
Heliyon 10 (2024) e26888

Available online 24 February 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Review article 

Artificial intelligence and machine learning applications in the 
project lifecycle of the construction industry: A 
comprehensive review 

Shuvo Dip Datta a,*, Mobasshira Islam a, Md. Habibur Rahman Sobuz a, 
Shakil Ahmed a,c, Moumita Kar b 

a Department of Building Engineering and Construction Management, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh 
b Department of Entomology, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh 
c BIM Engineer, HawarIT Limited, Dhaka, Bangladesh   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Machine learning 
Project lifecycle 
Construction industry 
Construction management 
IoT 

A B S T R A C T   

The construction industry faces many challenges, including schedule and cost overruns, pro-
ductivity constraints, and workforce shortages. Compared to other sectors, it lags in digitalization 
in every project phase. Artificial Intelligence (AI) and Machine Learning (ML) have emerged as 
transformative technologies revolutionizing the construction sector. However, a discernible gap 
persists in systematically categorizing the applications of these technologies throughout the 
various phases of the construction project life cycle. In response to this gap, this research aims to 
present a thorough assessment of the deployment of AI and ML across diverse phases in con-
struction projects, with the ultimate goal of furnishing valuable insights for the effective inte-
gration of these intelligent systems within the construction sector. A thorough literature review 
was performed to identify AI and ML applications in the building sector. After scrutinizing the 
literature, the applications of AI and ML were presented based on a construction project life cycle. 
A critical review of existing literature on AI and ML applications in the building industry showed 
that AI and ML applications are more frequent in the planning and construction stages. Moreover, 
the opportunities for AI and ML applications in other stages were discussed based on the life cycle 
categorization and presented in this study. The practical contribution of the study lies in 
providing valuable insights for the effective integration of intelligent systems within the con-
struction sector. Academically, the research contributes by conducting a thorough literature re-
view, categorizing AI and ML applications based on the construction project life cycle, and 
identifying opportunities for their deployment in different stages.   

1. Introduction 

Enhancing productivity within the building sector is crucial to addressing the present and upcoming demands of the industry 
effectively. Based on the latest estimates provided by the United Nations, the global population is projected to experience significant 
growth over the coming years. By 2030, it is expected to reach approximately 8.5 billion, followed by an increase to 9.7 billion by 
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2050. The projection suggests that the world’s population may reach around 10.4 billion by 2100 [1]. The anticipated demand for 
infrastructure in the near future exceeds the capacity of the current construction sector to meet such requirements, thus highlighting its 
inadequacy in providing infrastructure at the desired pace. The present incapacity of the construction industry to fulfill the predicted 
infrastructure requirements in the near future can be attributed to its deficient adoption of digitalization and excessive dependence on 
manual approaches [2,3]. The construction industry’s challenges are often linked to inadequate technological expertise and a low level 
of technology adoption. These issues have been associated with cost inefficiencies, project delays, subpar quality performance, un-
informed decision-making, low productivity, and shortcomings in health and safety outcomes [4]. 

As a response to the slow performance growth in the construction sector, organizations are initiating the investigation and adoption 
of AI (Artificial Intelligence) to optimize procedures and drive productivity. This endeavor offers various advantages, such as miti-
gating cost overruns, enhancing site safety, improving project planning management efficiency, and fostering productivity growth at 
construction sites [5–7]. The utilization of AI technologies has facilitated the automation processes and conferred a competitive edge to 
these companies. AI plays a fundamental role as the cornerstone in implementing authentic digital strategies within the fields of 
engineering, construction, and management. As a discipline within computer science, AI empowers computers to emulate human-like 
capabilities in perceiving and learning inputs. These capabilities include knowledge representation, perception, problem-solving, 
reasoning, and planning. AI enables computers to tackle intricate and ambiguous problems intentionally, intelligently, and adap-
tively. Conversely, machine learning is recognized as the process of developing and implementing computer algorithms capable of 
acquiring knowledge from historical data or experience to construct models, exercise control, or make predictions through statistical 
methodologies [8]. 

Earlier, scholars and researchers have produced a body of literature that examines the utilization of AI and its subfields in 
addressing unique challenges specific to the construction industry. For example, machine learning techniques have been implemented 
in the construction sector for various purposes, such as estimating costs, monitoring health and safety, predicting risks, and enhancing 
supply chain and logistics processes, among other applications. Robotic technology has found practical applications in the construction 
sector, spanning various areas such as offsite assembly, site management, performance evaluation, and the efficient handling of 

Fig. 1. Research methodology following the PRISMA guideline.  
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construction equipment and materials [9]. However, a notable research gap exists about the utilization of AI and ML in the con-
struction lifecycle. To address this, the present study thoroughly examines existing literature, delving into the core principles and 
current state of AI and ML applications within the construction industry’s unique context. The rationale behind crafting a review article 
in this field is rooted in addressing a recognized gap in the existing literature. Despite the transformative potential of AI and ML in the 
construction industry, there is a lack of systematic categorization of their applications throughout the various phases of the con-
struction project life cycle. The intention is to conduct an in-depth analysis, drawing on the available literature, to explore the 
fundamental principles and the current landscape of AI and ML applications in the context of the construction sector. By providing a 
comprehensive assessment of their deployment across diverse project phases, the review aims to offer valuable insights into the 
effective integration of these intelligent systems within the construction sector. The primary objective of this research is to provide a 
comprehensive evaluation of how AI and ML are applied across various lifecycle phases in construction projects, ultimately aiming to 
provide valuable insights for the successful integration of these intelligent systems within the construction sector. There are three main 
resolutions were established to assist in accomplishing the aforementioned aim.  

• Exploring the origin, conceptual framework, and technological dimensions of AI and ML applications.  
• Assessing the adoption and application status of AI and ML in the construction industry from 2010 to 2022.  
• Analysing the integration of AI and ML within specific phases of construction project lifecycles. 

This study delves into the innovative possibilities of integrating AI and ML in various stages of a construction project’s life cycle. 
The subsequent sections of this paper are structured as follows: Section 2 details the methodology adopted for conducting this research. 
Section 3 provides insights into the inception, principles, and technologies associated with utilizing AI and ML. Section 4 discusses the 
current landscape of AI and ML applications within the construction sector. Furthermore, Section 5 critically examines the diverse use 
cases of AI and ML throughout different life cycle stages of construction projects. 

2. Research methodology 

To select and evaluate a substantial amount of literature that falls within the predetermined scope of this research, a comprehensive 
review consisting of three parts was adopted. This includes an initial search of various databases for relevant literature, filtering out 
irrelevant results, and analyzing the remaining content. Fig. 1 illustrates the three-step process that was followed to conduct the 
research. 

2.1. Searching for academic publications 

To initiate the search for relevant literature, Google Scholar, Science Direct, Scopus, and Web of Science, which include a wide 
range of scientific publications, were utilized [10]. The authors conducted A thorough investigation using the “article title/ab-
stract/keyword” in the aforementioned search engines, employing a search phrase comprised of two components. Keywords relating to 
“artificial intelligence,” “machine learning,” “automated planning and scheduling,” “natural language processing,” or “computer 
vision” made up the first section. The second section included terms such as “construction,” “construction industry,” “construction 
engineering,” “construction management,” or “construction engineering and management.” To ensure a comprehensive review, the 
search was limited to 2010 to 2022, as the implementation of AI and ML in the construction sector remains nascent. In addition, the 
investigation was not restricted to any particular journals to prevent limiting the number of identified papers. As the most reliable and 
well-known sources of information, “article” or “review” was chosen as the document type [11]. The study began with an initial search 
on Google Scholar, which yielded 121 publications. To ensure a more comprehensive dataset, we extended our search to Scopus and 
Web of Science, identifying a total of 230 publications. After removing publications not directly relevant to the study, the collection 
comprised 125 publications, including journal and conference papers. Each publication underwent a rigorous assessment, focusing on 
its relevance to the construction sector, leading to the exclusion of articles that were unrelated to the topic. 

The result of this phase of the study indicates that “Automation in Construction,” “Journal of Construction Engineering and 
Management,” “Engineering Applications of Artificial Intelligence,” “International Journal of Construction Management,” “Journal of 
Building Engineering,” and “Advanced Engineering Informatics” exhibit a publication volume of three or more papers each. At this 
stage, the cumulative count of papers reached 62, originating from a diverse set of 33 academic journals and conference proceedings. 

2.2. Selecting relevant publications 

In the second part, an extensive evaluation was carried out on the 62 publications following the completion of part 1. The purpose 
of this stage was to determine the papers that were related to the specific topic of the study. We conducted a thorough analysis of the 
titles, abstracts, and keywords from 62 research papers to identify the pertinent ones. As a result, 38 papers that were deemed 
applicable to this study were identified through this in-depth study. The purpose behind excluding specific publications was to 
guarantee the inclusion of only those papers that focused on applications of AI and ML in construction project lifecycle stages. It was 
also focused on those papers that try to improve the traditional construction system in various phases of projects. The authors also 
remove those paper that stands for the same applications. Here, the most updated one is to choose which is better in terms of 
applicability, cost and efficiency. This type of selection will help project associates to sort out the application of the various con-
struction phases very easily. Table 1 presents the numbers of initially selected publications and the pertinent papers included. 
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2.3. Reviewing selected publications 

In this phase, an extensive content analysis was conducted to explore the genesis, core principles, and technological advancements 
of AI and ML. Moreover, the review focused on comprehending the existing state of AI and ML adoption in the construction industry 
and its real-world application across different stages of construction projects, as detailed in the selected articles. Fig. 2 illustrates the 
connectivity diagram of keywords prepared from the literature that deals with AI and ML applications. As stated in Fig. 2, a total of 36 
keywords were found, and they are clustered into four separate groups according to their interconnectivity. The total link strength 
between all these words is 1232, and the most used words in these studies are “Machine learning,” “AI technology,” and “Construction 
industry.” These investigations also show that the words “Internet,” “Building,” “Infrastructure,” and “Review” are strongly correlated. 
All these have a combined link strength of 620. Furthermore, the history, ideas, and technology involved in the application of AI and 
ML are explained in Section 3 of this study. On the other hand, section 4 focuses on the current state of AI and ML applications in 
construction. The many uses of AI and ML are examined in Section 5 for all phases of the lifespan of building projects. 

3. Origin, concept, and technological development of AI and ML 

AI and ML are dynamic and inter-disciplinary fields at the intersection of computer science, cognitive science, and mathematics 
[12]. AI is the study and development of intelligent systems with human-like intelligence, reasoning, problem-solving, and 
decision-making capacities [13]. ML, a subfield of AI, concentrates on the formation of algorithms and models that facilitate the 
automatic acquisition of knowledge from data, thereby improving the performance of machines through experience [14]. The concept 
of creating machines that exhibit intelligence like humans originates in diverse domains, including philosophy, computer science, 
fiction, and advancements in electronics and engineering [15]. The introduction of Alan Turing’s intelligence test marked a significant 
milestone in the field of AI as it went beyond conventional theological viewpoints and mathematical theories regarding the feasibility 
of intelligent machines [16]. After a span of sixty years, intelligent machines have exhibited superior performance compared to 
humans across multiple domains, notably in learning. This extraordinary accomplishment has become a reality by leveraging rapid 

Table 1 
Overview of initially chosen publications and publications pertinent to the study.  

Journal Number of initially selected 
publications 

Number of relevant papers selected for detailed 
analysis 

Automation in Construction 9 7 
Journal of Construction Engineering and Management 6 3 
Engineering Applications of Artificial Intelligence 5 3 
International Journal of Construction Management 4 2 
Journal of Building Engineering 3 1 
Advanced Engineering Informatics 3 2 
Engineering Applications of Artificial Intelligence 2 1 
International Journal of Advanced Robotic Systems 2 2 
Journal of Artificial Intelligence Research 2 2 
Safety Science 2 2 
IEEE 2 1 
Frontiers in Public Health 2 1 
Journal of Open Innovation: Technology, Market, and 

Complexity 
1 1 

Canadian Journal of Civil Engineering 1 1 
Sustainability 1 1 
Buildings 2 1 
Journal of Intelligent & Robotic Systems 1 1 
Energy and Buildings 1 0 
Renewable and Sustainable Energy Reviews 1 0 
The International Journal of Advanced Manufacturing 

Technology 
1 1 

International Journal of Managing Projects in Business 1 0 
International Journal of Knowledge-Based Development 1 1 
International Journal of Innovation Science 1 1 
Journal of Open Innovation: Technology, Market and 

Complexity 
1 0 

IEEE Transactions on Industrial Informatics 1 1 
Smart and Sustainable Built Environment 1 0 
Construction Innovation 1 0 
KSCE Journal of Civil Engineering 1 0 
International Journal of Advanced Logistics 1 1 
Building Research & Information 1 1 
Engineering, Construction and Architectural Management 1 0 
Assembly Automation 1 0 
Journal of Civil Engineering and Management 1 0 
Total 62 38  
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progress in cutting-edge technologies like big data analytics and improved computer processing power [17,18]. The concept of AI is 
defined by Rich, Knight [19] as the discipline focused on developing methods for machines to perform tasks that are currently 
accomplished with greater human proficiency. They are dividing AI into three primary classifications: “Artificial Narrow Intelligence 
(ANI), Artificial General Intelligence (AGI), and Artificial Super Intelligence (ASI)”. These classifications represent different levels of AI 
capabilities [20]. ANI, commonly referred to as weak AI, pertains to a category of AI in which machines exhibit cognitive abilities 
within particular domains [20]. Examples of ANI include tasks like playing chess, making sales predictions, providing movie sug-
gestions, language translation, and weather forecasting [21]. Rather than possessing ordinary intelligence, ANI focuses on addressing 
specific areas of expertise. AGI, commonly called strong AI, aims to enable machines to operate at a similar level as humans [21]. It 
focuses on developing AI systems with a broad range of cognitive abilities and can perform tasks across various domains with 
human-like proficiency. The fundamental components of artificial intelligence are knowledge representation, learning, perception, 
action, planning, and communication [22]. The emergence of AI in various industries has led to the identification of several distinct 
subfields of AI, namely Optimization, Knowledge-based Systems, Computer Vision, Natural Language Processing, Automated Planning 
and Scheduling, Robotics, and Machine Learning. 

ML focuses on creating and utilizing computational algorithms capable of acquiring knowledge and improving performance based 
on prior data or experiences. Its objective is to develop models that can make predictions, exercise control, or perform tasks without the 
need for explicit programming. Machine Learning encompasses various methods, including (A) Supervised Machine Learning: this field 
of study pertains to the process by which machines arrive at decisions by utilizing labeled datasets comprising input and corresponding 
output pairings. The field of machine learning is subdivided into two main categories: classification and regression techniques. 
Classification involves categorizing data into predefined classes, while regression deals with predicting numerical values [23]; (B) 
Unsupervised Machine Learning: This field concentrates on enabling machines to learn the underlying structure within unlabelled 
datasets. It includes techniques such as clustering, which groups similar data points together, and dimension reduction, which lessens 
the complexity of the data [24]; (C) Reinforcement Learning (RL): RL pertains to the acquisition of a functional relationship between 
environmental states and corresponding actions that optimize a reward or reinforcement signal. The considered approach involves a 
computational framework that acquires knowledge through interactions within its environment [25]; and (D) Deep Learning: Deep 
Learning represents advanced cutting-edge ML and has demonstrated superior predictive accuracy compared to traditional machine 
learning techniques. It involves instructing deep neural networks with numerous layers to acquire knowledge and identify intricate 
patterns from data [26–28]. Deep learning can be described as an advanced form of artificial neural networks, specifically known as 

Fig. 2. Network diagram of keywords from the literature review.  
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deep neural networks. The original proposition of the back-propagation algorithm, which forms the basis of the entire neural network 
paradigm, instigated the initial surge of machine learning. This technique introduced the concept of propagating errors backward 
through the network, ultimately enhancing overall performance [29]. Before the introduction of back-propagation, artificial neural 
networks lacked efficient algorithmic support, which hindered their ability to train multilayer neural networks effectively. The 
Long-Short Term Memory Networks (LSTM) and LeNet are two notable neural network frameworks that emerged following the 
introduction of back-propagation [30]. During that period, neural networks faced three primary constraints. Firstly, the algorithm 
itself posed limitations. As networks became more profound, the issues of vanishing or exploding gradients emerged, rendering it 
challenging to train networks effectively. Secondly, the availability of labeled data posed a significant challenge. Acquiring adequate 
labeled data to train powerful neural networks proved difficult. Lastly, hardware constraints were a hindrance. The performance of 
existing hardware fell short of meeting the computational demands for instructing complex neural networks. 

To address the limitations, a significant breakthrough occurred in 2006 when Hinton introduced the deep learning idea and a novel 
training approach by publishing a paper in Science [31]. This development paved the way for training deeper neural networks 
effectively. Deep learning encompasses various network structures, among which Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs) are two notable examples. CNNs offer two primary advantages. Initially, the information contained 
within a CNN kernel can be efficiently utilized across various segments of a given dataset. For instance, if there are kernels accountable 
for detecting human beings, they can recognize individuals within an image as a whole, regardless of their specific placement. The 
attainment of this particular capability poses a challenge when utilizing completely interconnected neural networks, given their rigid 
connections between input features and neurons. Secondly, CNNs exhibit a significantly lower number of parameters in comparison to 
completely connected layers. The enhancement in parameter efficiency facilitates rapid learning and allows the integration of more 
intricate networks without compromising computational effectiveness [32]. Currently, CNNs serve as fundamental structures exten-
sively employed in various fields of Machine Learning, with a predominant focus on computer vision tasks. They are very common in 
object identification, image recognition, etc. CNNs have proven to be highly effective in analyzing visual data and extracting mean-
ingful features, making them a crucial component in numerous computer vision applications. RNNs are primarily applied in time series 
processing domains, including tasks like natural language processing and speech recognition. LSTM and Gated Recurrent Units (GRU) 
stand out as the two prominent variations of Recurrent Neural Networks (RNNs) [33]. Both LSTM and GRU share common func-
tionality, allowing them to store values in specialized cells and retrieve these stored values when needed. Currently, LSTM and GRU 
have emerged as the prevailing Deep Recurrent Neural Network architectures, gaining significant popularity and utilization in various 
research and practical applications. 

4. Status of AI and ML applications in the construction sector 

The level of recognition and progress generated in a particular research field is determined by the yearly publications in that area. 
Demonstration of the advancements in AI and ML implementation within the construction sector is apparent through the trends 
depicted in Figs. 3 and 4, respectively. These figures provide clear evidence of the progress made in integrating these technologies into 
construction practices. 

Fig. 3. Yearly trend of AI application in the construction sector.  
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Figs. 3 and 4 demonstrate that the integration of AI and ML in the construction industry remained relatively modest until 2017. 
However, a remarkable upsurge in research publications was observed subsequently. Specifically, the number of papers on AI 
increased from 26 in 2017 to 72 in 2022; for ML, it rose from 15 in 2017 to 153 in 2022. This can be attributed to the initial 
development phase for AI and ML exclusively in the manufacturing industry, which expanded to other domains, such as the con-
struction industry, leading to increased interest and exploration [34]. Through the examination of research trends in the construction 
industry, it becomes evident that machine learning has surpassed knowledge-based systems in terms of prominence as a subfield of 
interest over the last decade. The aforementioned phenomenon might be attributed to the augmented necessity of addressing de-
ficiencies in labor and expertise. Moreover, the integration of robotics has become a significant domain for implementing AI in the 
construction industry. This has been particularly evident with the advent of technologies like 3D printing, UAV (Unmanned Aerial 
Vehicle), and exoskeleton systems, all of which have found valuable applications in various construction processes. The construction 
sector has recently increasingly incorporated more computer vision-based technologies for diverse objectives, including site safety 
monitoring, enhancing work efficiency, and conducting structural health monitoring [8]. 

In contrast to traditional sensor-based techniques, vision-based techniques present several significant advantages. These include 
non-invasive properties, the ability to measure remotely, user-friendliness, and universal accessibility without necessitating supple-
mentary installation of measuring or receiving gadgets [35]. In light of the prevalent accessibility of cost-effective and competent 
digital cameras, it is anticipated that computer vision-oriented technologies will observe a surge in adoption within the construction 
industry. This is particularly significant owing to various risk factors in construction sites, including working at heights and handling 
potentially dangerous construction materials [36]. Vision-based crack detection methods have gained significant popularity in the 
construction industry as a reliable approach for performing health assessments and monitoring structures and construction processes. 
This approach has gained popularity due to its effectiveness in detecting cracks in concrete structures [37]. thoroughly examined 
current methodologies for computer vision-based identification of defects and evaluation of conditions in civil infrastructures con-
structed with concrete and asphalt. Their findings indicated that image-based systems for detecting and classifying cracks and spalling 
in these structures have the potential for automated defect detection. While significant progress has been made in image and video data 
collection, achieving complete automation remains challenging. Jiang et al. [38] presented a methodology for detecting and classi-
fying concrete damages into four categories (rebar exposure, spot, spalling, and crack) using image analysis [38]. Their proposed 
method exhibited robust performance across different lighting conditions, which is particularly challenging when detecting surface 
damage under intense sunlight. Moreover, the suggested approach demonstrated enhanced inference time and accuracy compared to 
widely used CNN algorithms like YOLOv3 and SSD. 

Additionally, the utilization of image rectification techniques proves to be a valuable approach for ensuring the safety of workers in 
construction and accurately counting construction materials [39]. This method serves a dual purpose, enabling effective monitoring of 
worker safety and efficiently quantifying the quantity of construction materials present. Different researchers conducted an innovative 
investigation on collision prevention, wherein they implemented a real-time system that relies on camera-captured visual data. This 
system aims to avert potential accidents between heavy equipment and workers on construction sites [40]. 

Safety management in the construction industry has traditionally relied heavily on shallow learning algorithms when considering 
Machine Learning (ML) applications. Seong et al. introduced a method for detecting safety vests, which could potentially serve as a 
preliminary step toward on-site detection of workers [41]. The proposed approach utilizes the chromatic pixels associated with 
protective vests to identify workers. Ryu et al. identified another research area of ML that focused on investigating the viability of using 
a wrist-worn accelerometer for recognizing the movements of individuals on construction sites [42]. In the second decade of the 21st 

Fig. 4. Yearly trend of ML application in the construction sector.  
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century, image processing witnessed a paradigm shift as deep learning emerged as the dominant technique. Despite the early 
development of deep learning algorithms, their integration into the construction industry encountered substantial delays. A notable 
example is the introduction of RNNs in the 1980s, which, surprisingly, took about twenty-six years before being applied in obstacle 
avoidance for robotic excavators [43]. It’s worth noting that CNNs had their origins in 1989., but it was not until 2012 that they gained 
popularity, particularly when applied to identify fall hazards on construction sites [44]. Emerging deep-learning technologies are 
being recognized for the enormous benefits they provide to the building sector, and there has been a notable reduction in the time gap 
between algorithm development and practical implementation. The YOLOv3 algorithm serves as a notable example. It was introduced 
in 2018 and effectively applied in 2019 to create an automated system capable of detecting structural defects in sewer pipelines [44]. 

5. Applications of AI and ML in construction project lifecycle phases 

This section comprehensively explores the burgeoning implementations of AI and ML in the construction industry. The investi-
gation is organized based on the various phases that constitute the lifecycle of a construction project. These stages encompass planning, 
design, construction, operation, maintenance, demolition, and recovery. 

5.1. Application in the planning phase 

The planning phase holds a crucial position in the construction lifecycle, as it significantly influences a project’s overall success 
with respect to various critical aspects such as cost, time, quality, and quantity [45]. Inadequate planning is a precursor to project 
failure, leading to unfavorable outcomes and unsuccessful project execution [46]. During the planning stage, various stakeholders play 
an active role, dedicating significant time to participate in essential tasks. These tasks include scheduling, conducting cost analysis, and 
performing risk assessments. The involvement of multiple stakeholders ensures comprehensive planning and decision-making pro-
cesses [47]. However, in recent years the utilization of deep learning artificial Intelligence has emerged to optimize the planning and 
scheduling of construction processes [48]. Table 2 presents the various applications of AI and ML in the planning phase. 

Wauters and Vanhoucke [49] provided a comprehensive overview of five unique AI techniques for predicting project durations. 
The study revealed that these AI methods outperformed the traditional earned value management and earned schedule methods. 
Notably, there has been a significant increase in research dedicated to energy use prediction, focusing on utilizing AI methodologies in 
recent years [50]. AI-based techniques have become more prevalent in recent years due to their simplicity of use and capacity to 
provide ideal solutions quickly [51]. Pinto, Nunes [52] investigated the progression of ensemble artificial neural network and support 
vector machine classification models concerning their application in predicting the success of project cost and schedule. Increased 

Table 2 
Application of AI and ML in the planning phase.  

Sector Title Year Application Ref 

AI A comparative study of artificial intelligence methods for 
project duration forecasting 

2016 Prediction of accurate project duration; 
Progress evaluation during early stages of the project. 

[49] 

AI A review of artificial intelligence-based building energy use 
prediction: 
Contrasting the capabilities of single and ensemble prediction 
models 

2017 Building energy use prediction without requiring detailed physical 
information of the building. 

[96] 

AI Predicting construction cost and schedule success using 
artificial neural networks ensemble and support vector 
machines classification models 

2012 Project cost and schedule success prediction [97] 

ML Towards a semantic Construction Digital Twin: Directions for 
future research 

2020 Simulating the layout of a construction site with respect to specific 
zones, strategic positioning of construction equipment. 

[54] 

ML Potentials of artificial intelligence in constructionm 
anagement 

2020 Breaking down complex situations in construction projects into 
smaller separable subtasks. 

[98] 

ML Automated vision tracking of project related entities 2011 Tracking of project-related entities using 3D spatial coordinates 
over time with automated vision-based techniques. 

[55] 

AI A review on applications of ANN and SVM for building 
electrical energy consumption forecasting 

2014 Building energy consumption forecasting while coping with 
complex and varying building system parameters 

[50] 

AI Occupational risk assessment in construction industry – 
overview and reflection 

2011 In order to assess and analyze potential occupational hazards, as 
well as propose effective strategies for risk management, the goal is 
to prevent any instances of plagiarism. 

[52] 

ML Augmented Reality for Construction Site Monitoring and 
Documentation 

2014 Creating a system that employs Augmented Reality to display real- 
time progress updates of a construction site on-site. 

[99] 

AI Application areas of augmented reality and virtual reality in 
construction project management: A scoping review 

2021 Developing an assistive interface for a teleoperated crane by 
implementing path planning in the context of heavy equipment 
operator training. 

[53] 

ML A critical review of virtual and augmented reality (VR/AR) 
applications in construction safety 

2018 The sequence includes safety training and education, hazards 
recognition and identification, and safety instruction and 
inspection. 

[56] 

ML Using Deep Learning Artificial Intelligence to Improve 
Foresight Method in the Optimization of Planning and 
Scheduling of Construction Processes 

2022 More rapidly review and recommend more planning options for 
scheduling complex construction projects 

[48]  
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predictability of future scenarios is possible by breaking down challenging activities into more manageable, distinct subtasks [53]. A 
clash detection approach was proposed by Boje et al. [54] for workspaces, explicitly addresses the interaction between temporary site 
areas and objects with existing or newly constructed ones over time. Marzouk and Abubakr investigated the application of genetic 
algorithms to identify the most efficient positioning of cranes at a construction site. Albahbah, Kıvrak [53] examined the imple-
mentation of genetic algorithms to ascertain the most suitable arrangement of cranes within a construction site. Brilakis, Park [55] 
presented a model that employs a variety of static cameras to identify and track construction entities, thereby acquiring 2D coordinates 
in each camera view. Virtual and augmented reality technologies have also progressed from visualization-centered instruction to 
experience-centered instruction within construction safety. In addition, virtual and augmented reality technologies present novel 
prospects for efficiently instructing and enlightening inexperienced individuals with advanced safety training, resulting in reduced 
hazards [56]. 

5.2. Application in the design phase 

Automated tools, including the 4D AutoCAD interface, are employed during the design phase to enhance and simplify conventional 
processes. However, organizations have recognized the limitations of the existing platform in managing extensive data, leading to a 
shift towards incorporating AI and machine learning systems [51]. AI has transformed every job site into a valuable data repository 
from which organizations can derive insights and enhance their existing conventional practices [57]. In the current era, various data 
sources have emerged as valuable repositories of information, encompassing images, security sensors, drone videos, and building 
information modeling (BIM), among others. Within this context, the integration of AI and ML assumes a pivotal role in efficiently 
managing, structuring and analyzing complex design information [58]. Companies are more likely to adopt and use these systems now 
that they are more cost-effective [59]. Furthermore, the integration of information and knowledge repositories enables more efficient 
management of various projects [60]. This guarantees that all involved parties can access the most current data and efficiently share 
information [61]. Table 3 presents a concise overview of existing literature on utilizing AI and ML within the design process. 

The process of preparing materials is a crucial aspect of constructing buildings. Implementing AI and ML-derived data as input for 
generating visualizations of formwork quantity and schedule can minimize the resources allocated towards formwork design [62]. 
Ensuring a construction project’s successful completion across its lifecycle relies on effective stakeholder collaboration. Nevertheless, 
stakeholders may lack expertise beyond their specific domains. To address this, integrating AI and ML technologies presents an op-
portunity to create a collaborative platform that enhances the visualization of diverse stakeholder perspectives [63]. Cognitive dif-
ferences frequently arise between designers and constructors concerning the approaches employed for resolving clashes, as their 

Table 3 
Application of AI and ML in the design phase.  

Sector Title Year Application Ref 

AI BIM-Based Visualization Research in the 
Construction Industry: A Network Analysis 

2019 Efficient formwork design through the visualization of the formwork 
quantity and schedule. 

[62] 

ML Integration of BIM and GIS in the sustainable built 
environment: A review and bibliometric analysis 

2019 Utilizing visualization and simulation to enhance building safety during 
various construction phases. 

[100] 

ML BIM for Structural Engineering: 
A Bibliometric Analysis of the Literature 

2019 To reduce the quantity of request for information (RFI) items generated 
by contractors;e 
nabling every relevant stakeholder to examine multiple existing options 
and formulate potential design plans. 

[63] 

AI Knowledge-based system for resolving design clashes in 
building information models 

2020 Minimizing design clashes;p 
reventing the possibility of clash between branch MEP components and 
structural barriers. 

[65] 

AI Quantitative Review of Construction 4.0 Technology 
Presence in Construction Project Research 

2020 Enabling estimators to retrieve the relevant information directly 
from the design and to make their estimates 
available to other parties. 

[101] 

ML Beyond the clash: investigating BIM-based building 
design coordination issue representation and resolution 

2019 Detect clashes automatically among ducts, cable trays, and lighting 
systems. 

[64] 

AI Evaluation of BIM-based LCA results for building design 2020 Assessing life cycle impact: utilizing automated quantity take-off to 
evaluate Global Warming Potential (GWP) in building design process. 

[66] 

ML An Integrated BIM-based framework for minimizing 
embodied energy during building design 

2016 An investigation into the embodied energy linked to the supply chain of 
building materials, focusing on Environmental Product Declarations 
(EPDs) provided by suppliers 

[67] 

AI Using 4D BIM to assess construction risks during the 
design phase 

2019 The evaluation of construction risks involves analysing unit risk factors 
associated with design elements, taking into account their frequency, 
severity, and exposure levels. 

[102] 

ML Research trends and opportunities of augmented reality 
applications in architecture, engineering, and 
construction. 

2013 Enhancing the likelihood of successfully executing a construction project 
can be achieved by leveraging Augmented Reality’s visualization 
capabilities for the on-site implementation of the planner’s concept 

[103] 

AI Artificial intelligence and smart vision for building and 
construction 4.0: Machine and deep learning methods 
and applications 

2022 Utilization of GANs to generate architectural drawings using a trained 
model with an image dataset and this model was named ‘ArchiGAN’. In 
his work, several steps were followed to finally generate fully furnished 
architectural plans of a building when the shape of the land is given as 
the input 

[104]  
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perspectives are influenced by their respective areas of expertise and prior encounters [64]. A parallel neural network (BPNN) system 
was utilized by Hsu, Chang [65] to acquire their respective knowledge patterns. Simulated annealing (SA) was employed in creating an 
AI framework that facilitates the automated resolution of design conflicts based on established practices from the constructor’s 
viewpoint. The integration of Building Information Modelling (BIM) opens up possibilities for incorporating sustainability perfor-
mance metrics into the building design process. Nevertheless, BIM lacks compatibility with conventional life cycle assessment tools, 
which are essential for analyzing the environmental impacts of construction materials. By leveraging Artificial Intelligence (AI), it 
becomes feasible to evaluate the overall embodied global warming potential throughout the entire building design procedure [66]. 
Shadram, Johansson [67] presented is a framework conducive to informed design decision-making and assessment of embodied energy 
within building material supply chains. Besides, concrete’s compressive strength prediction model can be obtained in recent days 
which reduces extra testing of the concrete specimen [68,69]. 

5.3. Application in the construction phase 

Compared to conventional approaches, the construction phase of the project lifecycle is presently undergoing significant changes. 

Table 4 
Application of AI and ML in the construction phase.   

Title Year Application Ref 

AI Lean Thinking and Industrial 4.0 Approach to Achieving 
Construction 4.0 for Industrialization and Technological 
Development 

2020 Construction process automation and elimination of construction 
waste; sustainable infrastructure production. 

[105] 

AI Robotics and automated systems in construction: 
Understanding industry-specific challenges for adoption 

2019 Utilizing off-site prefabrication systems, automated excavation, 
material transportation, and aerial drone surveys and monitoring tasks 
are employed. 

[106] 

ML Automation and Robotics in Construction and Civil 
Engineering 

2015 Ensuring on-site data gathering and maintaining construction quality 
control; establishing a digital platform to support interactive game- 
based education, hazard evaluation, safety awareness, and safety 
training. 

[76] 

ML Unified resources marking system as a way to develop 
artificial intelligence in construction 

2018 To generate a detailed listing of higher-quality materials and 
dependable vendors. 

[77] 

AI Digital skin of the construction site: Smart sensor 
technologies towards the future smart construction site 

2019 To record the identity of each worker using RFID tags; 
Identification of unsafe conduct in terms of materials handling. 

[74] 

AI Trend Analysis of Research and Development on Automation 
and Robotics 
Technology in the Construction Industry 

2010 Reducing the amount of labour hours necessary to accomplish a 
project.; 
Mitigating the adverse environmental impacts of construction-related 
operations. 

[71] 

ML Emerging artificial intelligence methods in structural 
engineering 

2018 Investigating the compressive strength of self-compacting and high- 
performance concrete. 

[70] 

AI Building Information Modelling, Artificial Intelligence and 
Construction Tech 

2020 Robot-based marking systems involve a robotic unit that navigates 
within the designated workspace and applies paint or other marking 
substances directly onto the surfaces. 

[73] 

ML Data mining methodology employing artificial intelligence 
and a probabilistic approach for energy-efficient structural 
health monitoring 
with noisy and delayed signals 

2019 Identifying structural damage using binary signals with noise and 
delay 

[75] 

AI Human–robot collaboration for on-site construction 2023 During the additive manufacturing process, building elements are 
automatically installed, and printing material is extruded. 

[107] 

ML Robotic technologies for on-site building construction: A 
systematic review 

2020 Advanced robotic applications in construction encompass autonomous 
assembly, in-situ fabrication, bricklaying, spraying, foam concrete 
printing, and surface unevenness recognition. 

[72] 

AI On-site autonomous construction robots: Towards 
unsupervised building 

2020 Creating an automated approach for dry-stacking stones to provide 
foundation support and the efficient assembly of superstructure 
components. 

[108] 

ML Teaching robots to perform quasi-repetitive construction 
tasks through human demonstration 

2020 Installation of ceiling tiles involves carrying out a semi-repetitive 
construction activity, which is demonstrated visually by a skilled 
individual. 

[109] 

AI Vision guided autonomous robotic assembly and as-built 
scanning on unstructured construction sites 

2015 Automatic cement block wall construction. [110] 

AI Construction safety and health hazard awareness in Web of 
Science and Weibo between 1991 and 2021 

2022 Hazard identification by computer vision and virtual reality [78] 

AI Artificial Intelligent Technologies for the Construction 
Industry: How Are They Perceived and Utilized in Australia? 

2022 To provide real-time insight that will help project managers ensure 
efficient use of resources, anticipate potential risk, and increase safety. 

[80, 
111] 

ML Can a chatbot enhance hazard awareness in the construction 
industry? 

2022 Hazard awareness enhancement by chatbot training [79] 

AI Big Data Technology in Construction Safety Management: 
Application Status, Trend and Challenge 

2022 Construction safety management [112] 

AI Integration of Building Information Modeling and Artificial 
Intelligence Systems to Create a Digital Twin of the 
Construction Site 

2022 Hazard identification and risk management [113]  
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Automation technologies and construction robots are being used to improve current construction machinery, plants, and task-driven 
robots. An essential technology for operating robots involves using multiple sensors that offer information to the site manager. The 
collection and transmission of data by these sensors are of utmost importance, enabling the site manager to monitor and analyze the 
robots’ performance effectively. By leveraging these sensors, site managers can receive real-time information on various parameters, 
allowing them to make informed decisions and effectively manage the operation of the robots [9]. An extensive examination of the 
implementation of AI and ML during the construction phase of project lifecycles is presented in Table 4. The table offers a compre-
hensive overview of their applications, accompanied by pertinent references from the existing literature. 

Different ML techniques have been utilized to construct accurate models for predicting the mechanical properties of concrete. These 
techniques encompass neural networks, fuzzy logic, genetic programming, and support vector machines. Notably, the application of 
ML algorithms has been particularly remarkable in modeling the characteristics of self-compacting concrete [70]. Son, Kim [71] 
widely agreed that mechanizing construction tasks has reduced construction costs by minimizing the labor hours necessary to finish a 
project. Numerous advancements in AI and ML technologies have revolutionized the construction industry, presenting an array of 
cutting-edge applications. These innovations encompass automated robotic assembly, autonomous installation, in-situ robotic fabri-
cation, robotic bricklaying, automated spraying, unevenness recognition, and printing technology tailored for foam concrete. These 
developments have led to the creation of specialized robot systems, each dedicated to executing specific tasks efficiently and inde-
pendently [72]. Construction site setup is a challenging and error-prone process, as it requires interpreting design data amidst 
incomplete scenes and then accurately applying physical markings on surfaces. The prevailing method employed in this context is 
implementing an AI-driven robotic total station survey layout system [73]. Moreover, Edirisinghe [74] utilized a blend of real-time 
location sensors to investigate the ergonomics of construction workers, focusing on analyzing their behaviors during materials 
handling to identify potential hazards. Salehi, Das [75] presented a groundbreaking structural health monitoring system to detect 
damage through discrete binary signals. This innovative approach adds a new dimension to identifying structural issues, promising 
significant advancements in the field. One of the responsibilities inherent to a construction organization involves the punctual and 
comprehensive facilitation of construction sites with essential materials and technical resources of superior quality. Kim, Chi [76] 
employed virtual reality technologies to construct a simulated environment that facilitates collaborative distributed safety education, 
hazard assessment, safety awareness, and interactive game-based learning. Ginzburg, Kuzina [77] suggested an integrated mechanism 
for labelling construction-related material and technical resources. This process utilizes artificial intelligence and custom-designed 
barcodes directly applied to the packaging of construction materials. The code in question may encompass both essential and 
comprehensive details pertaining to the resource, such as the resource’s unique identifier, the product line, the company that man-
ufactured it, the date of manufacturing or last use, and any other data that may be used to trace its history and quality. The study 
conducted by Ref. [78] involved a comparison of 11,829 Weibo microposts on construction safety and health hazard awareness with 
769 articles listed in Web of Science (WoS) spanning the period from 1900 to 2021. Safety hazards, including fire, electrical issues, 
chemical exposure, collapsing trenches, as well as health-related risks like asbestos and heat stress, were scrutinized in the analysis. In 

Table 5 
Application of AI and ML in the operation and maintenance phase.   

Title Year Application Ref 

AI BIM-enabled facilities operation and maintenance: A review 2019 Augmented visualization; 
Decision making support; 
Planning and locating emergency escape routes, simulating and 
monitoring fire emergencies, and managing facility safety. 

[84] 

ML A short-term building cooling load prediction method using 
deep learning algorithms 

2017 Life cycle data management; commissioning and closeout. [114] 

AI Building Information Modelling (BIM) in Facilities 
Management: 
Opportunities to be considered by Facility Managers 

2016 Facility managers can fine-tune building equipment for optimal 
performance by monitoring building performance in real-time. 

[85] 

AI BIM in the operations stage: bottlenecks and implications for 
owners 

2015 Ensuring efficient management of information independent of people 
and time; 
Using benchmarking and monitoring data to aid in the asset 
management of a building. 

[115] 

ML A review on artificial intelligence-based load demand 
forecasting techniques for smart grid and buildings 

2015 Electrical load forecasting. [116] 

AI Watch Bot: A building maintenance and surveillance system 
based on autonomous robots 

2013 In order to maintain the building’s climate within a designated range 
and offer lighting according to an occupancy schedule. 

[117] 

ML Generalized task allocation and route planning for robots with 
multiple depots in indoor building environments. 

2020 Task-allocation and route-planning for multiple indoor robots with 
numerous start and destination depots are optimized to enhance 
operational efficiency. 

[87] 

AI The study on the integrated control system for curtain wall 
building façade cleaning robot 

2018 Buildings equipped with built-in guide rail-applied curtain walls 
require Façade cleaning. 

[83] 

ML Self-reconfigurable façade-cleaning robot equipped with 
deep-learning-based crack detection based on convolutional 
neural networks. 

2019 Automatic glass crack detection for façade-cleaning robot [118] 

AI Integration of service robots in the smart home by means of 
UPnP: A surveillance robot case study 

2013 Implementing a basic garbage detection routine using built-in camera 
that allows the smart home system to instruct 
a service robot to clean whenever garbage is detected. 

[88]  
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another study by Ref. [79], Telegram chatbot safety training and task complexity on hazard awareness were investigated. Results 
indicated that Telegram chatbot training positively influenced hazard awareness, particularly for participants with limited onsite 
experience and in less complex scenarios. Regona et al. [80] conducted a systematic review of 66 articles closely aligned with the 
research topic and objectives. They provided an overview of the current status of big data applications in addressing diverse con-
struction safety issues, examining both the collection and analysis aspects. The study categorized the notable outcomes of big data 
analysis technology, emphasizing its contributions to enhancing construction safety. 

5.4. Application in the operation and maintenance phase 

In the phase of operation and maintenance (O&M), the constructor often faces limited control over the project’s proceedings. As a 
consequence, managing and obtaining data from the object becomes challenging. While the computer-generated model could be the 
actual representation of the structure, there is no correlation between this and the finished building [81]. The users are primarily 
focused on the reliability and convenience of the project during this phase. Utilizing AI and ML presents a wide array of possibilities 
across diverse sectors, including facilities management, supply chain management, monitoring, energy simulation, and maintenance 
management, particularly during the Operations and Maintenance (O&M) phase of projects. By harnessing the potential of AI and ML 
technology, facility managers gain the capacity to make vital decisions concerning building performance management, energy con-
sumption optimization, and comprehensive monitoring of operational aspects within the building. By collecting real-time data, AI and 
ML increases the operational efficiency of the project. This data enables predictive maintenance, ensuring that maintenance activities 
are carried out proactively to prevent issues [82]. Table 5 presents a comprehensive overview of how AI and ML are utilized during the 
operation and maintenance stage of a project lifecycle. It also includes the relevant literature references associated with each 
application. 

Lee, Kim [83] introduced a novel approach to building maintenance by presenting a façade cleaning system specifically designed 
for buildings featuring guide rail-applied curtain walls. The author also anticipated a unified command structure to streamline the 
cleaning procedure. In a study conducted by Gao et al. [84], the module for assessing evacuation integrates with a Fire Dynamics 
Simulator to evaluate the efficacy of evacuation procedures in the event of a fire. The module for planning escape routes employs AI to 
determine the adequacy of the distance of such courses. The safety education module furnishes occupants with essential details 
concerning risky zones and evacuation paths. It incorporates informative videos and directional maps to augment their understanding 
and vigilance. Augmented Reality (AR) technology is a practical interface for facilitating operations and maintenance tasks, overlaying 
geometric representations onto the physical environment while integrating AI-driven facility data [85]. Vitale, Arena [86] employed 
AI-driven methods for indoor climate regulation within predefined parameters. Moreover, the system facilitated lighting control per 
occupancy schedules while monitoring system performance and detecting equipment malfunctions [87]. proposed a novel approach 
that leverages ML to improve task allocation and route planning efficiency in a fleet of indoor robots. These robots operate within 
various depots, each having unique starting and ending points for their tasks. The utilization of integrated cameras in research con-
ducted by Borja, de la Pinta [88] has facilitated the implementation of a rudimentary garbage detection AI algorithm, which enables 
the smart home to dispatch an intelligent robot to perform cleaning operations upon garbage detection. 

Table 6 
Application of AI and ML in the demolition and recovery phase.   

Title Year Application Ref 

ML Deep learning model for Demolition Waste Prediction in a 
circular economy 

2020 Estimating the accurate quantity of waste generated during building 
demolition; 
Ensuring effective planning for material reuse. 

[92] 

AI A financial decision-making framework for construction projects 
based on 5D Building Information Modeling (BIM) 

2016 Demolition waste quantification, disposal charging fee calculation, 
and pick-up truck planning. 

[119] 

AI 4D-BIM to enhance construction waste reuse and recycle 
planning: Case studies on concrete and drywall waste streams 

2020 Measuring the production of concrete and plasterboard waste for 
recycling off-site and reusing on-site. 

[93] 

AI Dynamic modelling for life cycle cost analysis of BIM-based 
construction waste management 

2020 Better decision-making in material sorting and deconstruction 
procedures. 

[120] 

ML Vision-based robotic system for on-site construction and 
demolition waste sorting and recycling 

2020 Categorizing and gathering formed construction debris. [95] 

AI Construction waste recycling robot for nails and screws: 
Computer vision technology and neural network approach. 

2019 Automated recycling of waste from construction. [121] 

ML A building information modelling-based tool for estimating 
building demolition waste and evaluating its environmental 
impacts. 

2021 Providing geometric and semantic information for demolition waste 
estimation. 

[122] 

AI Combining life cycle assessment and Building Information 
Modelling to account for carbon emission of building demolition 
waste: A case study 

2018 Measuring the carbon emissions generated throughout the entire 
process of disposing of building demolition waste. 

[94] 

AI A BIM-Based construction and demolition waste information 
management system for greenhouse gas quantification and 
reduction. 

2019 To provide a decision support tool for the management of 
construction and demolition waste that is economically viable and 
environmentally friendly. 

[123]  
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5.5. Application in the phase of demolition and recovery in construction 

Researchers often tend to overlook the entire phase of a construction project as a distinct phase [86]. Comparable to the building 
industry’s other project phases, the integration of AI and ML technologies during demolition and recovery has received less attention. 
Ensuring sustainability in the construction industry hinges on identifying the most advantageous financial and environmental value 
that can be extracted from a building before its end-of-life phase, encompassing deconstruction and demolition processes [89]. 
Approximately 35% of the total generated waste is attributed to the construction industry [90]. Despite numerous studies devoted to 
the matter, the extent of construction waste in the US, Canada, Hong Kong, Australia, and the UK remains notably high. Specifically, 
the respective percentages of construction waste in these countries are approximately 33%, 65%, 35%, 50%, and 30% [91]. In the 
context of the demolition and recovery stage in construction projects, Table 6 offers a comprehensive summary of the various ap-
plications of AL and ML. 

The advancement of deep learning models has dramatically simplified the prediction of the quantity of waste materials (measured 
in tons) that can be salvaged from buildings during their end-of-life stage before demolition occurs [92]. Despite considerable attention 
given to waste management, the recycling and reutilization of construction waste remain underutilized. Researchers propose a novel 
approach to address this challenge, which involves integrating temporal-based algorithms alongside 4D-BIM (4D Building Information 
Modelling). By doing so, a systematic plan can be devised to efficiently manage the removal and replacement of concrete and drywall 
waste throughout the different phases of construction projects [93]. Nails and screws, crucial elements within the construction waste 
environment, pose a significant detection challenge. Their presence may endanger the construction site’s safety and result in material 
wastage. The research performed by Li [88] employed a neural grid to facilitate the robot round in an unfamiliar work setting and to 
utilize quicker R–CNN techniques to detect dispersed pins and screws in actual time, thereby enabling the robot to retrieve said nails 
and screws autonomously. The impact of carbon emissions resulting from managing demolition waste in buildings has been widely 
disregarded. A conceptual framework was established by Wang, Wu [94] to facilitate the assessment of carbon emissions generated 
during the entire process of demolishing a building’s waste. Moreover, Wang, Li [95] describes an innovative AI-driven prototype for 
efficiently sorting and gathering shaped construction debris, a crucial phase in the recycling of construction and demolition waste 
(CDW). 

6. Practical implications and future research 

This research investigates the present state of AI and ML integration in the construction sector. We offer a succinct survey of the 
diverse applications of these technologies across various stages, including planning, design, construction, operation, maintenance, 
demolition, and recovery. The insights from this study aim to support industry professionals and stakeholders interested in adopting AI 
and ML solutions to tackle the numerous challenges encountered within the construction domain. This would improve the course of 
policymaking with regard to the adoption of these intelligent systems in specific phases from initiation to completion of a construction 
project. In addition to its usefulness for research, our findings have some significant impact on everyday life. Our analysis explicitly 
identifies the categories of AI and ML applications that corporations are most interested in developing in the construction sector and, 
consequently, are most interested in academics. The various AI uses and technologies that are now the focus of study give practitioners 
some insight into potential future deployments and prevalent technology in businesses. The fact that ML applications are the AI 
technology that has received the most study might help determine where future investments should be made and what kind of pre-
dicted economic value can be obtained. Having this knowledge, construction managers can start testing these methods within their 
companies and investing in the necessary expenses to gradually incorporate these solutions into industries where they can be 
extremely valuable. 

The review of studies also highlights those that can help practitioners learn crucial lessons from using AI technologies, identify 
approaches that have been used and what common problems arise, and identify studies that offer general guidance and best practices. 
Many practitioners find it challenging to locate empirical research that is useful to them because of the wide-ranging and vast literature 
on AI in organizational contexts. Through the synthesis of findings and the presentation of studies categorized thematically, practi-
tioners can more quickly uncover the research that addresses the challenges they and their organizations encounter in AI deployments. 

Despite the significant contributions made by this research, certain limitations are worth noting. The study was confined to utilizing 
databases like Google Scholar, Scopus, and Web of Science, potentially overlooking other relevant publications on AI and ML adoption 
in the construction industry. Consequently, the research findings might not fully encompass the entire body of literature on AI and ML 
applications in diverse lifecycle phases of construction projects. The dynamic nature of the AI field continuously introduces new 
opportunities and challenges, with outcomes often varying due to differences among companies. The primary objective of this study 
was to provide an overview of AI and ML applications in the construction industry by analysing existing research. However, no ex-
periments were conducted with additional datasets, including sensitive data collected from professionals working on construction 
sites, which could have offered valuable perspectives through interviews and surveys on the opportunities and challenges of imple-
menting these technologies in real-world scenarios. This study highlights the necessity for further research, employing case studies to 
augment the subjective perspectives of researchers whose works were included in this investigation. Incorporating case studies can 
provide a more comprehensive understanding of AI and ML implementation in construction. 

7. Conclusions 

As an innovative approach to enhancing productivity and tackling issues, AI and ML are set to significantly influence how things are 
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done across various sectors. As more data is generated throughout a building’s existence, coupled with advancements in digital 
technology, AI and ML can utilize this information and work with other technologies to enhance the construction process. In this study, 
it was investigated the utilization of AI and ML throughout the construction life cycle to address the research questions posed in our 
research endeavour. Besides recent research, we examined pertinent studies published within the last 12 years across various building- 
related applications. The works utilizing these AI and ML are defined, together with the ideas, components, types, and subfields of AI. 
The summary of AI and ML applications, benefits, and implementation in each stage of the building construction lifecycle was analysed 
comprehensively. 

The present study employed a qualitative methodology by comprehensively analysing publication patterns about AI and ML. The 
relevant databases were explored to conduct searches across various platforms, including Google Scholar, Web of Science, and Scopus. 
The scope of the search extended over several decades. The selection of these databases was predicated upon their strong reliability and 
credibility, with the primary objective of mitigating bias. Based on the data gathered, the AI and ML applications on the life cycle basis 
in construction research can be obtained and discussed. Many researchers have noted that a significant concentration of AI and ML 
applications lies within the construction and project planning stages. This study demonstrates that although various AI and ML 
technologies have been utilized in construction-related research, notable advancements have resulted in significant improvements. 
Despite the promising potential of advanced AI technologies, their adoption in the construction industry has been relatively slow. Deep 
learning, which can generate more accurate predictions than conventional machine learning methods, has not been fully exploited. 

The construction sector is still in the initial stages of embracing AI and ML, a novel concept for the industry. Consequently, this 
paper aims to highlight the significant contributions and advancements in this domain.  

• A novel and previously unexplored domain of knowledge focused on applying both AI and ML technologies in the construction 
sector.  

• A brief overview of the inception, underlying principles, and technological advancements of AI and ML.  
• Exploring the present state of AI and ML implementation in the construction sector.  
• A comprehensive examination of AI and ML implementations across different stages of construction projects  
• A foundation for forthcoming research derived from the data analysis outcomes. 
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[101] P. Schönbeck, M. Löfsjögård, A. Ansell, Quantitative review of construction 4.0 technology presence in construction project research, Buildings 10 (10) (2020) 

173. 
[102] Z. Jin, et al., Using 4D BIM to Assess Construction Risks during the Design Phase, Engineering, Construction and Architectural Management, 2019. 
[103] H.-L. Chi, S.-C. Kang, X. Wang, Research trends and opportunities of augmented reality applications in architecture, engineering, and construction, Autom. 

ConStruct. 33 (2013) 116–122. 
[104] S.K. Baduge, et al., Artificial intelligence and smart vision for building and construction 4.0: machine and deep learning methods and applications, Autom. 

ConStruct. 141 (2022) 104440. 
[105] A. Lekan, et al., Lean thinking and industrial 4.0 approach to achieving construction 4.0 for industrialization and technological development, Buildings 10 (12) 

(2020) 221. 
[106] J.M.D. Delgado, et al., Robotics and automated systems in construction: understanding industry-specific challenges for adoption, J. Build. Eng. 26 (2019) 

100868. 
[107] M. Zhang, et al., Human–robot collaboration for on-site construction, Autom. ConStruct. 150 (2023) 104812. 
[108] N. Melenbrink, J. Werfel, A. Menges, On-site autonomous construction robots: towards unsupervised building, Autom. ConStruct. 119 (2020) 103312. 
[109] C.-J. Liang, V.R. Kamat, C.C. Menassa, Teaching robots to perform quasi-repetitive construction tasks through human demonstration, Autom. ConStruct. 120 

(2020) 103370. 
[110] C. Feng, et al., Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites, Autom. ConStruct. 59 (2015) 128–138. 
[111] L. Zeng, et al., Public opinion mining on construction health and safety: latent dirichlet allocation approach, Buildings 13 (2023), https://doi.org/10.3390/ 

buildings13040927. 
[112] Q. Meng, et al., Big data technology in construction safety management: application status, trend and challenge, Buildings 12 (2022), https://doi.org/10.3390/ 

buildings12050533. 
[113] D. Chernyshev, et al., Integration of building information modeling and artificial intelligence systems to create a digital twin of the construction site, in: 2022 

IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022. 
[114] C. Fan, F. Xiao, Y. Zhao, A short-term building cooling load prediction method using deep learning algorithms, Applied energy 195 (2017) 222–233. 

S.D. Datta et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)02919-0/sref63
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref63
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref64
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref64
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref65
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref66
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref67
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref68
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref68
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref69
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref69
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref70
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref71
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref71
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref72
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref73
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref73
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref74
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref74
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref75
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref75
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref76
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref77
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref77
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref78
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref79
https://doi.org/10.3390/joitmc8010016
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref81
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref82
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref83
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref84
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref85
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref85
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref86
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref87
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref87
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref88
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref88
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref89
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref90
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref91
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref91
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref92
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref93
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref93
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref94
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref94
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref95
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref96
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref96
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref97
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref97
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref98
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref99
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref100
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref101
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref101
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref102
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref103
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref103
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref104
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref104
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref105
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref105
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref106
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref106
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref107
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref108
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref109
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref109
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref110
https://doi.org/10.3390/buildings13040927
https://doi.org/10.3390/buildings13040927
https://doi.org/10.3390/buildings12050533
https://doi.org/10.3390/buildings12050533
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref113
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref113
http://refhub.elsevier.com/S2405-8440(24)02919-0/sref114


Heliyon 10 (2024) e26888

17

[115] A. Bosch, L. Volker, A. Koutamanis, BIM in the operations stage: bottlenecks and implications for owners, Built. Environ. Proj. Asset. Manag. 5 (3) (2015) 
331–343. 

[116] M.Q. Raza, A. Khosravi, A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings, Renew. Sustain. Energy Rev. 
50 (2015) 1352–1372. 
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