food 
intake, glucose and lipid metabolism, uterine blood flow, placental angiogenesis and nutrient 
transport, and the timing of labor. In this regard, steroid receptors, including progesterone, 
estrogen, glucocorticoids, and androgen, are present in the placenta from mice, rats, and 
guinea pigs, indicating that steroid action regulates rodent placenta. However, there are 
more differences than similarities regarding steroid synthesis between humans and rodents 
(Table 1). 

In humans, progesterone is produced at the beginning of pregnancy by corpora lutea 
under the control of chorionic gonadotropin secreted by the syncytiotrophoblast. From about 
eight weeks of gestation, progesterone is synthesized exclusively in the placental trophoblast. 
However, progesterone supporting pregnancy is produced mainly in mice and rats' ovaries 
(Warshaw et al., 1986; Strauss et al., 1996). On the other hand, guinea pigs, like humans, 
exhibit a luteo-placental shift in hormone production (Csapo et al., 1981). For its part, 
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estrogens are produced from androgen precursors aromatized by P450 aromatase in the 
human placenta. On the contrary, the mouse and rat placenta expresses 17-hydroxylase 
activities, which is critical to synthesize androgens from progestogens, then can produce de 
novo androgens that are utilized as substrate by ovarian P450 aromatase to synthesize 
estrogens. Unlike humans, the placenta does not express aromatase activity in these species. 

Rodent models of dietary interventions, hypoxia, and hyperandrogenism. 

The interventions in rodent models that allow evaluating the effects of nutrition comprise 
under and over-nutrition with modifications in the energy content and nutrients components. 
In turn, hypoxia models can be reached through surgical techniques, environmental 
modifications, and genetic manipulations. On the other hand, gestational hyperandrogenism 
can be induced pharmacologically with hormones with androgens activity, mainly 
testosterone and dihydrotestosterone. These interventions are summarized in Figure 2 and 
will be described in the following sections. 

 
Figure 2. Rodent models of dietary interventions, hypoxia, and hyperandrogenism. 

Rodent models of caloric and nutrient manipulations have provided relevant insights into 
the effects of maternal undernutrition and obesity on placental nutrient transport, diet-
associated mechanisms of fetal growth, and its long-term consequences for the offspring. 
The most extensively dietary rodent models of intrauterine growth restriction (IUGR) have 
applied a reduction of 20 to 50% of food intake or low protein diet (LPD) ranging from 4 to 8% 
of total calories instead of 19 to 22% in control chow (Warshaw et al., 1986). On the other 
hand, to test nutrient excess, rodent models have involved the exposure, from before and 
during gestation, to high-fat (HFD) containing 18 to 65% of calories as fat with or without 
elevated levels of carbohydrates supplied as sucrose into the pellet diet or in drinking water 
(Williams et al., 2014). Another strategy that resembles human dietary habits is the cafeteria 
diet that includes human snack food items, i.e., cheesecake, chocolates, fried chips, and 
cookies, into the standard chow (Neri and Edlow, 2015). 

Oxygen is critical for mammals because it is a substrate for oxidative metabolism, and 
oxygen deprivation can damage several tissues. In physiological conditions, oxygen levels are 
nearly 20 mL O2/dL with slight differences in women due to minor hemoglobin levels, which 
mediates oxygen transport (Olive et al., 2018). Prenatal hypoxia can originate from maternal, 
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placental, and fetal conditions. Kingdom and Kaufmann classified hypoxia as pre-placental if 
the mother and fetus are affected due to external hypoxic environments (i.e., living at high 
altitudes, pulmonary hypertension, maternal anemia); uteroplacental due to an abnormal 
blood flow to these tissue product of occlusions or failed trophoblast invasion; and post-
placental when the fetus is hypoxic due to fetal diseases (Kingdom and Kaufmann, 1997). It 
has been postulated that an abnormal trophoblast invasion leads to placental ischemia 
promotes chronic inflammation, endothelial dysfunction, and increased oxidative stress 
(Khalil and Granger, 2002; Redman, 2011). Guinea pigs have been described as an excellent 
animal model to study the effects of hypoxia on placentation mechanisms because they 
present deep trophoblast invasion into the maternal decidua and a more extended 
gestational period than rats or mice species (Morrison et al., 2018). 

An abnormal uteroplacental blood flow has been implicated in preeclampsia's 
pathogenesis, which is pregnancy-related, defined as new-onset hypertension and 
proteinuria after 20 weeks of gestation. Preeclampsia is strongly associated with FGR and 
maternal morbidity because it can cause eclampsia, a severe and high-mortality pregnancy-
pathology. 

Preeclampsia can evolve in two stages: early-onset preeclampsia due to a defective 
placenta formation or a reduced uteroplacental blood flow, and late-onset preeclampsia, 
associated with placental pathologies (Roberts and Hubel, 2009). Animal models for the study 
of preeclampsia can be divided into four categories according to their mechanisms, as 
previously reported: spontaneous animal models of preeclampsia, surgical interventions, 
pharmacologically/substance-induced models, and transgenic animal (Erlandsson et al., 
2016). 

The BPH/5 mouse mimics both early and late-onset preeclampsia, showing elevated blood 
pressure, endothelial dysfunction, glomerular lesions, proteinuria, and fetoplacental defects 
(Davisson et al., 2002). On the other hand, surgical models involve mechanical occlusions in 
the uterine artery or the abdominal aorta that reduce uteroplacental perfusion (Li et al., 
2012). Pharmacologically induced models have shown that exposure to l-NAME, an inhibitor 
of nitric oxide synthase (NOS), or arginine vasopressin (AVP) can replicate classic maternal 
and fetal preeclampsia symptoms (Molnár et al., 1994; Santillan et al., 2014). Finally, several 
genetically modified animal models simulate preeclampsia, including knockout (KO) mice for 
indoleamine 2,3-dioxygenase (IDO) that regulates endothelial-derived relaxing factors 
(Santillan et al., 2015). Moreover, pregnant interleukin-4 (IL-4 -/-) exhibit mild preeclampsia-
like symptoms, and interleukin-10 (IL-10 -/-) knockout mice exposed to hypoxia present 
placental injury, proteinuria, and hypertension. 

In humans, increased circulating testosterone levels are consistently found in maternal 
malnutrition (Maliqueo et al., 2017; Barrett et al., 2019), gestational diabetes (Villarroel et al., 
2017), preeclampsia (Troisi et al., 2003), and polycystic ovary syndrome (PCOS) 
(Maliqueo et al., 2015; Caanen et al., 2016). This latter is the most common endocrine-
metabolic condition in women characterized by hyperandrogenism and oligo-anovulation, 
leading to reduced fertility and metabolic disorders like obesity, dyslipidemia, and type 2 
diabetes (Boyle and Teede, 2016). It is noteworthy that elevated maternal androgens are 
associated with placental dysfunction and FGR (Carlsen et al., 2006; Kumar et al., 2018). 
Rodent models in rats and mice involving subcutaneous injections of testosterone or 
dihydrotestosterone (DHT) at the last third of pregnancy have been commonly used to 
understand the role of androgens on placental function, fetal growth, and long-term 
consequences for offspring. Models in rats comprise the administration during five 
consecutive days of 0.5 mg/kg/day of testosterone (GD15 - GD19) or 3.0 mg/day of DHT 
during four days (GD16 - GD19) (Sathishkumar et al., 2011; Dean et al., 2012; Sun et al., 2012). 
For its part, mice models have used subcutaneous administration of 250 μg of DHT from 
GD16.5 - 18.5 (Fornes et al., 2017). Moreover, this latter has been combined with the 
administration of high fat and high sucrose diet to understand the relationship between 
endocrine abnormalities and metabolic disorders (Risal et al., 2019). 
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Placental adaptations in rodent models of dietary interventions, hypoxia, and 
hyperandrogenism 

Food and chronic protein restrictions in rats and mice reduced maternal weight gain at 
the last third of pregnancy; and the placental and fetal weights (Jansson et al., 2006; 
Gonzalez et al., 2016; Connor et al., 2020). Similarly, in C57BL/6J mice, it has been reported 
that four days of exposure to hypoxia (10.5% O2) at mid-pregnancy caused a decrease in the 
number of viable pups and a reduction of 36% in birth weight at gestational day 18.5 without 
changes in placental weight (Cuffe et al., 2014). In rat models, it has been reported that three 
days of hypoxia (12% O2) from GD18 until GD21 can induce a reduction of 10% in birth 
weight without changes in litter size (Thaete et al., 2004). Similarly, hypoxia levels for a longer 
period, starting from GD14 until GD20, can induce a reduction of 20% in weight 
(Jakoubek et al., 2008). Even more, hypoxia for 11 days causes a severe FGR with a decrease 
of 30% fetal-weight with smaller litter size and lower placental weight (Huang et al., 2004). In 
guinea pigs, hypoxia-induced by 10.5% O2 reduced fetal weight but increased placental 
weight (Thompson et al., 2016). Meanwhile, in rats, maternal exposure to testosterone or 
DHT and in mice to DHT produce lower fetal weight and reduced placental size (Sun et al., 
2012; Risal et al., 2019). 

The effects on fetal growth observed by nutritional interventions, hypoxia, and 
hyperandrogenism are likely related to placental modifications due to reduced uteroplacental 
blood flow and nutrient transport. Thus, it is common to observe smaller placentas with 
alterations in specific placental zones that account for the modifications in nutrient transport 
and hormone synthesis. Both under and overnutrition-induced diets mainly affect the 
placental junctional zone, reducing the number of glycogen trophoblast cells, which meets a 
nutritional function. Moreover, rats fed with LPD increased density and number of 
spongiotrophoblast and giant cells producing prolactin-like, and lactogens hormones that 
maintain progesterone secretion from the corporea lutea and cytokines that regulate 
placental functions in the junctional zone were observed (Vomhof-DeKrey et al., 2016). These 
data indicate that maternal undernutrition launches nutritional and endocrine compensatory 
mechanisms to pregnancy maintenance and avoid growth restriction; however, these seem 
to be insufficient considering that reduced fetal growth. LPD in rats could also affect steroid 
synthesis because it decreases the gene expression of 17-beta-hydroxysteroid 
dehydrogenase type 2 in the junctional zone in both female and male fetuses (Gao et al., 
2012). 

In guinea pigs, prenatal hypoxia (10.5% O2) during early gestation inhibits cytotrophoblast 
invasion of spiral arteries that affects placentation increasing maternal blood pressure that 
resembles changes observed in women with preeclampsia (Turan et al., 2017). On the other 
hand, it was observed that hypoxia also induced a compensatory blood vessel expansion in 
the guinea pig labyrinth in response to inhibited upstream arterial remodeling 
(Thompson et al., 2016). Interestingly, in CD1 mice, placentas of female fetuses responded 
differently to maternal hypoxia, showing reduced placental labyrinth blood spaces, which was 
not observed in male placenta (Cuffe et al., 2014). Overall, maternal exposure to hypoxia or 
surgical restriction of uterine blood flow induce placental hypoxia, evidenced by hypoxyprobe 
staining or protein expression of hypoxia-inducible factor 1α (HIF1α), increased apoptosis, 
reactive oxygen species (ROS), and mitochondrial or endoplasmic reticulum stress (Siragher 
and Sferruzzi-Perri, 2021). Placental transcriptome analysis in mice exposed to 10.5% oxygen 
from GD 14.5 to 18.5 showed an altered expression of genes involved in vasculature 
development, hemostasis, adhesion, and extracellular matrix despite no changes in placental 
and fetal weights (Chu et al., 2019). 

In this same line, maternal LPD decreased M1 macrophages and increased M2, producing 
TNFα, and invariant natural killer T (iNKT) cells, secreting significant amounts of cytokines in 
response to glycolipids, also suggesting a pro-inflammatory state. Similarly, HFD (45% kcal as 
fat) in pregnant mice significantly decreased placenta labyrinth thickness, where maternal-
fetal exchange occurs, showing lower cell proliferation, increased macrophage activation, and 
elevated pro-inflammatory cytokine gene expression (Kim et al., 2014). 
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Along with the changes described above, LPD overexpressed placental angiogenic factors 
such as fibroblast growth factor 2 (FGF2), vascular endothelial growth factor receptor 1 
(VEGFR1), and insulin-like growth factor 2 (IGF2) contributes to placental vascular defects 
because did not revert the FGR (Vomhof-DeKrey et al., 2016). Similarly, maternal 
undernutrition downregulates VEGF and several antioxidant enzymatic systems that could 
compromise oxygen delivery and increase oxidative stress, mainly in the male fetus and 
moderately in females (Phuthong et al., 2020). On the other hand, hypoxia models increase 
placental expression of angiogenesis factors, including Flt1 and VEGF (Thompson et al., 2016; 
Natale et al., 2018). In the same way, mice fed with a highly palatable obesogenic diet 
supplemented with sweetened condensed produced an impaired labyrinth development 
associated with dysregulation of transcripts and pathway interactions related to placental 
vasculature and structure (Barros Mucci et al., 2020). Interestingly, HFD also induced labyrinth 
placental endothelial damage in mice, which seems to be associated with oxidative stress 
because treatment with quercetin, an antioxidant, reverted this effect (Liang et al., 2010). 

Pregnancy interventions have important implications in the pathways regulating placental 
nutrient transport, causing maternal-to-fetal nutrient transfer modifications. In this regard, 
rats fed with an isocaloric diet containing 4% of protein resulted in placental down-regulation 
of the system A and L amino acid transporters that uptake alanine, serine, proline, glycine, 
tryptophan, and neutral and branched-chain amino acids. However, glucose transport seems 
not to be affected despite the changes in gene expression of facilitated glucose transporter 
member 1 (Slc2a1) (Coan et al., 2010). Regarding the placental fatty acid transporters, in food-
restricted mice, this was dependent on fetal sex, showing that protein expression of fatty acid 
transporter protein (FATP) 4 and gene expression of the fatty acid-binding protein plasma 
membrane (fabppm) were higher, and fatty acid translocase (Fat/Cd36) lower in male 
placentas. In contrast, endothelial lipase (El) was higher in females than in male placentas 
(Connor et al., 2020). 

Similarly, Sprague-Dawley rats fed with 40% calories as fat show placental lipid 
accumulation associated with lower mRNA levels of crucial lipid transport and storage genes 
(Cd36, Fabp3, Pparg, Plin2, and Irs1) (Louwagie et al., 2018). These changes were concomitant 
with the inhibition of placental signaling for key metabolic pathways, including insulin, 
mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 
3 (STAT3) (Rosario et al., 2011). On the other hand, maternal obesity-induced by HFD 
(41 kcal% fat) supplemented with 20% of sucrose showed increased activity and protein 
expression of the system A and L amino acid transport in the placental barrier, in addition to 
higher expression of glucose transporters, which was associated with fetal overgrowth 
(Rosario et al., 2015). Interestingly, signaling pathways are associated with energy 
metabolism, such as mTOR, insulin, growth factors, and leptin was overactivated, explaining 
the stimulation of placental nutrient transporters (Rosario et al., 2016). 

Meanwhile, 13% oxygen during GD14 to GD19 in C57BL/6 mice increased placental 
glucose transfer without affecting the amino acid transfer. On the other hand, 10% oxygen 
reduced amino acid transport without modifications in glucose transport (Cuffe et al., 2014). 
In addition, in placentas from CD1 mice exposed to hypoxia, mRNA expression of Glut1, Igf2 
and Igf1r was reduced only in female placentas (Cuffe et al., 2014). These changes were 
associated with alterations in the insulin-IGF signaling pathway in the labyrinth zone. 
Interestingly, the lowest oxygen levels produced a higher FGR (Higgins et al., 2016). Moreover, 
increased Akt-mTOR signaling in the hypoxic placentas consistent with heavier placenta was 
also observed (Matheson et al., 2016). In addition, another study that analyzed placental 
transcriptome analysis confirms these observations, including also, MAPK and genes 
associated with inflammatory responses (Chu et al., 2019). In the same way, AMPK was 
activated in the uterine artery and the labyrinth zone in response to 10% hypoxia 
(Skeffington et al., 2016) 

Testosterone during gestation leads to reduced placental system A amino acid transport 
activity, which seems to be associated with the downregulating of amino acid transporter 
slc38a2/Snat2. On the other hand, testosterone exposure did not modify glucose transport 
capacity (Sathishkumar et al., 2011). Although alterations in nutrient transport were not 
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related to mTOR signaling, as in the case of dietary modifications or hypoxia, overactivation 
of the STAT3 pathway was observed (Hu et al., 2015). Interestingly, testosterone exposure 
also leads to alterations in the expression of estrogen and androgen receptors and 17-beta-
hydroxysteroid dehydrogenase type 2 (17β-HSD2) that suggest an altered placental steroid 
signaling and steroidogenesis (Sun et al., 2012). However, of these models is not possible to 
dissect the role of estrogen because testosterone, under the action of P450 aromatase, is 
aromatized to estradiol. To address this dilemma, non-aromatizable androgens such as 
dihydrotestosterone (DHT) or blocking androgen or estrogen action like flutamide or 
tamoxifen, respectively, have been used (Walters, 2016). In this regard, it has been observed 
that in mice, the administration of 250 µg of DHT at late pregnancy reduced placental and 
fetal weight affecting androgen and estrogen receptor expression similarly to testosterone 
administration (Fornes et al., 2017; Risal et al., 2019). 

Fetal programming in rodent models of dietary interventions, hypoxia, and 
hyperandrogenism 

The placental changes originated from maternal dietary interventions, hypoxia, and 
elevated androgen levels lead to adaptations that redistribute fetal blood flow to ensure 
oxygen and nutrient supplies to organs with higher metabolic demands like the heart and 
brain at the expense of others. However, these changes can induce modifications and 
damage in specific organs that generate, among others, metabolic and cardiovascular 
disorders (Peeters et al., 1979; Fajersztajn and Veras, 2017). 

Rodent models of maternal undernutrition have demonstrated that offspring showing 
reduced pancreatic β cells, insulin resistance, alterations in the regulatory mechanisms that 
favor energy storage after birth, despite adequate nutrients availability, resulting in obesity, 
diabetes, and various metabolic disorders (Hales and Barker, 2001; Marciniak et al., 2017). 
Obesity in offspring born to food-restricted mothers results from hyperphagia and adipocyte 
dysfunction. Maternal undernutrition induces higher hypothalamic expression of the 
orexigenic peptides agouti-related protein (AgRP) and neuropeptide Y (NPY) and lowers gene 
expression for the anorexigenic peptide proopiomelanocortin (Pomc) (Vickers et al., 2000; 
Fukami et al., 2012). Interestingly, LPD throughout pregnancy enhances the preference for 
fatty foods in the offspring, which is associated with increased motivation for food reward 
and an altered expression pattern of opioid receptors and other reward-related genes in the 
nucleus accumbens and other structures of the brain (Bellinger et al., 2004; Vucetic et al., 
2010; Alves et al., 2015). 

Maternal LPD during gestation and lactation affects adipose tissue by reducing the 
adipocyte size of rat offspring. In contrast, rat offspring from food-restricted dams showed 
hypertrophic adipocytes. Moreover, increased catecholamine levels and adrenoreceptors and 
upregulation of CCAAT/Enhancer-binding protein α (Cebpa) and peroxisome proliferator-
activated receptor-gamma (Pparg), regulators of fatty acid oxidation, gene expressions were 
observed in adipocytes, indicating an altered lipogenesis (Petry et al., 2000; Lecoutre and 
Breton, 2015). In the liver of growth-restricted male offspring, elevated levels of triglycerides 
along with increased protein expression levels of lipoprotein lipase (LPL) were explained by 
an increase in the hepatic expression levels of liver X receptors (LXRs)-α expression that binds 
to the putative response elements in the LPL promoter regions (Zhu et al., 2016). In the same 
way, Wistar rats born to dams fed with 50% restricted diet showed induction of cholesterol 
biosynthesis with higher concentrations of very-low-density lipoprotein (VLDL) and low-
density lipoprotein (LDL), lipoproteins, and triglycerides (Sarli et al., 2021). Therefore, 
abnormalities in adipose tissue and liver lead to dyslipidemia with metabolic consequences. 
In the same way, hyperinsulinemia and reduced glucose uptake insulin-stimulated and 
expression of total and phosphorylated specific insulin-signaling proteins in skeletal muscle 
have also been demonstrated in male and female offspring at 15 and 21 months old, 
respectively, indicating an insulin-resistance state induced by maternal LPD during pregnancy 
(Fernandez-Twinn et al., 2005). 
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In rodent models of maternal overnutrition, offspring present weight gain, hyperphagia 
(Ozanne et al., 2004), leptin resistance (Samuelsson et al., 2008; Morris and Chen, 2009) and 
hyperleptinemia (McMillen et al., 2006), increased adiposity (Li et al., 2013), arterial 
hypertension (Samuelsson et al., 2008; Elahi et al., 2009), insulin resistance, higher hepatic 
gluconeogenesis (Strakovsky et al., 2011; Taylor et al., 2014), lipid profile abnormalities 
(Elahi et al., 2009), in addition to increasing pro-inflammatory mediators and vascular 
endothelial dysfunction, which are key factors in the development of metabolic syndrome, 
fatty liver, hepatic inflammation and steatosis (Li et al., 2013) and cardiovascular disease 
(Vickers et al., 2000; Ghosh et al., 2001; Khan et al., 2005; Chen et al., 2008; Ashino et al., 
2012). Metabolic alterations in offspring born to mothers fed with high-fat diet consumption 
appear early during postnatal life. In Sprague–Dawley rats, maternal HFD induced 
intrauterine inflammation, showing enhanced inflammatory cytokines (IL6, IL-1β, and TNF-α) 
in umbilical cord blood and the placenta that contribute with metabolic disorders in neonates 
characterized by alterations in hepatic genes both lipid synthesis- and β-oxidation that 
promote hepatic lipid accumulation (Cao et al., 2020). On postnatal day 10, they exhibit, in a 
sex-specific manner, changes in dopamine-related gene expression (Th and Slc6a3, also 
known as Dat1) in the hypothalamus that could contribute to hyperphagia and preference for 
fatty, sugary, and salty foods at the expense of protein-rich foods (Bayol et al., 2007; 
Barrand et al., 2017). Both male and female offsprings show increased adiposity, which is 
more pronounced in females than males. In the same way, elevated expression of genes 
involved in insulin signaling (Igf1 and Irs1), angiogenesis (Vegfa), lipogenesis (Pparg and Lpl), 
adipocyte function (Lep and Adipoq), and glucose uptake (Slc2A1 and Slc2A3) in females fed 
cafeteria diet compared with females did not have access to this diet (Bayol et al., 2008). 

Therefore, rodent models of maternal overnutrition in mice and rats show similar 
alterations in the hypothalamus, adipose tissue, muscle, and liver than those observed in 
models of undernutrition, although these appear earlier than offspring born to 
overnourished than undernourished mothers. 

Like those observed in nutritional interventions, hypoxia can lead to cardiovascular and 
metabolic alterations in the offspring. In adulthood, the hearts of offspring express abnormal 
phenotypes, including diastolic dysfunction, increases in myocardial contractility, and 
responsiveness to β-adrenoreceptor stimulation (Giussani et al., 2012; Niu et al., 2018). 
Although these alterations are developed over time during postnatal life because fetal heart 
function measured in vivo is not disrupted by hypoxia, despite FGR, suggesting a functional 
capacity to adapt to prolonged hypoxic stress (Thompson et al., 2016). Interestingly, in deer 
mice (Peromyscus maniculatus), a native rodent to high altitude (4350 m.a.s.l), hypoxia 
exposure during early life likely contributes to the ability to cope with hypoxia, increasing 
their plasticity on metabolism, oxygen consumption rate, and body temperature regulation 
(Ivy and Scott, 2021). Likewise, FGR induced by bilateral uterine ligation alters nephrogenesis, 
leading to increased serum corticosterone levels, decreased nephron number, and cause 
adult-onset hypertension (Baserga et al., 2007). 

Rodent models of hypoxia exposure during gestation show gene and protein expression 
changes in different organs involved in nutrient metabolism. Maternal hypoxia increased 
body weight and food consumption, reduced daily energy expenditure, increased adiposity 
index and insulin resistance, systemic elevations of lipid levels, and altered macrophage 
populations in adult male, but not female, mice offspring (Khalyfa et al., 2017). Interestingly, 
these effects can be attributed to altered leptin action in hypothalamic arcuate nuclei in male 
offspring in the Sprague-Dawley rat (Vargas et al., 2017). Moreover, reduced protein 
phosphorylation related to insulin signaling and lipid accumulation in the liver, along with 
lower expression of GLUT4 in skeletal muscle, were also observed (Camm et al., 2011; 
Cao et al., 2012). It is interesting to note that gestational hypoxia leads to abnormalities in 
maternal lipid and carbohydrate metabolism, suggesting that described effects in the 
offspring can result from alterations in maternal-fetal nutrient transport (Määttä et al., 2018). 

In females, exposure to chronic maternal hypoxia during fetal development leads to 
accelerated ovarian aging of somatic cells and reduced ovarian reserve at pubertal age, 
associated with gene pathways regulating folliculogenesis and steroidogenesis 
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(Aiken et al., 2019; Pampanini et al., 2019). In turn, male offspring exhibited abnormalities in 
the proliferation and differentiation of spermatic cells and alterations in angiogenesis and 
connective tissue growth. Thus, together with metabolic and cardiovascular alterations, 
maternal hypoxia also results in reproductive dysfunctions. 

Differences in the timing of exposure to androgen excess lead to variations in the 
appearance of PCOS features observed in animal models, implying that developmental 
stages are likely to be a key determinant in PCOS pathogenesis (Caldwell et al., 2014). Rats 
and mouse models of prenatal exposure to testosterone or DHT excess have been reported 
to induce most of the relevant reproductive, endocrine, and metabolic features of PCOS 
(Walters, 2015). Longer anogenital distance and smaller weight are frequent features 
observed in female pups born to androgenized rats and mice (Sun et al., 2012; Risal et al., 
2019). Moreover, they had irregular cycles, polycystic ovary morphology, lower androgen 
levels being DHT lower in rat models, and testosterone and androstenedione in mice models 
(Hu et al., 2015). Along with reproductive phenotype, metabolic and cardiovascular 
abnormalities have been described, including clear signs of non-alcoholic fatty liver 
(Sun et al., 2012), which seems to be established during fetal life such that the expression of 
the transcription factor Pparg was decreased in fetal livers exposed to DHT (Fornes et al., 
2017), in addition, insulin resistance, alterations in the adipocyte functions and adipogenesis, 
and dyslipidemia have also been described (Sun et al., 2012; Risal et al., 2019). Elevated blood 
pressure has been demonstrated in rat models showing different regulatory mechanisms 
being NO-related in females and endothelium-derived hyperpolarizing factor (EDHF) -related 
in males. Sex steroids, in general, are central in the regulation of neurodevelopment 
processes; therefore, it is expected that both testosterone and DHT affect the behavior, in 
this regard, anxiety-like behavior in females, which is associated with decreased gene 
expression of androgen receptor (Ar) and increased expression of GABAergic and 
serotoninergic receptors, and genes involved in calcium signaling, among others, causing an 
anxiety-like behavior increased anxiety-like behavior (Hu et al., 2015; Risal et al., 2021). 
Interestingly, these alterations can be transgenerationally transmitted by maternal and 
paternal lineage according to DHT-mice modes have demonstrated (Risal et al., 2019, 2021) 

In rodents, early postnatal exposure to dihydrotestosterone (DHT) produces the closest 
PCOS-like phenotype because the differentiation of reproductive tissues occurs during 
neonatal life contrary to humans (Caldwell et al., 2014; Kauffman et al., 2015; Walters et al., 
2018). The perinatal androgenization induces irregular cycles, oligo-anovulation, PCO 
morphology, increased preantral/antral follicles, hyperandrogenism, LH hypersecretion, and 
disturbances in fat metabolism without insulin resistance. One study that evaluated pre and 
postnatal androgen-induced-PCOS mouse models found that a model using DHT treatment 
in early postnatal provided the highest concordance with clinical features of PCOS 
(Caldwell et al., 2014). In summary, analysis of androgenized rodent PCOS animal models has 
demonstrated closely mimic human PCOS as androgen excess consistently induces a wide 
breadth of characteristics of these disorders, which may vary depending on the type of 
androgen used and the timing of the androgenization. 

Conclusions 

Rodent models of dietary interventions, hypoxia, and hyperandrogenism have shown that 
the mechanisms of fetal programming are mediated by placental dysfunctions (Figure 3). 
These alterations in insulin, mammalian target of rapamycin (mTOR), and signal transducer 
and activator of transcription 3 (STAT3) pathways are associated with modifications in 
uteroplacental blood flow, amino acids, and fatty acid transport, increased in pro-
inflammatory cytokines and ROS lead mainly to FGR. 
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Figure 3. Schematic representation of the effects of dietary interventions, hypoxia, and 
hyperandrogenism based on observations obtained by rodent models in rats, mice, and guinea pigs. 
These models have shown that the mechanisms of fetal programming are mediated by placental 
dysfunctions involving nutrient transport, steroid action (androgens), reduced oxygen supply 
(modifications in uteroplacental blood flow), increased in pro-inflammatory cytokines and reactive 
oxygen species (ROS), leading mainly to fetal growth restriction (FGR). These modifications in the 
prenatal environment affect various fetal organs resulting in metabolic, cardiovascular, and behavioral 
disorders in postnatal life mediated by epigenetics modifications, sex dimorphism, and early postnatal 
life. 

Modifications in the prenatal environment affect fetal organs such as the brain, adipose 
tissue, liver, heart, and endothelium, programming its function at postnatal life inducing 
hyperphagia, obesity, hepatic fat accumulation, blunted insulin signaling in muscle resulting 
in insulin resistance and cardiovascular disorders. In these alterations, sex dimorphism plays 
a central role such that females and males exhibit differential phenotypes. 
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