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▒ REVIEW ▒

Artificial intelligence (AI) denotes the intelligence presented 
by some artificial entities including computers and robots. While 
AI has only recently received such a large amount of attention, 
the idea of mechanical thinking can be found in the earliest 
myths and literature.1 In the modern era, efforts to model the 
logical thinking process have continued, and a conceptual machine 
that is capable of performing arbitrary logical computations was 
proposed by Turing in 1950.2 He believed that the ultimate 
form of AI would be indistinguishable from humans, and pro-
posed the Turing test as an evaluation method for the intelli-
gence level of machines; this test later faced a number of refuta-
tions, including the Chinese room argument in 1980.3 In early 
2000, Russell and Norvig4 suggested the concept of an intelli-
gent agent that can automatically plan and perform a series of 
actions to achieve a goal as a new form of AI, and recently this 
has been the major focus of AI research.

Several approaches have been taken in the history of AI re-
search.1,4,5 The first is the human brain simulation approach, in 
which the human brain is modeled as a network of artificial 
neurons that receive input signals, process them, and transmit 
new signals to succeeding neurons. The perceptron is one simple 
form of such an artificial neural network for recognizing patterns. 
Symbolic AI is another one that uses symbols and relations to 

represent human knowledge and uses logical rules to deduce new 
knowledge to solve intellectual problems. Expert systems are the 
major product of such an approach, and they have received con-
siderable attention from the industry. Another notable form of 
artificial neural network is the soft computing approach, includ-
ing fuzzy logic systems and evolutionary algorithms. This approach 
has worked well for problems where a sub-optimal, approxi-
mate solution is sufficient. The last approach is the statistical 
learning approach, which relies on statistical data analysis to 
gather inherent rules that are implicitly represented in raw data. 
In spite of its lack of explainability, the statistical learning approach 
is currently the dominant AI research methodology, backed by 
the success of deep learning.

Deep learning (DL) is a subfield of machine learning (ML) 
that is based on neural networks comprising several nested layers 
of neurons. ML, which can be regarded as an alias of statistical 
learning, is a method of creating a task-specific statistical model 
from a given dataset. It has been used successfully in several data 
mining and pattern recognition tasks, including loan default 
prediction and spam mail filtering.6,7 Typical ML tasks require 
domain-specific feature modeling to extract effective information 
from raw data with the knowledge of domain experts, followed 
by statistical modeling and learning steps. Linear and logistic 
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regression models, tree-based decision models, and support vector 
machines (SVM) are famous statistical models that are frequently 
involved in ML tasks. The major difference between DL and ML 
is that DL can be done in an end-to-end manner without the 
feature modeling steps, which tend to be tedious. In DL, appro-
priate feature models can also be learned from data into the form 
of convolution filters or multi-dimensional embedding vectors.

The success history of DL begins in the field of visual object 
recognition. In the ImageNet large-scale visual recognition 
challenge (ILSVRC) 2012, Krizhevsky et al.8 demonstrated the 
excellent performance of their convolutional neural network 
(CNN), which outperformed the traditional computer vision-
based approaches. In 2015, Google DeepMind published a paper 
about an AI that could learn a human-level control of several 
Atari 2600 games by trial and error,9 which inspired the AI 
research community with the idea of deep reinforcement learning. 
It was somewhat shocking when AlphaGo beat the professional 
Go player Lee Sedol by 4–1 in 2016 because the game of Go 
had been regarded as too complex to be well played by the 
computer for a long time. Moreover, AlphaGo Zero showed that 
it could beat the AlphaGo 2016 with a > 90% win rate without 
any prior human knowledge about the game of Go.10 Speech 
recognition is another major field of AI research. While several 
good features and methods had been devised to transform speech 
signals into text, Baidu Research presented Deep Speech, which 
showed that an end-to-end DL method could work very well in 
the speech recognition domain, obtaining a 16.0% word error 
rate, as compared to an 18.4% error rate for the previous state 
of the art technology.11 Automatic translation of text between 
different languages is one of the most difficult natural language 
processing tasks, where attention-based recurrent neural network 
(RNN) models have been successfully applied to get bilingual 
evaluation understudy (BLEU) scores of 25.9 and 26.3, respec-
tively, in English-to-German translation.12,13 The more complex 
task of visual question answering (VisualQA), where textual 
questions are answered based on a given image or video, has been 
pursued since its proposal in 2015.14 A recent study showed 
promising results, with accuracy near 62%, as compared to a 
human’s accuracy of 83%.15

CNN and RNN are the two most famous DL models for 
pattern recognition tasks, the former for images and the latter 
for sequential data like audio and text. Typical CNNs are com-
posed of several convolutional layers followed by a few fully 
connected layers and a task-specific output layer.16 High-perfor-
mance CNN models have more complicated structures that incor-
porate much more convolutional, pooling, and normalization 

layers; skip connections and residual connections; branching 
and merging, etc. An example of modern CNN architecture is 
shown in Fig. 1. The GoogLeNet is one such model that won 
the ILSVRC 2014 with a top-5 error rate of 6.67%.17 RNNs 
have a special ability to maintain their hidden state in their recur-
rent layers, which can be regarded as a summary of all their 
previous input elements. A typical recurrent layer is depicted in 
Fig. 2, where the input sequence is processed element-wise along 
with the current hidden state, updating the hidden state and pro-

ht = σh (U ∙ xt + V ∙ ht-1 +  bh)
yt = σy (W ∙ ht + by)

U W
h

V

x y

Fig. 2. A typical recurrent layer example. In receiving a new input xt 
at time t, hidden state ht is updated based on xt and the previous 
state ht-1 first, then output yt is generated based on ht. At training 
time, parameters like U, V, W, bh, and by are trained to accurately 
generate yt for every time t. 

Fig. 1. A simplified modern convolutional neural network (CNN) ar-
chitecture example. In contrast to the classic CNN comprising only 
a cascade of convolution layers and pooling layers followed by a 
few fully connected layers, this example has various other con-
cepts like branching from the max pooling layer to several (1 × 1, 3 × 

3, 5 × 5) convolution layers as well as the average pooling layer, 
merging by concatenation from two (1 × 1, 5 × 5) convolution layers 
and the average pooling layer, and residual addition of max pooling 
layer output to the output of its succeeding (3 × 3) convolution layer. 
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ducing the output for the current input element.18 Long short-
term memory (LSTM)19 units are a kind of recurrent neuron that 
has additional learnable gates to prevent itself from losing impor-
tant information on the input element that was given much earlier; 
LSTM units are a major component in modern RNN architectures.

The list of important terms and abbreviations appearing in this 
paper is given in Table 1.

HISTORY OF ARTIFICIAL INTELLIGENCE 
IN MEDICINE

Since the earliest stage of modern AI research, substantial efforts 
have been made in the medical domain. A script-based chatbot 
named ELIZA was proposed in 1966.20 ELIZA’s most famous 
script, DOCTOR, could interact with humans as a Rogerian 
psychotherapist. A biomedical expert system, MYCIN, presented 
in 1977, could analyze infectious symptoms to derive causal bac-
teria and drug treatment recommendations.21 Later, in 1992, the 
probabilistic reasoning-equipped PATHFINDER expert system 
was developed for hematopathology diagnosis, to deal with uncer-
tain biomedical knowledge efficiently.22,23

Before the era of DL, several ML methods have been used 
widely in the medical domain. Moreover, the invention of digital 
medical imaging such as digital X-ray imaging, computed to-
mography and magnetic resonance imaging enabled computerized 
image analysis, where AI achieved another success in the medical 
domain. In 1994, Vyborny and Giger24 reviewed the efforts to use 
ML algorithms featuring computer vision in several mammogra-
phy analysis tasks, including microcalcification detection, breast 
mass detection and differentiation of benign from malignant 
lesions. They demonstrated the efficacy of computer-aided detec-
tion (CAD) by comparing the performance of radiologists with 

CAD to that of radiologists only. Later, in 2001, Kononenko25 
overviewed the typical ML methods such as decision trees, Bayesian 
classifiers, neural networks, and k nearest neighbor (k-NN) search, 
then reviewed their use in medical diagnosis and proposed evalu-
ation criteria including performance, transparency, explainability 
and data resiliency. In 2003, however, Baker et al.26 pointed out 
that the performance of commercial CAD systems was still below 
the expectation (max case sensitivity 49%) in detecting archi-
tectural distortion of breast mammography. 

After the success of deep CNN in image classification, a wide 
range of attempts were made to apply DL to medicine. A notable 
success was the work of Gulshan et al.27 in 2016, where retinal 
fundus images were analyzed by a CNN-based DL model to 
detect diabetic retinopathy lesions, achieving an area under the 
receiver operating characteristic curve (AUC) of 0.991, sensitivity 
of 97.5% and specificity of 93.4% in the high sensitivity setting, 
measured on the EyePACS-1 data set. In 2017, Litjens et al.28 
reviewed major DL methods suitable for medical image analysis 
and summarized more than 300 contributions in the neuro, reti-
nal, pulmonary, breast, cardiac, abdominal, and musculoskeletal 
areas as well as in the digital pathology domain; contributions 
were well categorized according to their inherent type of image 
analysis: classification, detection, segmentation, registration, etc. 
Kohli et al.29 presented another review on the application of ML 
to radiology research and practice, where transfer learning and 
data augmentation were emphasized as a viable solution to data-
limited situations. Shaikhina and Khovanova30 proposed another 
solution for a similar situation; their proposed solution incorpo-
rates multiple runs and the surrogate data test, which exploits sta-
tistical tools to guide the trained ML model having better model 
parameters and not being overfitted to a small training data set.

Genomics and molecular biology have been strongly connected 

Table 1. List of terms and abbreviations appearing in this paper

Term Abbreviation Explanation

Artificial intelligence AI Intelligence represented by artificial things
Machine learning ML Data-driven statistical learning approach to AI
Deep learning DL Deep neural network based ML
Convolutional neural network CNN Neural network suitable for data with locality, e.g. image
Recurrent neural network RNN Neural network suitable for data with order dependency, e.g. sentence
Long short-term memory LSTM Recurrent neuron suitable for learning long-term dependency
Support vector machine SVM ML method that separates with regard to the trained hyperplane
k-nearest neighbor (search) k-NN ML method that classifies based on the classes of k similar training data
Conditional random field CRF ML method suitable for data with spatial/temporal dependency
Markov decision process MDP Modeling framework for a series of decisions and resulting outcomes
Multiple instance learning MIL ML approach suitable for labeled sets (whole slides) of unlabeled instances (lesions)
Region-of-interest ROI Image region containing things of predefined interest, e.g. nuclei, stroma, etc.
Area under receiver operating 

characteristic curve
AUC Performance measure based on the area under the receiver operating characteristic curve, varying from 0.5 

(lowest) to 1.0 (highest)
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to the medical domain since genome sequencing became real. 
Next-generation sequencing (NGS) technology allows a whole 
genome sequence to be translated into text composed of ATCG, 
so that necessary computational analysis can be done for disease 
diagnosis and therapeutic decision making. In 2016, Angerm-
ueller et al.31 reviewed DL methods and their application to genomic 
and biological problems such as molecular trait prediction, muta-
tion effect prediction, and cellular image analysis. They thoroughly 
reviewed the whole process used to apply DL to their problems, 
from data acquisition and preparation to overfit avoidance and 
hyperparameter optimization. Torkamani et al.32 presented a review 
of high-definition medicine, which is applied to personalized 
healthcare by using several kinds of big data, including DNA 
sequences, physiological and environmental monitoring data, 
behavioral tracking data and advanced imaging data. Surely, DL 
techniques can help in analyzing those big data datasets in parallel, 
to provide exact diagnosis and personalized treatment. Another 
review was done in 2018 by Wainberg et al.33 on the use of DL in 
various biomedical domains, including quantitative structure-
activity relationship modeling for drug discovery and identifica-
tion of pathogenic variants in genome sequences. They re-empha-
sized the importance of the performance, transparency, model 
interpretability and explainability of DL methods, in earning 
the trust of stakeholders gaining adoption. Besides these reviews, 
there exist two notable contributions for genetic variants. Xiong 
et al.34 presented a computational model for gene splicing, which 
can predict the ratio of transcripts with the central exon spliced in, 
within the whole set of transcripts spliced from any given sequence 
containing an exon triplet. Recently an award-winning deep CNN-
based variant caller named DeepVariant was announced,35 which 
is able to call genetic variation in aligned NGS read data by 
learning on images created upon the read pileups around putative 
variant sites.

Another type of medical data to be analyzed is electronic health 
records (EHR). Rajkomar et al.36 recently published their work 
building a DL model that predicts multiple medical events, 
including in-hospital mortality, unplanned readmission, and 
prolonged length of stay, entirely from raw EHR records based 
on the Fast Healthcare Interoperability Resources format. Their 
model could accurately predict mortality events, with an AUC 
of 0.90 at patients’ admission, and even with an AUC of 0.87 
at 24 hours before admission to the hospital. EHR data can be 
used in the prediction of other types of events, e.g., outcome of a 
patient biopsy, which could be predicted with AUC 0.69 in the 
work of Fernandes et al.37

Besides the analytical diagnostic tasks, AI has been tried in 

other areas, for example, an intelligent assistant named Secretary-
Mimicking Artificial Intelligence that helps in the execution of 
a pathology workflow was presented by Ye.38 Treatment decision is 
another important factor in patient healthcare, from both prog-
nostic and financial perspectives. Markov decision analysis is an 
effective tool in such situations, which was used to solve the car-
diological decision problem in the work presented by Beck et al.39 
Schaefer et al.40 reviewed the medical treatment modeling using 
the Markov decision process, which is a modeling tool that fits 
well in the optimization of sequential decision making and is 
strongly related to reinforcement learning.41

ARTIFICIAL INTELLIGENCE APPLICATION 
IN PATHOLOGY

Microscopic morphology remains the gold standard in diag-
nostic pathology, but the main limitation to morphologic diag-
nosis is diagnostic variability in bearing error among pathologists. 
The Gleason grading system is one of the most important prog-
nostic factors in prostate cancer. However, significant interobserver 
variability has been reported when pathologists have used the 
Gleason grading system.42,43 In order to get a consistent and 
possibly more accurate diagnosis, it is natural to introduce algo-
rithmic intelligence in the pathology domain, at least in the 
morphological analysis of tissues and cells. With the help of dig-
ital pathology equipment varying from microscopic cameras to 
whole slide imaging scanners, morphology-based automated 
pathologic diagnosis has become a reality. In this review, we focus 
on morphology-based pathology: diagnosis and prognosis based 
on the qualitative and quantitative assessment of pathology images. 
Typical digital image analysis tasks in diagnostic pathology in-
volve segmentation, detection, and classification, as well as 
quantification and grading.44 We briefly introduce typical tech-
niques used for AI in digital pathology and a few notable research 
studies per disease. The list of studies reviewed in this paper is 
given in Table 2.

TYPICAL TECHNIQUES

Digital pathology images used in AI are mostly scanned from 
H&E stained slides. Pathology specimens undergo multiple pro-
cesses, including formalin fixation, grossing, paraffin embed-
ding, tissue sectioning, and staining. Each step of the process and 
the different devices and software used with the digital imaging 
scanners can affect aspects of the quality of the digital images, 
such as color, brightness, contrast, and scale. For the best results, 
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it is strongly recommended to alleviate the effect of these varia-
tions before using the images in automated analysis work.45 
Normalization is one of the techniques used to reduce such vari-
ations. Simple linear range normalization based on the equation 
[vnew = (vold-a)/fscale + b] is generally used for the pixel values in 
grayscale images, or for each channel of color images.47,60 Scale 
normalization has not been reported in related works, as they all 
have used a single image acquisition device, e.g., a certain micro-
scopic camera or digital slide scanner. When multiple image 
acquisition devices are used, scale normalization is of concern, 
since images acquired from different devices can have different 
pixel sizes, even at the same magnification level.

Detecting the region-of-interest (ROI) has been done by com-
bining several computer vision operations, such as color space 
conversion, image blurring, sharpening, edge detection, mor-
phological transformation, pixel value quantization, clustering, 
and thresholding.67 Color space conversion is often done before 
pixel clustering or quantization, to separate chromatic informa-
tion and intensity information.53 Another type of color space 
conversion targets direct separation of color channels for hema-
toxylin (H), eosin (E) and diaminobenzidine from stained tissue 
images to effectively obtain nuclei area.57,59,66,68 Thresholding 
based on a certain fixed value leads to low-quality results when 
there are variations in luminance in the input images. Adaptive 
thresholding methods like hysteresis thresholding and Otsu’s 
method can generate better thresholding results.47,53,59,69 Recently, 
pixel-wise or patch-wise classifiers based on CNN have been used 
widely in ROI detection,44,49-51,54-56,58,65 where a deep CNN is 
trained to classify the type of target pixel or patch centered on the 
larger input image patch in a sliding window manner. Semantic 
segmentation CNN is another recent trend for this task,65,70,71 
which can detect multiple ROIs in a given image without sliding 
window operation, resulting in much faster speed.

In the development of a CNN-based automated image analy-
sis, data-limited situations are common in the medical domain, 
because it is very costly and time-consuming to build a large 
amount of annotated, high-quality data.45 As previously men-
tioned, transfer learning and data augmentation should be incor-
porated to get a better result. In transfer learning, convolutional 
layer parameters of a CNN, pre-trained with a well-known dataset 
like ImageNet, are imported into the target CNN as layer initial-
ization, while later layers like fully connected layers or deconvo-
lutional layers are initialized randomly.62,70,71 Additional training 
steps can update all of the layer parameters, including the imported 
ones, or only the parameters of the layers that were randomly 
initialized. With sufficient data, building a model without transfer 

learning is reported to give better performance.54

A common strategy of image data augmentation is, for the 
given image, applying various transformations that do not alter 
the essential characteristics; such transformations include rotation 
(90°, 180°, and 270°), flipping (horizontal/vertical), resizing, 
random amounts of translation, blurring, sharpening, adding jit-
ters in color and/or luminance, contrasting histogram equalization, 
etc.47,51,52,56,60-63 Another type of augmentation relates to the patch 
generation strategy; applying large medical images directly to the 
CNN is impractical. From a large pathological image, with a size 
between 1024 × 1024 (camera) and > 104 × 104 (scanner) pixels, 
smaller patches with sizes between 32 × 32 and 512 × 512 pixels 
are retrieved for use in training and inference of CNNs. Instead 
of using the pre-generated set of image patches through the whole 
training process, resampling patches during each training epoch 
can introduce more variance in training data to reduce the chance 
of overfitting.60

After the patch-level CNN is trained, another ML model is 
often developed for the whole image level decision. In this case, a 
patch-level decision is made for every single patch in the training 
images to generate heatmap-like output, from which several 
features are extracted via conventional image analysis methods. 
Then, collected feature values for the training images are fed 
into the target image level ML model. An example workflow for 
developing and using this two-stage pathology AI is depicted in 
Fig. 3.

EXAMPLES OF PATHOLOGY ARTIFICIAL 
INTELLIGENCE 

CNN-based breast cancer diagnosis was tried with fine needle 
aspiration (FNA) cytology images,46 optical coherence tomography 
(OCT) images,48 and H&E stained tissue images,49 each with 
varying numbers of data points and model structures. A total of 
175 cytology images captured by a microscopic camera at 40 ×  
magnification level were manually split into 918 ROIs, 256 × 256 
pixels in size, where each ROI had multiple cells.46 A CNN was 
trained to determine the malignancy of a given ROI, and the cyto-
logical image was classified as malignant when > 30% of the ROIs 
in the image were malignant. The reported accuracy was 89.7%, 
which was far inferior to the 99.4% accuracy of a random forest 
classifier with 14 hand-crafted features. In order to attempt an auto-
mated intraoperative margin assessment, 4,921 frame images 
from the frozen section OCT were used, from which patches 64 × 

64 pixels in size were extracted, resized to 32 × 32 pixels, and used 
for training and evaluation.48 Patch-level CNN performance was 
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measured, giving an accuracy of 95.0% and AUC of 0.984 in the 
best setting. In another study, 2,387 H&E stained breast biopsies 
were scanned at a magnification of 20 ×.49 Multiple CNNs were 
used in this study: the first CNN classified each image pixel as 
fat, stroma, or epithelium; the second CNN predicted whether 
each stromal pixel was associated with a cancer; and the third 
CNN determined the whole-slide-level malignancy. The reported 
slide level AUC was 0.962. A notable result is that, while the CNNs 
were trained with stromal tissues in benign slides and invasive 
cancer slides only, the predicted cancer association probability of 
the stroma near the ductal carcinoma in situ (DCIS) lesion properly 
related to the severity of DCIS. CNN-based lymph node metastasis 
detection was also tried with a different model and dataset.47,50 
Conditional random field was adopted on top of convolutional 
layers in order to regulate the metastasis prediction.47 From the 
whole slide images (WSIs) in the CAMELYON16 dataset,72 
benign and tumor image patches 768 × 768 pixels in size were 
sampled to train and validate the model, giving patch-level accu-
racy of 93.8% after incorporating data augmentation methods. In 

another study, 271 WSIs scanned at a magnification of 20 × were 
used in developing a CNN-based model for detecting micro- or 
macro-metastasis-free slides.50 Region-level annotations on train-
ing images were utilized. Slide-level metastasis detection was 
performed after metastasis probability map generation by patch-
level CNN, incorporating probability thresholding (> 0.3) and 
connected component analysis to remove small lesions (< 0.02 
mm diameter), resulting in a detection AUC of 0.90. Mitosis 
detection was tried with a CNN that decides whether the center 
of the given image is mitotic or not,51 trained and evaluated with 
50 images from five biopsy slides containing about 300 mitoses 
total, adopting data augmentation techniques including patch 
rotation and flipping. In the evaluation, a mitosis probability map 
was created for the given image, and pixels with locally maximal 
probabilities were considered as mitotic, resulting in detection F1-
score 0.782.

Automatic lung cancer subtype determination was tried with 
FNA cytology images and H&E stained WSIs.52,54 A total of 298 
images from 76 cases acquired using a microscopic camera at 

Fig. 3.  An example workflow for two-stage pathology artificial intelligence. Training phase: from the collected pathology images, a proper 
amount of annotation data is constructed (a). Image patch sets of balanced size are used in the training of patch-level convolutional neural 
network (CNN). After the patch-level CNN is trained sufficiently, heatmaps are generated for another set of pathology images using that 
CNN, from where the features are extracted for the decision forest like image-level machine learning (ML) model training (b). Inference phase: 
patch-level CNN runs on every single patch in the input pathology to generate a heatmap (first stage). Features are then extracted as in the 
training phase, and fed into the image-level ML model to determine the image-level result (second stage).

…, 
Cancer {
  area: 1.0, length: 1.5,
  Pmedian: 0.8, ratio: 0.6
},
Benign {
  area: 10-7, length: 10-4,
  Pmedian: 0.15, ratio: 10-8

},
…

Training phase

Inference phase

{
  area: 0.4, length: 0.3,
  Pmedian: 0.7, ratio: 0.27
}

tumor

train

train

tumor

benign

(a)

(b)
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40 × magnification level were utilized in developing a CNN re-
ceiving 256 × 256 pixel images as input; the dataset comprised 
82 adenocarcinomas, 125 squamous cell carcinomas, and 91 small 
cell carcinomas.52 Data augmentation techniques like rotation, 
flipping, and Gaussian filtering were adopted to enhance the 
classification accuracy from 62.1% to 71.1%. A total of 1,635 
WSIs from the The Cancer Genome Atlas (TCGA)73 dataset were 
used in detection of lung cancer type with CNN.54 Each input 
patch (512 × 512 pixels) was classified as adenocarcinoma, squa-
mous cell carcinoma or benign, and then the averaged probability 
of non-benign patches was used in the slide-level decision, result-
ing in slide level classification AUC of 0.97, which is much supe-
rior to the previous SVM-based approach.53 Moreover, by using 
the multi-task transfer learning approach, mutations of six genes 
including KRAS, EGFR, and STK11 were independently able to 
be determined on the input WSI of lung adenocarcinoma patches. 
The mutation detection had an AUC of 0.86 for STK11 and an 
AUC of 0.83 for EGFR.

Prostate cancer diagnosis has been one of the most active fields 
in adopting DL because of its large dependence on tissue mor-
phology. Prostatic tissues from various sources have been used 
in malignancy and severity decisions.50,55-58 In one study, 225 
prostate needle biopsy slides were scanned at 40 × magnification, 
and malignant regions were annotated in developing a cancer 
detector.50 A CNN-based patch-level cancer detection was per-
formed for every overlapping patch in a slide to generate a prob-
ability map, and a cumulative probability histogram was created 
and analyzed in slide-level malignancy determination (AUC 
0.99). In another study, 12,160 needle biopsy images were uti-
lized in developing a CNN-based slide-level malignancy detec-
tor.55 To train a patch-classifying CNN with no patch/region-
level manual annotation, multiple instance learning was used; 
with a large number of WSIs (> 8,000), the result was useful (AUC 
0.98). A total of 886 tissue microarray (TMA) samples were 
used in a trial of automated Gleason scoring,56 where 508 TMA 
images for training were manually segmented into combinations 
of benign, Gleason pattern 3, 4, and 5; 133 TMA images were 
used for tuning and 245 images were used for validation. The 
TMA level score was determined by the two most dominant 
patterns measured from the per-pattern probability maps gen-
erated by a trained patch-level CNN classifier. In grading the 
validation set, Cohen’s kappa between two pathologists was 
0.71, while those between the model and each of the two pa-
thologists were 0.75 and 0.71. 342 cases from TCGA, teaching 
hospital and medical lab were utilized in training automated 
Gleason scoring system,58 where CNN and k-NN classifier were 

ensembled. A total of 912 slide images were annotated with the 
region level to be used in training CNN to generate a pattern map 
for a given slide image; 1,159 slides were used to train the 
k-NN classifier that determines the Gleason group for the given 
pattern map statistics. The reported grading accuracy measured 
on 331 slides was 0.70, while the average accuracy of 29 general 
pathologists was 0.61, which is superior to the previous TCGA-
based result that showed 75% accuracy in discriminating Glea-
son score 3 + 4 and 4 + 3.57

An automated determination of brain cancer severity was tried 
with TCGA brain cancer data.59 A cascade of CNNs was used: 
an initial CNN trained with 22 WSIs for discriminating between 
glioblastoma (GBM) and low-grade glioma (LGG), and a sec-
ondary CNN trained with an additional 22 WSIs for discrimi-
nating between LGG grades 2 and 3. Each H&E-stained RGB 
color image was transformed into an H-stained channel and an 
E-stained channel, and only the H-stained channel was used for 
further analysis. The first CNN showed GBM/LGG discrimi-
nation accuracy of 96%, but the LGG grade discrimination was 
not so successful (71%). Survival analysis using CNN was also 
tried.60 Again, 1,061 WSIs from TCGA dataset were used. For 
each training epoch, 256 × 256 pixel patches were sampled from 
manually identified, 1,024 × 1,024 pixel ROIs. At diagnosis, 
ROI-wise risk was determined as the median risk of nine patches 
sampled from the ROI, and the sample-level risk was determined 
as the second highest risk among ROI risks. The measured c-
index of this kind of survival analysis was 0.75, which was elevated 
to 0.80 by modifying the CNN to receive the mutation informa-
tion at its fully connected layer.

Ovarian cancer subtype classification based on CNN was tried.61 
7,392 images were generated by splitting and cropping the 
original images acquired by the microscopic camera at 40 ×  
magnification level. Rotation and image quality enhancement 
were used in the data augmentation phase, which enhanced the 
classification accuracy from 72.8% to 78.2%. Cervical cancer 
diagnosis on cytological images was also tried.62 Without cell-wise 
segmentation, nuclei-centered cell patches were sampled from the 
original cytology image, followed by augmentation operations 
like rotation and translation. Convolutional layer parameters 
that were trained by using ImageNet data were transferred to 
actual CNN. Herlev and HEMLBC datasets were used in eval-
uation, giving 98.3% and 98.6% accuracy, respectively, in five-
fold cross-validation. Red blood cell (RBC) classification is crucial 
in sickle cell disease diagnosis. A CNN-based automatic RBC 
classification was tried,63 where 7,206 cell patches were generated 
from 434 microscopic images and used for training and testing of 
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the classifier. Rotation and flipping were used to augment training 
data. Five-fold cross-validation showed an average accuracy of 
89.3% in five-class coarse classification, and 87.5% in eight-class 
refined classification. A total of 469 TMA cores from the gastric 
cancer patients were used in a CNN-based survival analysis.64 
CD8 and Ki67 immunostained images were acquired and fed 
into separate patch-wise risk-predicting CNNs for each stain. From 
the differential analysis between the low-risk group and the high-
risk group, it was claimed that the density of CD8 cells was largely 
related to the risk level.

FUTURE PROSPECTS

We have provided an overview of various medical applica-
tions of AI technology, especially in pathology. It is encouraging 
that the accuracy of automated morphological analyses has im-
proved due to DL technology. The pathologic field in AI is expand-
ing to disease severity assessment and prognosis prediction. 
Although most AI research in pathology is still focused on cancer 
detection and the grading of tumors, pathological diagnosis is 
not simply a morphological diagnosis, but is a complex process 
of evaluation and judgment of various types of clinical data that deal 
with various organs and diseases. A large amount of data, including 
genetic data, clinical data, and digital images, is needed to develop 
AI that covers the range of clinical situations. There are a num-
ber of public medical databases, including TCGA, and a number 
of studies have been done based on those databases. They provide 
a good starting point in researching and developing a medical 
AI, but it requires much more high-quality data; e.g., detailed 
annotations on a large number of pathology images, created and 
validated by several experienced pathologists, are necessary to 
develop a pathology-image-analyzing AI that is comparable to 
human pathologists.

There are difficulties in constructing such high-quality data in 
reality, largely due to the protection of privacy, proprietary tech-
niques, and the lack of funding and pathologists to participate in 
the annotation process. To overcome this data insufficiency, as 
we have mentioned earlier, several techniques have been introduced, 
such as transfer learning and data augmentation. Still, these tech-
niques are sub-optimal; transfer learning cannot guarantee the 
optimal convolutional filters specific for the task, and data augmen-
tation cannot deal with the unseen data and patterns. The ultimate 
solution is to construct a large amount of thoroughly labeled 
and annotated medical data, through the cooperation of multiple 
hospitals and medical laboratories. To accelerate the construc-
tion of such a dataset, efficient tools for labeling and annotating 

are required, which can be assisted by another type of AI.45

Eventually, there will be a medical AI of the prognostic pre-
diction model, combining clinical data, genetic data, and morphol-
ogy. Also, a new grading system applicable to several tumors 
can be created by an AI model that has learned from the patient’s 
prognosis combined with a number of variables including mor-
phology, treatment modality, and tumor markers, etc. This will 
also help to overcome the poor reproducibility and the variety of 
current grading and staging results among pathologists, leading 
to much better clinical outcomes for patients.
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