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Abstract 

Background:  To describe an automated method for assessment of the plausibility of continuous variables collected 
in the electronic health record (EHR) data for real world evidence research use.

Methods:  The most widely used approach in quality assessment (QA) for continuous variables is to detect the 
implausible numbers using prespecified thresholds. In augmentation to the thresholding method, we developed 
a score-based method that leverages the longitudinal characteristics of EHR data for detection of the observations 
inconsistent with the history of a patient. The method was applied to the height and weight data in the EHR from 
the Million Veteran Program Data from the Veteran’s Healthcare Administration (VHA). A validation study was also 
conducted.

Results:  The receiver operating characteristic (ROC) metrics of the developed method outperforms the widely used 
thresholding method. It is also demonstrated that different quality assessment methods have a non-ignorable impact 
on the body mass index (BMI) classification calculated from height and weight data in the VHA’s database.

Conclusions:  The score-based method enables automated and scaled detection of the problematic data points in 
health care big data while allowing the investigators to select the high-quality data based on their need. Leveraging 
the longitudinal characteristics in EHR will significantly improve the QA performance.

Keywords:  Data quality assessment (DQA), Electronic health record (EHR), Real world evidence, Clinical informatics, 
Health care big data, Vital signs
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Background
The role of real-world evidence (RWE) is rapidly expand-
ing over the last several years. It is now well recognized 
that RWE has potential for reshaping clinical research 
and clinical decision-making, even at regulatory level. 

As an example, the 21st Century Cures law passed in 
2016 requires that FDA considers RWE for supporting 
regulatory decisions as a means of bringing new treat-
ment to patients more quickly and efficiently. Electronic 
health records (EHR) data is a major source of RWE as 
well as a driving force behind RWE use, owing to its big 
size, rich dimensions, real-time update, and longitudinal 
characteristics. With the wide-spread adoption of EHRs 
in the US, the number of research studies based on the 
EHR data is rapidly increasing. Examples include disease 
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burden [1], post-marketing safety surveillance [2, 3], and 
comparative effectiveness including synthetic controls 
[4–6]. However, one major challenge for using the EHR 
data to support clinical decision making is whether EHR 
data is of satisfying quality for drawing any meaningful 
conclusions.

EHRs are routinely collected by providers at a patient 
care facility for administration use. They are typically 
not collected to the same standard of quality as those 
of research data, which are subject to routine monitor-
ing, auditing, and verification. Therefore, before EHR 
data can be used to answer research questions, it must 
be assessed for its quality including conformance, com-
pleteness, and plausibility [7–11]. The conformance in 
data quality assessment (DQA) evaluates if data adheres 
to specified structural and formatting specifications of 
the database. The completeness examines if the presence 
or absence of data attributes are within expectation in a 
database. The plausibility determines the degree to which 
data values are believable. Plausibility can be further cat-
egorized into atemporal plausibility and temporal plausi-
bility. Atemporal plausibility focuses on cross-sectional 
data features (e.g., height values must be non-negative), 
while temporal plausibility focuses on a sequence of val-
ues over time (e.g., adult height is stable over time). For 
data as big as the EHR, manual checking is infeasible, and 
algorithmic methods must be used. There is considerable 
effort for bringing forth automated quality assessment 
procedures to screen and clean EHR data [12, 13], but 
no standard is yet established. The data quality assess-
ment of EHR depends on the EHR system, the protocol 
of how the data is collected (for example, provider-report 
vs. self-report), and the types of the data. As an exam-
ple, methods for cleaning discrete data such as diagnosis 
codes and continuous data such as weight and height can 
be quite different. As a result, most DQAs implemented 
in major data sharing networks are rule-based methods 
[14, 15]. Rule-based methods are simple to implement 
but have limited power to detect data issues, especially 
for temporal plausibility. In this paper, we will introduce 
a score-based method that addresses the temporal plausi-
bility for continuous measurements in EHR data.

The development of our method is based on the EHR 
data from the Veterans Health Care Administration 
(VHA). VHA has the largest integrated federal health 
care system and formally adopted an EHR system as early 
as in 1970s. VHA collects complete health-care history 
of veterans who use its care using VistA, an information 
technology infrastructure implemented in 1980s. The 
VistA data is extracted in SAS and SQL and stored in 
VHA’s corporate data warehouse (CDW). The CDW data 
since year 2000 is made available to VHA researchers in a 
structured format. The CDW data is further standardized 

into the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model for more efficient use in 
research [16].

We describe in this article an automated procedure for 
detection of implausible observations among continu-
ous and autocorrelated variables from the EHR data such 
as height and weight, and body mass index (BMI) that is 
derived from these two variables. The algorithm can be 
applied to other types of continuous data and works best 
when data can reach a stationary distribution for a rea-
sonable length of time.

Methods
A widely used method to identify problematic observa-
tions in continuous variables is simple thresholding: if 
a data point falls in an implausible range, it will be con-
sidered as erroneous. Thresholding method considers 
each measurement in isolation and falls into the atem-
poral plausibility DQA category. However, it ignores the 
longitudinal profile of a patient in EHR and can result in 
exclusion of good data or inclusion of erroneous data. For 
example, a patient weighs consistently of 380 pounds in 
ten visits in three years. With thresholding method, all 
the data of this patient is likely considered as error and 
excluded from analysis. On the other hand, a measure-
ment of 120 pounds for an under-weight patient of 80 
pounds is considered good data when it is indeed an 
error.

The proposed method in this paper addresses the 
drawbacks of thresholding method. A measurement of a 
continuous variable is considered of questionable quality 
if it experiences implausible changes over time. And our 
statistical procedure calculates a longitudinal plausibil-
ity score (QR) based on repeated measurements in that 
patient.

Longitudinal plausibility score (QR)
The number of repeated measurements and the time 
between measurements play important roles in the deter-
mination of whether a measurement is plausible or not. 
Using weight as an example, a patient has 6 weight meas-
urements in 3 months: 5 of them are 200 pounds and one 
is 180 pounds. The measurement of 180 pounds is likely 
an error. Another patient has 2 weight measurement one 
year apart: the first is 200 pounds and the second is 180 
pounds. There are likely no errors here.

Considering these factors, we have chosen the exponen-
tially weighted moving average (EWMA) for calculation of 
the longitudinal plausibility score QR. The rational is two 
folds. Firstly, EWMA is a commonly used time-weighted 
method in quality control for manufacturing process due to 
its ability to model decaying dependencies among data over 
time. An alternative method also commonly used in quality 
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control process is cumulative sum approach (CUMSUM). 
But CUMSUM assigns equal weights to every time point 
and cannot model decaying time dependency in auto-
correlated data. Secondly and perhaps more importantly, 
EWMA is a simple method that can scale to the volume of 
the data linearly and, therefore, suitable for processing large 
amount of EHR data.

For an individual patient, suppose that we have a 
sequence of n measurements y1...yn taken at time points 
t1...tn . The EWMA yi,EWMA   for a measurement yi taken at 
time ti , t1 ≤ ti ≤ tn , is defined as a weighted average over 
the entire sequence:

where the weight wj is determined by the time interval 
between ti and each tj: ( 1 ≤ i, j ≤ n):

Parameter τ tunes for the dependency of yi,EWMA on its 
neighboring measurements and affects the smoothness of 
the EWMA estimates. Larger τ leads to more correlated 
and smoother EWMA estimates.

Let us define di as the absolute difference between the 
observed yi  and the EWMA estimate:

The variance estimates of di is, assuming yis are inde-
pendent of each other:

We can then derive a Z score for di and its corresponding 
two-sided p-value from a standard normal distribution:

The parameter τ tunes the smoothness of moving aver-
ages and plays an important role in identifying outliers. We 
provide a heuristic formula for setting τ:
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In the formula, ω is the desired dependency in percent-
age a researcher wants to put on the neighboring obser-
vations ξ month away from t. For example, for height, we 
can assign 90% dependency on observations 1-year (12-
month) away from the time point t because we expect the 
adult height to be stable over time. In this case, ω = 0.9, 
ξ = 12, and it leads to τ = 9.49. With this τ, the dependency 
on measurements 2-year and 5-year away is 81% and 59%. 
Meanwhile, the weight measurements have much greater 
variabilities over time, and it may be more reasonable to 
assign 90% weight on observations half a month away (i.e. 
ξ = 0.5 and τ = 0.4). The calculation of QR also requires an 
estimate of the variance of measurements yi –- Var(yi). 
This variance can be estimated from data using a random 
effect model. When validation data is available, the tuning 
parameters τ and Var(yi) can be searched for to achieve an 
optimal performance of the algorithm. For height, we used 
the heuristic formula to choose our tuning parameters. For 
weight, we optimized τ and Var(yi) using a validation data-
set on the false discovery rate and detection rate (τ = 0.5, 
Var(yi) = 210) (Additional file 1: Methods).

Thresholding score (QS)
For comparison purpose, we also used thresholding 
method and computed a QA score Qs for each meas-
urement: the two-sided p-value of a simple Z-score that 
measures the distance between the observed value yi and 
the population mean yu:

The population mean yu and standard deviations (SD) 
can be estimated from the reference data (Additional 
file 1: Methods).

Both QR and QS are invariant to the units of the meas-
urements of the outcome. For time measurement in QR, 
age was used for presentation simplicity. Other time 
measurements such as calendar years can also be used 
without changing the results if the time intervals among 
measurements are preserved. At least two measure-
ments are required for calculation of QR. The more meas-
urements available, the smaller the standard error for 
EWMA, and hence QR is more precise.

Study ethics and participant consent
The Million Veteran Program received ethical and study 
protocol approval by the Veterans Affairs Central Institu-
tional Review Board and informed consent was obtained 
for all participants. This methodology study protocol was 
approved by the Stanford University Institution Research 
Board. All analyses were based on deidentified data from 
VA CDW. All methods were carried out in accordance 
with relevant guidelines and regulations.

ZS,i =
yi − yu

SD(yi)
, QS,i = 2(1−�(ZS,i))
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Results
Demographics and characteristics
We analyzed height and weight data in an MVP (Mil-
lion Veteran Program) cohort of 496,311 patients using 
VA EHR data between year 2000 and 2016. A total of 
10,960,056 height records and 25,548,357 weight records 
were analyzed. Most patients in this MVP cohort is male 
(91.4%), white race (71.6%), and non-Hispanic (89.3%). 
The median age is 64.4 years old at the enrollment (Addi-
tional file 1: Table S1).

For analysis, we required that a height measurement is 
within the range of 40 and 100 inches and a weight meas-
urement within 40 and 1000 pounds. We also required 
that at the time a measurement was taken the patient was 
at least 17  years old in database. We removed height or 
weight records measured more than 3 times on the same 
day as these records are likely computer entry errors. These 
data preprocessing steps resulted in height data of 495,393 
patients with 10,945,576 measurements. The weight data 
included 496,292 patients with 25,400,615 measurements. 
Among these patients, 485,406 had more than one meas-
urement for height and 493,086 patients for weight. The 
median of the total number of years of follow-up is 12.2 
in the height data and 13.1 in the weight data. The median 
frequency of measurements is 2 measurements per calen-
dar year for height and 3 for weight (Table 1).

Observation‑level QA
Our analysis focused on the patients with at least two 
measurements. Both the longitudinal plausibility score 
(QR) and the thresholding score (QS) were calculated for 
each measurement for height and weight.

Table  2 compares the proportion of flagged measure-
ments using a cutoff score of 0.05 for both QR and QS 
scores. For height, the two QA scores agreed on 90.5% 
of the records: 1.0% of data were positive findings and 
flagged as questionable by both methods, and 89.5% of 
data were classified as negative and not flagged. The dis-
cordance between the two scores counted for 9.5% of the 
data: 4.2% data were flagged by QS but considered nega-
tive by QR, and 5.3% of the data is vice versa. For weight, 
only 0.3% data were flagged by both scores; 8.8% data 
were flagged by QS while considered negative by QR, 
while 0.6% data were flagged by QR but not flagged by 
QS, and the remaining 90.2% data were in concordance as 
negatives. The histograms in Figs. 1 and 2 illustrate how 
different the QR and the QS scores can be for identifying 
problematic data. The observations flagged by QR (panel 
b) have a similar distribution as the normal values (panel 
a), which cannot be identified by QS scores. In the mean-
time, The QS score flagged out-of-range or infrequent 

Table 1  Characteristics of the height and weight data in the MVP cohort

a Median is used if subjects have multiple-year data

Height Weight
(N = 495,393) (N = 496,292)

Total number of records 10,945,576 25,400,615

Number of subjects with multiple measurements, N (%)

 Single measurement 9,987 (2.0%) 3,206 (0.6%)

 >  = 2 measurements 485,406 (98.0%) 493,086 (99.3%)

 >  = 3 measurements 472,133 (95.3%) 488,684 (98.5%)

Number of measurements in a subject

 Mean (SD) 22.1 (20.4) 51.2 (59.8)

 Median (IQR) 17.0 (8, 29) 38 (19, 68)

Number of years of follow-up for a subject

 Mean (SD) 11.5 (5.2) 12.2 (5.1)

 Median 12.2 (7.2, 16.1) 13.1 (7.9, 16.8)

Number of measurements per calendar year in a subjecta

 Mean (SD) 2.0 (1.2) 3.7 (3.9)

 Median 2.0 (1.0, 2.0) 3.0 (2.0, 4.5)

Table 2  Proportion of positive and negative measurements 
identified by QR and QS

Positive by QR 
(QR <  = 0.05)

Negative by 
QR (QR > 0.05)

Height (N = 10,945,576)

 Positive by QS (QS ≤ 0.05) 1.0% 4.2%

 Negative by QS (QS > 0.05) 5.3% 89.5%

Weight (N = 25,397,409)

 Positive by QS (QS ≤ 0.05) 0.3% 8.8%

 Negative by QS (QS > 0.05) 0.6% 90.2%
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values mostly considered negative by QR. Further exami-
nation of data suggests that the QS flags all observations 
for patients who are over- or under-weight even though 
these measurements are consistent over time and should 
be considered accurate (Additional file 1: Fig. S1).

Subject‑level QA
A subject-level QA score can be calculated from the QR, 
defined as the proportion of flagged measurements in a 
subject. When the proportion of flagged measurements 
in a patient is too high, all the data of the patient can be 
considered unreliable and removed from analysis. In our 
MVP cohort, 9% subjects were identified for having more 
than 20% of their measurements flagged for height, and 
0.47% subjects were identified for weight. These numbers 
dropped to 2.36% for height and 0.07% for weight when a 
50% cutoff was used. More details can be found in Addi-
tional file 1: Table S2.

Validation
To evaluate the performance of the EWMA algorithm, 
we randomly selected 100 patients whose proportion of 
flagged measurements were between 0 and 20% using 
a p-value cutoff of 0.05. The data of these patients were 
manually reviewed independently by two biostatisticians 
for identification of problematic measurements. All dis-
crepancies between the two reviewers were reviewed 
and called independently by a third biostatistician. All 
reviews were blinded to the results of the algorithm. The 
incidence of positives is low: for height, 343 out of a total 
of 6,652 (5%) unique measurements were identified to be 
problematic in manual review; and for weight, 175 out 
of 16,825 (1%) unique measurements were considered 
problematic.
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Fig. 1  Histograms of height measurements (inch) stratified by the 
agreements between QR and QS. a Height measurements where 
both QR and QS > 0.05 cutoff value; b Height measurements where 
QR ≤ 0.05 and QS > 0.05; c Height measurements where QR > 0.05 
and QS ≤ 0.05; d Height measurements where both QR and QS ≤ 0.05 
cutoff value. X-axis represent the values of height, and y-axis is 
frequency counts
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Fig. 2  Histograms of weight measurements (lb) stratified by the 
agreements between QR and QS. a Weight measurements where 
both QR and QS ≥ 0.05 cutoff value; b Weight measurements where 
QR ≤ 0.05 and QS ≥ 0.05; c Weight measurements where QR ≥ 0.05 
and QS ≤ 0.05; d Weight measurements where both QR and QS ≤ 0.05 
cutoff value. X-axis represent the values of height, and y-axis is 
frequency counts
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Both the EWMA QA algorithm and the simple thresh-
olding method were evaluated against the manual-review 
results. False positive rate (FPR), power, and positive and 
negative predictive values (PPV/NPV) were calculated. 
The EWMA QA method has an FPR of 1.6% for height 
and 0.3% for weight. The power of detecting a prob-
lematic measurement is 88.9% for height and 75.4% for 
weight. The PPV (proportion of true positives among 
called positives) is 75.9% for height and 71.4% for weight. 
The NPV (proportion of true negatives among called 
negatives) is 99.4% for height and 99.7% for weight. In 
contrast, the thresholding method has a much lower 
power with a higher FPR. The positive predictive val-
ues are also much lower than the EWMA method, while 
the negative predictive values are similar (Table  3). The 
results are consistent when a cutoff of 0.01 was used for 
QR and QS. (Additional file 1: Table S3).

Use case: BMI
BMI is an indicator of obesity and often serves as prog-
nostic factors for a variety of diseases such as diabetes 
and cardiovascular conditions. The accurate assessment 
of BMI is required in many studies. With EHR data, we 
have a way to assess BMI longitudinally. But we want to 
be mindful of the quality of BMI calculated from height 
and weight of EHR data. To demonstrate how the quality 

of height and weight data impacts BMI calculation, we 
computed BMI in our data using all the data without 
any QA, data QAed with the thresholding method (QS), 
and data QAed with the longitudinal method (QR). We 
then grouped BMIs into four categories of underweight 
(< 18.5), normal to overweight (≥ 18.5 and < 30), obese 
class I/II/III (≥ 30), and obese class III (> 40) according 
to WHO classifications. The proportion of incidence of a 
patient who ever falls into each BMI class were then cal-
culated. Table 4 compares these proportions among the 
three methods.

BMI was calculated when height and weight were 
measured on the same day. There are 10,377,511 such 
records in 485,316 subjects. Among these records, 
12.32% (1,278,801) were flagged by thresholding QA, and 
7.42% (770,578) were flagged by longitudinal QA. The 
proportion of BMI measures that were obese class III 
was impacted most by QA methods: 14.54% without QA, 
6.69% with thresholding QA, and 11.25% with longitu-
dinal QA. The big differences between thresholding QA 
and longitudinal QA for extreme obesity illustrates that 
thresholding QA probably has called many large values 
as errors while they were not. The proportions in other 
BMI groups were also affected by QA method but not as 
greatly.

Table 3  Validation results

QR and Qs cutoff = 0.05

Longitudinal QA (QR) Thresholding QA (QS)

Height (%) Weight (%) Height (%) Weight (%)

False positive rate (FPR) 1.6 0.3 6.6 12.9

Power 88.9 75.4 17.8 28.0

Positive predictive value (PPV) 75.9 71.4 12.8 2.2

Negative predictive value 99.4 99.7 95.4 99.1

Table 4  Proportion of subjects who ever had any BMI in the listed BMI classes

a Excluded 0% data
b QA excluded 12.3% data
c QA excluded 7.4% data

QA methods excluded all records with a QS or QR score ≤ 0.05

N is the number of usable records included in the BMI classification

BMI class All data, No QAa 
(N = 10,377,511) (%)

Thresholding QAb 
(N = 9,098,710) (%)

Longitudinal QAc 
(N = 9,606,933) (%)

Underweight (BMI < 18.5) 4.54 1.47 2.24

Normal to overweight (BMI ≥ 18.5 and < 30) 75.56 76.46 73.07

Obese Class I/II/III (BMI ≥ 30 and < 40) 64.36 61.68 61.06

Obese Class III (BMI ≥ 40) 14.54 6.69 11.39
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Conclusion and discussion
The quality of the EHR data impacts the validity of a 
study. Therefore, the assessment and the control of the 
data quality is of the utmost importance in any EHR 
based research. We have adopted a score-based approach 
for assessment of the plausibility of the values of con-
tinuous variables in EHR data. A quality score is calcu-
lated for each observation, and users can select ‘good’ 
data using user-defined cutoffs based on the need of 
the study. This is different from the rule-based method 
where binary calls are made for data quality and users 
have no control over the QA process. There is always a 
trade-off between using a strict cutoff and having less 
data and using a relaxed cutoff but having more errors in 
data. Researchers also should be mindful about any bias 
that could be introduced by leaving out any data from an 
analysis. When necessary, sensitivity analysis may need 
to be performed using different cutoffs.

In our validation study, the QR score had 89% power 
with 14% false discovery rate for height, while for weight, 
only 75% power was achieved with a 28% false discovery 
rate. The performance of QR for weight seems suboptimal 
although the QS performs much worse. The reason can 
be two folds. One is that there is still space to improve the 
algorithm. For example, the choice of the tuning param-
eters does impact the performance of the algorithm, and 
our algorithm also did not model random measurement 
errors. The other is that many false positives/negatives 
are borderline cases that are challenging to identify by 
either an automated algorithm or manual reviews.

Meanwhile, an “implausible” value flagged by the QA 
method may not necessarily be untrue. For example, a 
sudden drop of body weight may be related to the change 
of health condition that itself is an important signal for 
EHR data mining, while a sudden drop in height may be 
less plausible. By controlling the number and proportions 
of flagged records for weight (or BMI), this algorithm may 
also serve as an option for data science to search clinical 
events around these records to further understand if they 
are indeed related to changes of health conditions or no 
clinical explanations. Still, the unflagged data can reflect 
the stable status of subjects in the system.

Furthermore, the proposed method is most applica-
ble to detect outliers in stationary data such as weight 
and height. For non-stationary data on frequent fluc-
tuations (for example, inpatient blood pressure meas-
urements), more advanced methods are needed to 
derive useful signals for analysis. The longitudinal 
QA method can also be applied to routine laboratory 
data such as lipid panels. However, the laboratory data 
typically have gone through internal QA from the lab, 
and the added value of using the longitudinal QA is 
limited. Simple thresholding method is adequate for 

detecting outliers in the VA lab data. In summary, the 
effective QA of the EHR data will require a multitude 
of methods and approaches that can be adapted to spe-
cific database and study need. The longitudinal QA 
method serves as one of the tools in the method tool-
box for producing EHR data of research quality.

An alternative approach for handling outliers is to 
use analytic models less sensitive to outliers and errors 
in data such as non-parametric statistics and robust 
regressions. This approach “embeds” outlier handling in 
the statistical modeling of clinically interesting param-
eters and hence requires high customization to indi-
vidual studies. The DQA method, in contrast, identifies 
problematic data that can be used for many studies and 
can provide systematic solutions to quality improve-
ments for EHR data. For example, implausible height 
and weight values may derive a plausible BMI value that 
is not recognized by roust statistical methods. Never-
theless, robust methods can always be used in addition 
to DQA methods to improve the quality of the analysis.

As a final remark, we would like to note that the pro-
posed methods detect data errors ad-hoc. Although 
EHR data are currently being used retrospectively, a 
better practice is to implement quality control meas-
ures in the data collection stage in EHR systems. Simple 
rule-based checks and prompts such as confirmation 
of an unexpected value at the input of the data can be 
much more effective than ad-hoc remedies and save an 
enormous amount of downstream cleaning work.
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