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Abstract: One of the key factors, which hampers the application of metallic glasses as structural
components, is the localization of deformation in narrow bands of a few tens up to one hundred
nanometers thickness, the so-called shear bands. Processes, which occur inside shear bands are of
central importance for the question whether a catastrophic failure of the material is unavoidable or
can be circumvented or, at least, delayed. Via molecular dynamics simulations, this study addresses
one of these processes, namely the local temperature rise due to viscous heat generation. The major
contribution to energy dissipation is traced back to the plastic work performed by shear stress during
steady deformation. Zones of largest strain contribute the most to this process and coincide with
high-temperature domains (hottest spots) inside the sample. Magnitude of temperature rise can reach
a few percent of the sample’s glass transition temperature. Consequences of these observations are
discussed in the context of the current research in the field.

Keywords: metallic glass; shear banding; plastic deformation; viscous heating; molecular dynamics
simulation

1. Introduction

It is well-known that brittleness is one of the main issues when it comes to the use
of amorphous solids [1,2] as structural components. This problem is most prominent
in metallic glasses, which, despite their excellent mechanical properties with regard to
yield strength and toughness, cannot be deformed into a desired shape without the risk
of failure [3–5]. This process is accompanied by the localization of deformation in narrow
shear bands (SBs) with a typical thickness of a few tens of nanometers [6–8]. Despite their
narrowness, SBs are known to influence the surrounding matrix in a relatively wide zone
that extends up to hundreds of micrometers [9–11].

A question of central interest regarding the role and consequences of shear band
formation in amorphous solids concerns the possibility of a local softening due to generation
of heat, the latter arising from the work performed by the stress, q̇ = σε̇, where q̇ is the
local rate of heat creation per unit volume, σ is the locally acting shear stress and ε̇ the
local shear rate. Such a heat-related softening could result if the rate of heat generation is
sufficiently high in order to induce a noticeable temperature rise, ∆T. Depending on the
T-range and magnitude of ∆T, heating a metallic glass may also have the opposite effect of
annealing, an acceleration of relaxation processes, which often leads to a more brittle state.

However, it is rather difficult to experimentally and accurately access heat generation
and temperature inside the bulk of material (i.e, away from surfaces), and one is thus often
restricted to apply indirect methods and rough estimates. Indeed, reported values of ∆T in
the existing literature are distributed over a broad range, differing sometimes by several
orders of magnitude [7,12–17].

In this context, molecular dynamics simulations present a promising alternative as
they provide access to a fully detailed information regarding positions and momenta of all
particles and forces acting on each individual particle. From this set of fundamental data,
physically important derived quantities can be constructed on the local scale, i.e., around a
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small region in space or in the direct neighborhood of a particle. Important examples of
such quantities, which are also directly relevant for the present study, include strain, stress,
energy production rate and temperature.

The present work sets on at this point. Building upon our ample experience with prop-
erties of the so-called Kob–Anderson binary Lennard–Jones mixture [18,19] as a generic
glass former, we perform molecular dynamics simulations under a set of parameters for
which we already know that strain has the strong tendency of localization and the forma-
tion of system spanning shear bands under an externally imposed deformation [20–22].
Moreover, even though shear bands may also occur upon periodic boundary conditions
using SLLOD-equations [23,24], we use amorphous frozen walls to stabilize SBs, thus
simplifying a statistical analysis of their properties [21].

All the above studies have been performed at imposed temperature conditions, i.e.,
by allowing the exchange of energy with a heat reservoir, the latter being coupled to all
the particles. In this work, however, we do not impose temperature inside the bulk of the
sample since we aim at studying how it changes due to the generation of heat within shear
bands. Instead, we mimic experimental conditions, where external boundaries are at a
constant temperature. This leads to a temperature gradient between the inner part and
boundaries, such that the energy flux towards boundaries carries away the heat generated
by viscous dissipation. A similar procedure has been used recently to study traction, non-
equilibrium phase behavior and heating under shear at high pressures in the context of
tribology [25,26].

As will be shown below, we provide direct numerical evidence for the generation of
heat inside shear bands and for the resulting temperature increase. Plastic deformation, the
local heat generation rate, q̇, and the resulting rise in temperature closely follow the path
of shear band along the sample. Maxima of temperature profiles (determined along the
direction perpendicular to shear band) coincide with the highest q̇ and largest strain. The
magnitude of temperature rise observed in our simulations can reach roughly five percent
of the glass transition temperature, Tg. Noting that the Tg of Zr-based and PdNi-based
bulk metallic glasses lie in the range of 500 ◦K–700 ◦K [27,28], this would amount to a
temperature variation of roughly a few tens of Kelvin, ∆T ≈ 20 ◦K–40 ◦K. Even though not
too large, such a temperature increase may have important consequences for relaxation
processes depending on the operating temperature [27].

2. Results

For the present study, four statistically independent samples were generated. A
simple way to achieve this is to use, for each initial configuration, a Maxwell–Boltzmann
velocity distribution with a different seed for random number generator. The above
described preparation protocol is then applied to these samples. Under shear, all these four
configurations exhibit system spanning SBs. Since all these samples show qualitatively
similar behavior, we will focus in the following on one of them as a representative for
all others.

Since the spatial organization of shear deformation plays a fundamental role in this
work, we first address this issue. Figure 1a illustrates the strain map for the xz-component
of the strain tensor, εxz, at various instants of shear deformation. The corresponding stress-
vs.-strain curve is plotted in Figure 1b. As seen from this figure, at small global strains
belonging to the elastic response regime, deformation is homogeneously distributed inside
the simulation box. As the imposed strain approaches a yielding threshold (εyield

xz ≈ 0.08,
Figure 1b), where stress attains a maximum, the strain map clearly shows the formation
of a narrow system spanning shear band. For strains beyond this plastic threshold, the
SB changes to some extent, but its overall propagation direction does not alter (see also a
discussion of Figure 2 below).

The strain maps shown in Figure 1 are all determined using particle positions between
two instants in time. This is achieved via a well-known coarse-graining procedure [29,30],
which allows us to define a local deformation tensor, based on displacements of particles in
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the neighborhood of a given point in space. First, a coarse-grained displacement-field, u(r),
is calculated via

u(r, t, ∆t) = ∑i ui(t, t + ∆t) φ(r− ri(t))
∑j φ(r− rj(t))

, (1)

where ui(t, ∆t) = ri(t + ∆t)− ri(t) is the displacement of particle i between times t and
t + ∆t. In Equation (1), φ(r) = 1

(4πw2)3/2 exp
(
− r2

2w2

)
is a Gaussian coarse-graining function

with w denoting the coarse-graining scale and r the absolute magnitude of the position
vector r. For all calculations reported here, a coarse-graining length of w = 2.5 was used.
This distance corresponds roughly to the position of the second minimum of the radial
distribution function [19]. We evaluate u(r) on a simple-cubic lattice with a lattice constant
of a = 2 particle diameters. For the time interval, ∆t, we chose a value which corresponds
to 1% overall imposed deformation, i.e., ∆t = 0.01/ε̇xz = 100 (in units of tLJ), where we
used ε̇xz = 10−4. Using the thus obtained coarse-grained displacement field, and assuming
small deformation, we calculate the local strain tensor via

εαβ(r) =
1
2

[∂uα(r)
∂xβ

+
∂uβ(r)

∂xα

]
, (2)

with xα, xβ ∈ {x, y, z}, uα, uβ ∈ {ux, uy uz}.
To evaluate temperature within the shear band, we first introduce a criterion, which

allows us to identify particles belonging to the SB. Guided by the fact that particles within
the shear band contribute more than the average value to the yielding threshold (to com-
pensate the smaller contribution of those which lie outside SB), and at the same time trying
not to exclude too many particles from the analysis (in order to keep statistical noise as
small as possible), we assign a particle i to the shear band if the coarse-grained strain
Equation (2) at the position of that particle satisfies the following condition: εxz(ri) ≥ 0.1
(see also Figure S2 in [21]). Using this criterion, we can determine the local temperature
within the shear band as the average kinetic energy over all the particles assigned to the SB,

TSB =
m

kBNSB
∑

i∈SB
v2

y,i, (3)

where NSB is the number of particles inside (or assigned to) SB. Importantly, in Equation (3),
we only consider a particle velocity component along the so-called vorticity direction (which
turns out to be the y-component here). By doing so, we avoid possible complications due
to the strain in the xz-plane.

The thus obtained shear-band-temperature, TSB, is shown in Figure 1b together with
its system-averaged counterpart (indicated as ‘Whole system’). Both these temperatures
are essentially constant at strains below the yielding threshold but rise beyond this limit,
reaching a plateau at large strains, where the shear stress also reaches a roughly constant
value. The delay between shear stress and temperature is in line with the idea that the early
elastic part of deformation stores the mechanical energy and thus has no contribution to
heat dissipation. The latter starts only as plastic deformation becomes important, which is
certainly the case for strains beyond the yielding point.

The shear band observed in the present set of simulations is essentially aligned along
the horizontal x-axis, and the gradient direction is along the z-axis. This motivates us to
visualize the path of the shear band within the xz-plane. For this purpose, we divide the
system in slabs of roughly five particle thickness, ∆x = 5, and, within each slab, perform
an averaging over the positions of only those particles inside the slab, which belong to
the shear band. Via this procedure, we generate pairs of numbers (xSB, zSB), specifying the
geometric centers (centroid positions) of the shear band within the considered slabs. Note
that the horizontal SB-coordinate, xSB, is not necessarily equal to the lateral coordinate
associated with the midpoint of the slab. A distinction between these two quantities,
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however, is irrelevant for the present analysis, since, as we have verified, the difference
between xSB and xslab-middle is quite small in all the cases of interest to this study (data not
shown). The use of the lateral SB-coordinate xSB is just for the sake of consistency in using
the results obtained by applying the above introduced averaging procedure.

(a)

(b)

Figure 1. (a) Snapshots of the spontaneous shear strain (obtained during a time interval corresponding
to 1% imposed global strain) during characteristic stages of shear deformation. The local shear strain
first builds up homogeneously during the early elastic regime, where shear stress linearly grows
with the externally imposed strain. A shear band is then formed as the stress reaches a maximum
value. The shape of this SB slightly fluctuates during further stages of deformation (c, d), but its
overall structure remains unchanged. The stress states corresponding to these snapshots are marked
by blue diamonds, and the letters a, b, c and d on the stress-versus-strain plot in panel (b). The color
bar gives the strain magnitude. These images (adapted) are taken from [21]. (b) The evolution of
system averaged shear stress and temperature in the course of deformation is shown. For T, the
corresponding data within the shear band and in the outer matrix (the region outside the shear band
excluding walls) are also shown. The observation of a higher temperature inside SB is in line with
the idea that heat is primarily generated there as compared to other parts of the sample. Note that T
varies roughly by a factor of five between SB and the outer matrix.

This geometric representation of shear band is plotted in Figure 2 for three selected
strain intervals as indicated in the curve legends. Each data set shown in this figure is
obtained as an average over 10 sequential evaluations, each covering 1%-strain. As seen
from this figure, the detailed path of shear band changes as deformation proceeds further. It
is also noticeable that relatively sharp kinks which are visible in the SB-path right after the
yielding threshold (∆εxz = 10–20%), disappear at later stages of deformation. This suggests
that material has become softer than it was at the beginning of shear. This is also in-line
with reports on mechanically induced rejuvenation of amorphous solids [31,32].
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Figure 2. Average vertical coordinate of shear band, zSB, versus lateral position, xSB, evaluated for
three different shear strain intervals as indicated. Each pair of xSB and zSB numbers is obtained
as geometric center of particles within a slab of thickness ∆x = 5 which belong to the shear band.
Each curve shown here represents an average over ten calculations, performed for small strain
intervals of [εxz, εxz + 1%], [εxz + 1%, εxz + 2%], . . . , [εxz + 9%, εxz + 10%] with εxz = 10%, 20% and
30%, respectively.

The close connection between temperature rise and shear bands is further highlighted
in Figure 3, where for each set of data shown in Figure 2 the corresponding temperature
along the respective SB-path is plotted. A comparison between these two figures reveals that
temperature closely follows the SB-path and its gradients. The variations of temperature
along the SB-path provide hints towards the possible role of structural heterogeneity in
influencing heat generation and heat conduction inside shear band.

To proceed further, we subdivide the xz-plane in squares of size 5× 5 without sub-
division for the y-direction. This makes equally sized cuboids of linear dimensions
5 × 10 × 5. In this procedure, we consider only those cuboids whose z-positions sat-
isfy zcuboid ∈ [−47.5, 47.5]. This serves to eliminate undesired wall effects, which, while
interesting on their own right, would bias the bulk-properties we are aiming to study here.
Using the thus generated grid, we determine temperature, strain, stress and heat generation
rate within each individual cuboid. The thus obtained results for temperature field are
shown as a color map in Figure 4 along with the SB-path, the latter obtained as geometric
center (see Figure 2). Figure 4 clearly supports the idea that high temperatures always
occur within the shear band and thereby provide a genuine evidence on heat generation
and its impact on temperature inside the shear band.

Next, we work out a simple relation between the imposed strain rate, heat generation
rate and temperature, which proves quite useful for an understanding of the obtained
simulation results. For this purpose, we start with the well known relation q̇ = σxz ε̇

plastic
xz ,

where q̇ is the amount of generated heat per unit time and unit volume, and ε̇
plastic
xz is the rate

of plastic deformation. The latter can be expressed in terms of the globally imposed strain
rate and the elastic contribution to deformation, ε̇

plastic
xz = ε̇xz − ε̇elastic

xz . The elastic strain
can be roughly approximated as εelastic

xz ≈ σxz/G, where G is the elastic shear modulus,
i.e., the slope of the stress–strain curve at small strains. Using this relation, one arrives at
ε̇

plastic
xz ≈ ε̇xz − σ̇xz/G.

Importantly, the elastic contribution, σ̇xz/G, rapidly decays as stress reaches a roughly
time independent value. This occurs for globally imposed strains, εxz ≥ 0.2, see Figure 1b.
In this case, ε̇

plastic
xz ≈ ε̇xz, and one finally obtains for the amount of heat produced per unit
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time and unit volume the simple relation, q̇ ≈ σxz ε̇xz ≈constant in the large strain limit. It
then follows from the energy balance equation, q̇ = −∇ · jq, (jq is the heat flux density) and

symmetry properties of the present slab geometry that ∂jz,q
∂z =constant. When combined

with Fourier’s law, jz,q = −λT
∂T
∂z , one arrives at ∂2T

∂z2 =constant, where we assumed that
the coefficient of heat conductivity, λT , does not change across the shear band. A direct
consequence of this simplified model is that the graph of T(z) should describe a parabola
in the domain, where heat is generated, i.e., within the shear band. Beyond SB, T(z) would
approximately follow a straight line, since q̇ = 0 and thus jz,q =constant in this region.
Data shown in Figure 5 are qualitatively in line with this simple picture.

Figure 3. Temperature versus xSB (see Figure 2), evaluated for three different shear strain intervals as
indicated. The horizontal SB-coordinate is obtained as the x-component of the geometric center of
particles within a slab of thickness ∆x = 5 which belong to the shear band. It essentially coincides
with the midpoint of the slab. Temperature is obtained from the average kinetic energy of those
particles which are considered when calculating xSB. Each curve shown here represents an average
over ten calculations, performed for small strain intervals of [εxz, εxz + 1%], [εxz + 1%, εxz + 2%], . . . ,
[εxz + 9%, εxz + 10%] with εxz = 10%, 20% and 30%, respectively.

Figure 4. Color coded temperature field at a global strain of εxz = 15%, corresponding to a time
of t = 0.15/ε̇xz = 1500tLJ. The color bar shows the temperature range used in color coding. The
ellipsoids (called in the image centroids) track the average position of the shear band. As expected,
the highest temperatures occur inside the shear band. The dashed vertical line marks one of the cross
sections for which temperature profiles are extracted from this data set and plotted in Figure 5, thus
permitting a more quantitative analysis.
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Figure 5. Temperature profiles (T versus the vertical coordinate, z) evaluated within thin parallel
slabs of five particle diameter thickness. The curve legends give the integer index of the considered
slab (e.g., dx5 is the slab number 5 along the x-direction).

A further interesting observation based on the above data is that maxima of tempera-
ture profiles approximately coincide with geometric centers along the SB-path (Figure 4).
This suggests that the location of the shear band can be estimated by an analysis of high
temperature zones inside the sample. This provides an alternative approach to access
localized strain inside the material. This issue is more closely examined in Figure 6, where
profiles of temperature, T, heat generation rate, q̇, and shear strain, εxz, are plotted versus
vertical coordinate, z. As seen from this figure, the maximum temperatures occur roughly
at the same position as the shear strain, and q̇ develop their corresponding peaks. Even
though intuitively appealing, such an observation is highly non-obvious as heterogeneity
of the structure can in principle lead to other non-trivial scenarios.

Figure 6. Temperature, local strain and heat production rate versus vertical coordinate z. As indicated
in the curve legend, q̇ is multiplied with a factor of 55 for better visibility. Within statistical fluctuations,
the maxima of strain, heat production rate and temperature coincide, highlighting the close connection
between these quantities. We have repeated this analysis for other slabs along the x-axis and observe
the same trend (data not shown).

3. Materials and Methods

We perform non-equilibrium molecular dynamics simulations [33] of the well-known
binary Lennard–Jones (LJ) mixture, first explored in a series of seminal papers by Kob
and Andersen [18,19] and Kob and Barrat [34,35]. The model consists of two particle
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types, called A and B, with the number of fractions 80% (A particles) and 20% (B parti-
cles). Both particle types have equal masses, mA = mB = 1. During all the simulations
reported below, volume and particle number are kept constant. The total number den-
sity is ρ = ρA + ρB = 1.2. Since the mass of both particle types is set to unity, we do not
distinguish between mass and number densities in this study.

The particles interact via the 6-12 Lennard–Jones (LJ) potential defined as ULJ =
4εαβ[(dαβ/r)12 − (dαβ/r)6], with α, β ∈ {A, B}. The parameters of the model are set to
εAA = 1, εAB = 1.5εAA, εBB = 0.5εAA, dAB = 0.8dAA, dBB = 0.88dAA.

The units of energy, length and mass are chosen to be εAA, dAA and mA. All other
units are derived as combinations of these three basic units. The unit of time, for example,
is given by tLJ = dAA

√
mA
εAA

. Temperature is measured in units of εAA/kB, with Boltzmann
constant, kB = 1. For the sake of computational performance and also for the reason of
comparability with results obtained within previous simulation studies, the interaction
potential is truncated at a cut-off distance of rc,αβ = 2.245dαβ.

The time evolution of the system is achieved by solving Newtonian equations of
motion via the velocity-Verlet algorithm with an integration time step of dt = 0.008. All the
quantities are given in the above described LJ units.

The glassy configurations studied here are prepared following a protocol described
in [21,36]. First, a simulation box of linear dimensions Lx × Ly × Lz = 2000× 10× 106
containing a total of N = 2.544× 106 particles is simulated at a temperature of T = 2,
corresponding to the liquid state of the model (we recall here that the glass transition
temperature of the model is roughly Tg = 0.4 [32,37]). To ensure a constant temperature,
particle velocities are coupled to a heat bath via the Nosé–Hoover thermostat [38,39]. These
liquid-phase simulations are performed for a sufficiently long time so that particles can
move distances roughly ten times their own diameter. In this stage, dynamic and static
quantities are monitored to ensure that the system is well equilibrated, in the sense that
properties become independent of the instant in time, where a measurement is started
(time translation invariance). The system is then cooled rapidly to a temperature of T = 0.2
belonging to the glassy state, and the system dynamics are allowed to evolve for a time
span of 4× 104tLJ. During this physical aging step, the system evolves towards a practically
unreachable equilibrium state, and its structure becomes closer to that of an amorphous
solid [37]. After this, a second cooling stage is started during which all particles are coupled
to a drag force, proportional to their respective velocities. The proportionality factor of
this force is chosen to be constant and equal for all particles. As time proceeds, the system
loses energy due to these over-damped Langevin dynamics and visits progressively lower
energies. This represents the final step in the sample preparation process and is stopped as
soon as the system’s temperature reaches T = 10−4. As examined by a survey of dynamic
correlations, for the present model, this temperature corresponds to a quasi-athermal
limit [20] in the sense that all types of structural relaxation processes are frozen, and only
short time vibrational dynamics are present.

Next, two xy-layers, each with a thickness of three particle diameters are selected, one
at the bottom (i.e., containing particles, i, whose centers lie between −53 < zi < −50) and
one on the top (50 < zi < 53) of the simulation box. These layers serve as confining walls.
In addition to interactions with neighboring particles, each ‘wall particle’ is connected to a
lattice site via a harmonic spring. Lattice sites are generated by duplicating the positions of
wall particles. Thus, at t = 0, no force is exerted by a lattice site upon its corresponding
wall particle due to the zero distance between the two. A shear is imposed on the system by
moving (along the positive x-direction) all the lattice sites of the upper wall with a constant
velocity of Utop-wall =

1
2 (Lz − 6)ε̇xz = 50ε̇xz = 5× 10−3, where ε̇xz = 10−4 is the global

shear rate. Simultaneously, the lattice sites on the bottom are moved with the velocity
Ubottom-wall = −Utop-wall. Since each wall is connected to its corresponding lattice via
harmonic springs, it moves on average with the lattice velocity. The thus realized relative
motion of the upper and lower walls induces a shear deformation in the system.
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A technical note regarding the motion of walls is necessary here. If we impose a
velocity on the walls by moving all the wall atoms exactly with the same constant velocity,
wall particles would not have a thermal motion as there would be no fluctuations in their
velocities. However, since the goal is to impose a constant temperature to the walls, thermal
motion of wall atoms becomes important and cannot be left out [40–42].

The temperature of the two walls is chosen to be equal and is kept at a constant value
of T = 10−4 by applying the Nosé–Hoover thermostat [38,39]. Particles between the walls
obey Newtonian dynamics without any coupling to a thermostat. The temperature of
the bulk thus results from exchange of energy with the walls. This setup allows us to
address the effect of viscous heat generation due to the shear transformation events inside
the system. As will be shown below, the major part of heat production is concentrated
inside the SB, i.e, within a system spanning a narrow region, where the shear deformation
is localized.

All the simulations performed in this study were conducted using the massively
parallel molecular dynamics simulation software LAMMPS [43]. The 3D visualization and
the color coding was performed by the OVITO software [44].

4. Conclusions and Outlook

This work presents results of molecular dynamic simulations of a model glass (the
well-known Kob–Andersen binary Lennard–Jones mixture) on generation of viscous heat in
shear bands during mechanical deformation. As described in the introduction, this model
has been demonstrated to reproduce various features of bulk metallic glasses. Therefore,
the present study is relevant for a better understanding of plasticity and heat generation,
and the resulting consequences thereof on properties (e.g., ductility) of the material inside
shear bands.

For the sake of this study, shear bands have been stabilized by introducing two planar
walls with the same amorphous structure as the material itself. Using the thus designed
setup, simulations were performed under steady shear. It is shown that temperature inside
the sample first remains essentially constant in the early elastic deformation regime but
then starts to rise as soon as plastic deformation begins. A further analysis reveals that
this temperature increase is far stronger (roughly by a factor of five in our study) inside
the shear band as compared to the matrix outside. A temperature gradient thus forms
between the shear band and the outer matrix (defined as the region outside the shear band
excluding walls), which remains essentially undeformed. In view of the importance of
temperature for amorphous solids in general, and especially for mechanical properties of
bulk metallic glasses, the present findings call for additional studies to explore consequences
of this observation.

We also note that the largest temperature variations observed in our simulations were
roughly five percent of Tg and can probably not lead to a softening of mechanical properties
if shear banding occurs as cryogenic temperatures, i.e., at T far below Tg. At temperature
below but not too far from Tg, however, a rise in T by ∆T ≈ 0.05Tg may trigger relaxation
processes and lead to accelerated annealing.

New questions emerge from our studies, the most important of which is probably
related to ductility. An important issue here regards competing processes which occur
simultaneously upon mechanical deformation, e.g., inherent structural relaxation and
plastic rearrangements on the one hand and shear-driven processes which drive the system
out of equilibrium on the other hand. What is the outcome of these processes? Does the
material soften under steady deformation inside shear bands or does it undergo accelerated
physical aging and thus become more brittle due to elevated temperatures? What is the
role of structure and its spatial heterogeneity here? While the present study provides
direct numerical evidence for the significance of heat generation inside shear bands, these
questions clearly underline the need for future studies.
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