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The effect of water temperature on routine swimming behaviour of
new born guppies (Poecilia reticulata)

Maud Kent* and Alfredo F. Ojanguren

ABSTRACT

Guppies have successfully established populations in places with

thermal regimes very different from the Tropical conditions in their

native range. This indicates a remarkable capacity for thermal

adaptation. Given their vulnerability to predation as juveniles, acute

changes in temperature, which can alter predator-prey relationships,

can impact juvenile survival and have amplified consequences at the

population level. To understand how temperature may impact juvenile

survival and gain insight into their success as an invasive species,

we researched the effect of acute temperature changes on the

routine swimming behaviour of juvenile guppies. Using a novel 3-

dimensional tracking technique, we calculated 4 routine swimming

parameters, speed, depth, and variation in speed or depth, at 6

different test temperatures (17, 20, 23, 26, 29, or 32˚C). These

temperatures cover their natural thermal range and also extended

past it in order to include upper and lower thermal limits. Using

model selection, we found that body length and temperature had

a significant positive relationship with speed. Variation in speed

decreased with rising temperatures and fish swam slightly closer to

the bottom at higher temperatures. All juveniles increased variation in

depth at higher temperatures, though larger individuals maintained

slightly more consistent depths. Our results indicate that guppies

have a large thermal range and show substantial plasticity in routine

swimming behaviours, which may account for their success as an

invasive species.
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INTRODUCTION
Temperature can affect every aspect of the physiology and

performance of organisms (Johnston and Bennett, 2008; Angilletta,

2009). In particular, the thermal conformity of ectotherms renders

them especially susceptible to changes in environmental temperatures

(Huey, 1982; Atkinson, 1994). Physiologically, temperature can

affect muscle fibre number (Wilkes et al., 2001) and muscle

performance (Putnam and Bennett, 1982), endurance (Ojanguren

and Brañta, 2000), growth (Angilletta et al., 2004), metabolic rate

(Das and Das, 1982), heart rate (Richards, 1963), immune

functioning (Maniero and Carey, 1997; Le Morvan et al., 1998)

and size and age at maturity (Angilletta and Dunham, 2003).

Behaviourally, temperature can elicit thermoregulatory and

avoidance behaviours such as altered distribution patterns

(Walther et al., 2002), microhabitat use (Taylor, 1988; Adolph,

1990), foraging tactics (Persson, 1986; Fraser et al., 1993; Ayers

and Shine, 1997), and courtship behaviours (Hilder and Pankhurst,

2003; Denoël et al., 2005).

The relationship between body temperature and measures of

performance is often modelled using thermal performance curves

(TPCs, Huey and Stevenson, 1979; Kingsolver et al., 2001;

Angilletta, 2006). For most ectotherms, TPCs take a similar shape

with performance gradually increasing from a minimum critical

temperature to an optimal temperature. After a peak or plateau at

optimal temperatures, performance tends to rapidly decline to a

critical thermal maximum where performance is zero (Huey and

Kingsolver, 1989). These minimum and maximum critical

temperatures represent the range of temperatures over which an

organism can perform a certain function. The shape and position

of TPCs can be influenced by an organism’s environment or

thermal experience, although there is competing evidence over

whether this is due to acclimation, involving phenotypic plasticity

(Leroi et al., 1994; Wilson and Franklin, 2002), or adaptation,

involving changes in gene frequencies (Zamudio et al., 1995). For

instance, Schaefer and Ryan (Schaefer and Ryan, 2006) found

that zebra fish reared in variable thermal environments had larger

tolerances than conspecifics reared in more stable thermal

environments as the result of developmental plasticity and non-

genetic adaptation. Despite this and other evidence that the shape

and position of TPCs can be moderated through plasticity during

an individual’s lifetime (Hamdoun et al., 2003; Kingsolver et al.,

2004), research also exists showing inheritance and correlations

to ancestral conditions (Morrison and Milkman, 1978; Huey and

Kingsolver, 1993; Wiens and Graham, 2005). Overall, TPCs are

useful tools for predicting an organism’s vulnerability to

environmental changes (Huey et al., 2012).

To generate accurate TPCs, research looking into the direct

impacts of temperature on behaviour and physiology during

different life history stages is vital. Specifically, the impacts of

temperature on the early life stages of fish are significant since

any changes in survival subsequently affect recruitment and can

have amplified consequences at the population level (Houde,

1987). By influencing growth and development, temperature

affects vulnerability to predators. For instance, at colder

temperatures when growth rates often decline, fish remain

within the ‘‘window’’ of vulnerability for longer periods of time

(Cowan et al., 1996). Furthermore, since colder temperatures can

also reduce escape and cruising speeds (Johnston et al., 2001),

fish have a reduced likelihood of surviving predator encounters.

Warm temperatures also pose a problem as they often result in
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faster cruising speeds and therefore increased predator encounter
rates (Fuiman and Cowan, 2003). These effects on larval

physiology and predator-prey interactions may render
temperature a key factor in determining juvenile fitness and
survival. Research into the shape and position of TPCs during
different life stages can yield valuable insight into this species’

capacity for thermal adaptation and survival in locations where
they are not endemic.

Guppies (Poecilia reticulata) are small freshwater fish native to

Trinidad and the North coast of South America although they have
successfully established populations in every continent except for
Antarctica (Deacon et al., 2011). The thermal regimes experienced

by many of these invasive populations differ greatly from the
tropical conditions they experience in their native range (Deacon
et al., 2011). This, in addition to the fact that temperatures in

Trinidad can fluctuate up to 7 C̊ in a 24-h period (Reeve et al.,
2014), point at a remarkable capacity for both acute thermal
adaptation and long-term thermal adaptation. Looking into the
impacts of acute temperature changes on routine behaviour can

yield valuable insight into the potentially large impact of
temperature on survival and provide a better understanding of
the mechanisms enabling their success as an invasive species.

Here, we look at the effect of acute acclimation on routine
swimming in juvenile guppies. Using a novel 3D tracking
technique, the average depth, speed, and variation in speed and

depth were calculated for each individual. Speed refers to
distance travelled over time and depth was calculated as distance
of the fish from the bottom of the tank. Variation in speed or

depth refers to how consistently fish maintained a certain measure
of performance over the observation period. These four
parameters were used to characterize routine swimming and it
was expected that changes in temperature would alter these

routine swimming behaviours. By focusing on acute temperature
acclimation, this experiment demonstrates how even short-term
changes or fluctuations in environmental temperatures might

impact juvenile survival.

MATERIALS AND METHODS
Fish care and protocol
The guppies used in this experiment were descendants of fish taken from

two different Trinidadian streams: Tacarigua and Tunapuna. Habitat

differences between the upstream population of Tunapuna and the

downstream population of Lower Tacarigua have resulted in different life

history traits, such as size and number of offspring produced, which may

account for the population differences in juvenile guppy size used in this

experiment (Magurran, 2005).

In both streams, guppies naturally experience temperature fluctuations

of over 7 C̊ in a 24-h period (Reeve et al., 2014). Generally, upstream

populations such as Tunapuna experience lower maximum temperatures

than downstream populations due to increased canopy coverage. The

experimental guppies were kept under controlled environmental

conditions at relatively constant temperatures ranging from 20 C̊ to 26 C̊.

For this experiment, juvenile fish were collected from stock tanks

containing both males and females as well as from maternity tanks

containing single pregnant females. In order to standardize age at testing,

juveniles were taken from isolated pregnant female tanks as often as

possible, which were inspected on a daily basis. Each day, three juveniles

from each population were placed in floating tanks within temperature

controlled water baths. Three juveniles from each population were tested

at each test temperature for each of the three replicates. Juveniles ranged

from one day old to three weeks old and were between 6 mm and 14 mm

standard length (hereafter SL, SL6s.d., Tunapuna: 8.061.7 mm, Lower

Tacarigua: 7.561.6 mm). To measure the fish after the swimming trials,

we placed each juvenile into a petri dish with a small amount of water

and took a vertical picture. The pictures were measured using image

analysis software (Image J, National Institutes of Health, USA). Fish

were introduced into the water bath when the temperature had reached

typical temperatures experienced within the stock tanks or maternity

tanks (e.g. between 23 C̊ and 24 C̊). Over a period of 5–7 h, temperatures

were gradually changed to the target test temperatures, which were either

17, 20, 23, 26, 29, or 32 C̊. Juveniles were given at least 18 h to acclimate

to test temperatures before experiments began the next day. Given

research showing that guppies can experience daily fluctuations up to

10 C̊ in their native habitats (Reeve et al., 2014), 18 h was deemed to be

an appropriate time scale upon which to study the affects of acute daily

fluctuations considering that the maximum temperature change in this

experiment was 9 C̊. We had no mortality as a result of temperature

manipulations and fish seemed comfortably acclimated to all test

temperatures, as demonstrated by normal swimming and feeding

behaviours the morning of the experiment. The average6s.d. (range)

temperatures maintained during the 18-h acclimatization period for each

target temperature were 17.160.2 C̊ (17.0–17.4), 19.760.3 C̊ (19.4–

19.9), 23.060.1 C̊ (23.3–23.4), 25.360.3 C̊ (25.0–25.6), 29.460.3 C̊

(29.2–29.7), and 32.260.2 C̊ (32.0–32.4).

Every day at least an hour before testing began, the fish were fed flake

food ad libitum to avoid differences in satiation rate that could affect

swimming behaviour during video recording. Using water from the water

bath to ensure that testing occurred at the appropriate test temperature,

fish were placed in 10610610 cm glass observation tanks filled to a

depth of about 9 mm, with a mirror positioned at 45˚ overhead. To

prevent drastic temperature changes during the filming period, four sides

of the glass observation tanks were insulated with polystyrene (Fig. 1).

After allowing the fish at least 3 min to get used to the conditions inside

the chamber, they were filmed for 10 min with a video camera located

approximately 1 m from the observation tank at 30 frames per second.

After each trial, fish were photographed and measured for standard length

(mm), then placed in stock juvenile tanks.

To analyse routine swimming behaviour, we subsampled each video

by taking 1-minute segments from the beginning, middle and end (0–

1 min, 5–6 min, and 9–10 min). Each subsampled video was converted

into a stack of 60 images (1 frame per second) and imported into ImageJ.

Calibrations were then determined for each image stack by dividing a

known distance, such as the side of the tank (10 cm), by the number of

pixels. The Manual Tracking plugin in ImageJ was then used to obtain X

and Y coordinates of fish movement between frames from both the head-

on and the overhead views. These coordinates were combined to generate

3D (X, Y and Z) coordinates, which allowed us to calculate average

speed (i.e. distance over time) (mm s21), variation in speed, average

depth (Z coordinate), and variation in depth.

Fig. 1. Illustration of experimental setup and apparatus used. A camera
was placed 1 m away from a glass tank (10610610 cm) placed in a 3-sided
Styrofoam insulation chamber with a mirror at 45˚ overhead.
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Fish care and handling complied with institutional and national animal

welfare laws, guidelines and policies.

Statistical analysis
Multiple linear regression models were used to describe the variability of

routine swimming speed, depth, and variation in depth and speed based

on the potential effects of temperature (T), standard length, Temperature

squared (T2), and the interaction between T and Length. T2 was included

in the models to account for a non-linear relationship (SAS Institute Inc.,

1999; Montgomery et al., 2012), such as a bell-shaped thermal

performance curve (Huey and Stevenson, 1979). Population and

replicate, originally included as random effects in this analysis, were

removed since there was very minimal variance between groups

(replicate variance51.7610214, population variance51.761022)

(Starkweather, 2010). To correct for departures from normality,

velocity and variation in velocity were square root transformed and

depth and variation in depth were log transformed.

Models were then compared using an information theoretic approach:

Akaike’s information criterion for finite samples (hereafter AICc). Both

delta AIC (Di) values, a measure of each model relative to the best model,

and model weights (wi), a measure of the evidence supporting a specific

model, were used for model comparison and selection. When there were

multiple models with Di,2, selection was based on the difference in

parameters present in each model, reduction in deviance and log-

likelihood values (Burnham and Anderson, 2002).

RESULTS
A series of six models were tested for their effects on speed,
variation in speed, depth, and variation in depth. The variables
tested within the set of models included temperature, temperature

squared (T2), standard length, and an interaction between
temperature and length. When testing these models against speed
(Table 1), model 2 had the lowest Akaike’s information criterion

for finite samples (AICc) and received a weight of 0.49. The other
top model, model 1, had a Di value of 1.39 and weight of 0.25. Both
model 1 and 2 include length and temperature, though model 1 also

allows for a non-linear relationship through the inclusion of T2.
Given that both models have essentially the same log-likelihood
value (2116.9 vs. 2116.5), the additional variable, T2, adds little
to the top model and can be considered an uninformative parameter

(Burnham and Anderson, 2008; Arnold, 2010). Within the top
model, both length and temperature are significant (F(2,110)521.04,
p-value,0.001). Increases in both these variables resulted in

corresponding increases in swimming speed (Fig. 2). Fig. 2 shows
average speeds from each population across both replicates against
acclimation temperature. Although T2 did not add to the best

model, the polynomial trendlines on this graph suggest that had
higher temperatures been tested, there may have been a drop in
performance and more conformity to a typical TPC.

For variation in speed, there was substantial support (Di,2) for

models including temperature. Model 5 received the lowest AICc
of 477 and a model weight of 0.33. Models 3, 2 and 1 were all
within 2 Di units of model 5 with AICc scores and model weights

of 478 and 0.21 for model 3, 479 and 0.16 for model 2 and 479
and 0.15 for model 1. The two top models, model 5 and 3,
included temperature as a predictor of variation in speed. Model 5
only differed through the inclusion of T2. Within model 5,

however, T2 was insignificant indicating that the relationship
between variation in speed and temperature is still linear (T2:
F(2,110)55.48, p50.09; Temperature: F(2,110)55.48, p50.05). The

3rd and 4th best models, models 2 and 1, both included
temperature and length. The model including only the affect of
length (model 4), however, received the highest AICc score and

had the least support. No models containing the interaction
between temperature and length ranked among the top models.
Overall, temperature had a consistent impact on variation in

speed throughout all the top models. As temperatures increased,
variation in speed decreased. The amount of variance explained
by the top models, however, was generally low (R250.08).

For depth, 3 models received Di values under 2. The two top

models, model 0 and model 6, both included temperature, length,
and the interaction between temperature and length. Model 0 only
differed through the inclusion of T2. Given that T2 is not

significant in model 0, however, there is reason to select the more
parsimonious linear model 6. Furthermore, both these top models
had similar weights (0.33 vs. 0.31) and Di values (0 vs. 0.2). The

third best model, model 2, had much less support with a weight of
0.15 and a Di value of 1.6. Temperature had a significant positive
correlation to depth with fish swimming slightly deeper as
temperatures increased, although there was a large amount of

variation in the data (R250.10) (F(3,109)54.6, p50.04). Length
was insignificant (F(3,109)54.6, p50.11), while interaction
between length and temperature was slightly insignificant

(F(3,109)54.6, p50.06).
As with Depth, the top models fitted against variation in depth

included the interaction between temperature and length. Model 6

ranked highest with an AICc score of 210.65, a weight of 0.48
and R250.10. Model 0 only just ranked within 2 Di units of model
6 (1.6), did not improve upon the R2 value (0.09) or the fit of the

model (log-likelihood 0.32 lower than top model) and had an

Table 1. Each model as tested against velocity

Model Variables Df R2 AICc Di wi

M2 SL + T 4 0.27 242.2 0.0 0.49
M1 SL + T + T2 5 0.26 243.6 1.4 0.25
M6 SL + T + (T*SL) 5 0.26 244.3 2.1 0.17
M0 SL + T + T2 + (T*SL) 6 0.25 245.8 3.6 0.08
M5 T + T2 4 0.20 251.1 8.9 0.01
M3 T 3 0.19 252.1 9.9 0.00
M4 SL 3 0.09 265.2 23.0 0.00

The variables included in each model, the degrees of freedom (Df), Akaike’s
Information Criteria for finite samples (AICc), Delta AIC (Di) and model
weights (wi) are listed. Variables tested within each model include standard
length (SL), acclimation temperature (T) and temperature squared (T2).
Shaded rows represent the models with substantial support (D,2).

Fig. 2. Graph of average swimming speed (mm s21) across all
replicates against acclimation temperature by population. The graph
shows 2nd order polynomial trendlines fitted to mean speeds
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AICc score of 29.06 and weight of 0.22. Model 6 and model 0
only differ through the inclusion of T2, which was insignificant

within model 0, meaning there is justification for selecting model
6 as our best model. Both length and temperature significantly
affected variation in depth (length: F(3,109)55.23, p50.0;
temperature: F(3,109)55.23, p50.01). The interaction between

length and temperature was also significant (F(3,109)55.32,
p50.02). While larger individuals varied their swimming depth
less than smaller individuals, all juveniles increased variation as

temperatures increased.

DISCUSSION
The results of this study indicate that changes in water
temperature, even over a short period of time, can affect the
routine swimming activity of juvenile guppies. As test

temperatures were increased, average swimming speeds and
depths increased while variation in speed decreased, meaning that
fish swam progressively closer to the bottom at faster, more
consistent speeds as acclimation temperatures increased. The

effect of temperature on variation in depth was also found to vary
with length, where larger individuals swam slightly shallower
than smaller individuals and maintained more consistent depths.

The overall impact of temperature on routine swimming activity
may be due in large part to the physiological impacts of
temperature, although behavioural reasons to modify routine

swimming also exist.
The linear relationship found in this experiment between

temperature and swimming speed does not conform to the

thermal performance curves described in other papers (Randall
and Brauner, 1991; Ojanguren and Brañta, 2000; Koumoundouros
et al., 2002). Counter to what would be expected in typical TPCs,
average speeds did not show any decline at the highest

temperatures tested. This could, however, be a reflection of the
fact that the upper thermal limits of guppies were not included
within the range of test temperatures. Furthermore, although T2,

the parameter included to account for a non-linear relationship, was
not included in the top model against speed, the slight plateau at the
highest temperatures may indicate that these were part of the

optimal thermal range of guppies and performance would have
decreased after this point had temperatures come closer to their
upper thermal limits (Fig. 2). Ultimately, the fact that the large
range of temperatures tested did not contain the full thermal range

of juvenile guppies is indicative of the fact that this species has
adapted a wide thermal range that enables them to be effective
thermal adaptors and may account for their success as an invasive

species. This study also found a remarkable behavioural plasticity
in average swimming speeds over a wide range of temperatures,
which further demonstrates how guppies can survive in habitats

characterized by thermal regimes very different from those
experienced in the tropics, or indeed those experienced in their
maternal tanks.

Thermal conditions have large physiological impacts on fish and
often act as a determining factor in swimming speed (Beamish,
1978; O’Steen and Bennett, 2003). At higher temperatures, studies
have shown that fish can maintain faster swimming speeds

(Dickson et al., 2002). Increases in maximum velocities after
acute acclimation have been attributed to increases in active
metabolic rates (Claireaux et al., 2006), cardiac output or oxygen

consumption (Beamish, 1970; Clark et al., 2008). Conversely,
lower temperatures often result in slower swimming speeds since
cold muscle cannot generate the same force as warm muscle

(Rome et al., 1990; Green and Fisher, 2004). Importantly, Johnston

et al. (Johnston et al., 1990) showed that extended exposure to
lower temperatures can result in compensatory mechanisms that

allow fully acclimatized fish to out-perform acutely exposed fish.
While this study looked into the effect of acute temperature
changes, future research could investigate the effect of long-term
acclimatization on routine swimming speeds.

Ultimately, alterations in swimming speed could function to
behaviourally mitigate the impacts of temperature. Increases in
swimming speed in warmer waters, although often physiologically

induced, can promote behavioural thermoregulation and enable
fish to exploit more optimal thermal niches. For instance, lotic
ecosystems, such as those that guppies occupy, are thermally

heterogeneous environments that vary both vertically and
horizontally. Armstrong et al. (Armstrong et al., 2013) found that
juvenile salmon sometimes travel from colder water where they

forage into warmer waters where metabolic rates accelerated,
promoting faster growth and increased survival potential. In a
study by O’Steen and Bennett (O’Steen and Bennett, 2003), in
which they found that River barbels reduce activity when

temperatures dip below preferred levels, they discuss the
potential benefits of reducing activities as a way of conserving
energy to perform necessary survival behaviours. At lower

temperatures, where maximum capacities are reduced, decreasing
speed and swimming less constantly could potentially save energy
for escape responses. The behavioural plasticity found in this study

could therefore serve to increase juvenile survival rates in the wild
and provide a potential advantage to guppies as an invasive species
that may experience temperatures radically different to those of

their native habitat.
In this study, we also found that swimming speed was affected

by juvenile length. We found that larger individuals tended to
swim faster than smaller individuals. This positive correlation

may be due to the larger propulsive systems (Fisher et al., 2000)
or increased anaerobic efficiency (Webb et al., 1984).

Temperature also affected variation in speed. At higher

temperatures, juvenile guppies swam at more consistent,
higher average speeds. This finding could either indicate a
switch to burst-and-coast swimming at lower temperatures or

extended periods of inactivity and intermittent movement
characterized by a wide range of speeds. Smith and Koenst
(Smith and Koenst, 1975) found that juvenile walleye subjected
to acute reductions in acclimation temperatures showed decreased

swimming activity and periods of idleness. Other studies have
observed switches to burst-and-coast swimming at lower
velocities when reduced power output reduces performance

sustainability and renders burst-and-coast swimming more
advantageous (Rome et al., 1984; Rome et al., 1990). This
finding, however, has been countered by other studies and the

energetics of burst-and-coast swimming are still debated (Kramer
and McLaughlin, 2001).

Regardless of whether or not our results point to a switch in

swimming mode or periods of inactivity, possible advantages to
any type of intermittent locomotion exist. For instance, as muscles
fatigue, periods of reduced swimming speed and pauses in active
swimming may allow for partial recovery (Kramer and

McLaughlin, 2001). Additionally, pauses in active swimming
could act to enhance sensory awareness by stabilizing the visual
field, reducing motion blur, and allowing time for animals to

receive and process all relevant stimuli from their environment
(Land, 1999). Behaviourally, varying speed may be advantageous
if it reduces conspicuousness of juveniles to predators or increases

unpredictability (Humphries and Driver, 1970), especially when
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maximum swimming capabilities are compromised at lower
temperatures. While our results showed an increase in variation

in speed at lower temperatures, future research could investigate
whether or not burst-and-coast swimming is energetically
advantageous in juvenile guppies and therefore a viable reason
why intermittent locomotion increased at lower temperatures.

The average swimming depths of juvenile guppies were also
found to alter slightly with acclimation temperature. As acute
acclimation temperatures increased, juvenile guppies swam

slightly closer to the bottom of the tank. In their natural
environment, swimming deeper in the water column when
thermal conditions exceed optimum temperatures could aid in

thermoregulation. In fact, there are many studies (McCullough,
1999; Dunham et al., 2003; Buisson et al., 2008) showing that
temperature can have a large impact on the local distribution of

fish. For instance, a common response to suboptimal thermal
conditions is relocation to thermal refuges, such as areas made
shady by undercut banks or protruding vegetation, or areas with
cooler water such as side-channels, lateral seeps or groundwater

seeps (Bell, 2006; Dallas, 2008). Groundwater outflows in
particular provide critical microhabitat through provision of
alternative flow regimes, thermal regimes, oxygen and nutrient

levels as well as water quality (Heggenes et al., 2010). Bunt et al.
(Bunt et al., 2013) found that juvenile Black Redhorse exploit
groundwater seepages as thermal refuges and improved water

quality. Furthermore, the increased variation in depth found at
higher temperatures could suggest that juvenile guppies in this
experiment were more active about seeking out potential thermal

refuges as temperatures increased. This study may indicate
thermoregulatory behaviours in juvenile guppies that would
confer survival advantages if employed in their natural habitats.

Overall, this study found that temperature impacts the routine

swimming behaviours (such as speed, variation in speed, and depth
and variation in depth) of juvenile guppies. As test temperatures
were acutely increased, fish swam slightly deeper at faster, more

consistent speeds. Our test temperatures, however, did not contain
the full thermal range of juvenile guppies, which indicates a wide
thermal tolerance. This, in addition to their substantial plasticity in

routine swimming behaviours, may be a factor in their success as
an invasive species. This study, which investigated the impacts of
temperature on routine behaviour, could help expand our
understanding of the effect of temperature on juvenile survival

and future research could investigate the direct survival
implications of the altered behaviours found in this study.

List of abbreviations
TPC: thermal performance curve; SL: standard length; s.d.:

standard deviation; AIC: Akaike’s information criterion; T2:
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evidence supporting a specific model.
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