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Abstract

Annotated genome sequences provide valuable insight into the functional capabilities of members of microbial communities.

Nevertheless, most studies on the microbiome in animal guts use metagenomic data, hampering the assignment of genes to specific

microbial taxa.Here,wemakeuseof the readily culturablebacterial communities in thegutof the fruitflyDrosophilamelanogaster to

obtain draft genome sequences for 96 isolates from wild flies. These include 81 new de novo assembled genomes, assigned to three

orders (Enterobacterales, Lactobacillales,andRhodospirillales)with80%ofstrains identifiedtospecies levelusingaveragenucleotide

identityandphylogenomic reconstruction.Basedonannotationsby theRASTpipeline, among-isolatevariation inmetabolic function

partitioned strongly by bacterial order, particularly by amino acid metabolism (Rhodospirillales), fermentation, and nucleotide me-

tabolism (Lactobacillales) and arginine, urea, and polyamine metabolism (Enterobacterales). Seven bacterial species, comprising 2–3

species ineachorder,werewell-representedamongthe isolatesand included�5strains,permittinganalysisofmetabolic functions in

the accessorygenome (i.e., genesnot present inevery strain).Overall, themetabolic function in theaccessorygenomepartitionedby

bacterial order. Two species, Gluconobacter cerinus (Rhodospirillales) and Lactiplantibacillus plantarum (Lactobacillales) had large

accessory genomes, and metabolic functions were dominated by amino acid metabolism (G. cerinus) and carbohydrate metabolism

(La.plantarum). Thepatternsofvariation inmetaboliccapabilitiesatmultiplephylogeneticscalesprovidethebasis for futurestudiesof

theecological andevolutionaryprocesses shaping thediversityofmicroorganismsassociatedwithnatural populationsofDrosophila.

Key words: Rhodospirillales, Lactobacillales, Enterobacterales, functional redundancy, bacterial metabolism, comparative

genomics.

Introduction

Animal gut microbiomes are complex assemblages of micro-

organisms which mediate diverse functions that impact host

physiology, behavior, and fitness (Nicholson et al. 2012;

Sommer and B€ackhed 2013; Huang et al. 2015; Rolhion

and Chassaing 2016; Thaiss et al. 2016; Read and Holmes

2017; Qiao et al. 2019; Turkiewicz et al. 2019). Most inter-

actions between the microbiome and the animal host are
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based on the metabolic capabilities of microbiome members,

with traits ranging from degradation and fermentation of

host-inaccessible substrates to synthesis of key nutrients for

the host, detoxification of harmful dietary constituents and

recycling of metabolic waste products, and effects on host

signaling pathways (Hooper et al. 2002; Engel and Moran

2013; Ankrah and Douglas 2018). Investigation of the rela-

tionship between traits and taxonomic identity of gut micro-

organisms has shown that many metabolic traits are

functionally redundant and can be shared by closely and dis-

tantly related microbiome members (Heintz-Buschart and

Wilmes 2018; Louca et al. 2018). This finding is largely based

on metagenomic studies, where the taxonomic composition

of the microbiome is uncontrolled and variable (Huttenhower

et al. 2012; Lozupone et al. 2012).

Functional redundancy can ensure sustained function (also

known as ecosystem resilience) of the gut microbiome dur-

ing perturbations that reduce the abundance or function of

specific taxa and alter the overall microbiome composition

(Allison and Martiny 2008; Heintz-Buschart and Wilmes

2018). Evolutionary changes, which can occur within ecolog-

ical timeframes, can also affect the relationship between tax-

onomy and function. In particular, phylogenetically divergent

taxa may share a metabolic trait by gain of function through

horizontal gene transfer (HGT), and closely-related taxa may

differ in functional traits by differential gene deletions and by

functional divergence of a recently duplicated gene (Louca et

al. 2018). Two examples illustrate these processes. The first is

the bile salt hydrolase gene, which is involved in lipid homeo-

stasis and antimicrobial effects. This gene is widespread

across bacterial taxa in the human microbiome (most preva-

lent among the Firmicutes) with evidence of HGT events

among different lactobacilli and Listeria monocytogenes

(Jones et al. 2008; Kumar et al. 2012; Chand et al. 2017).

Secondly, in the honey bee gut microbiome, the distribution

of a glucoside hydrolase gene family (genes involved in deg-

radation of hemicellulose in pollen) in Bifidobacterium spp. is

the result of gene duplication and deletion events (Zheng et

al. 2019).

The apparent ubiquity of functional redundancy, however,

is open to question. Functional composition analyses often

rely on broad metabolic annotations that can encompass

multiple pathways (Langille 2018). These methods can

fail to detect biologically important differences in metabolic

function of gene families, as demonstrated, for example, in

Proteobacteria of the human gut microbiome (Bradley and

Pollard 2017). Compounding these problems, within-species

variation in metabolic function can be widespread, such that

metabolic traits important to the host are displayed by only a

subset of strains or are mediated by pathways distributed

across two or more different strains (Douglas 2020). For ex-

ample, Bifidobacterium longum, a member of the micro-

biome of the human infant, has a large accessory genome

with variable incidence of genes involved in transport and

degradation of human milk oligosaccharides, implicating

some, but not all, strains of this species as important to hu-

man milk metabolism (Vatanen et al. 2019). Intraspecific var-

iation requires identification of not only the pangenome (i.e.,

total genetic capabilities) of a species, but also how the func-

tional traits are distributed across different strains (Tettelin et

al. 2005; Brockhurst et al. 2019; Van Rossum et al. 2020).

The goal of this study was to investigate how primary me-

tabolism functions of a gut microbiome map onto bacterial

phylogeny. We used the gut microbiome of Drosophila mel-

anogaster for this analysis because, unlike the microbiome of

many animals, most of the Drosophila-associated bacteria are

readily culturable (Douglas 2019). Relative to metagenome-

assembled genomes, genome sequences of the individual

bacterial isolates enable higher quality assembly and increased

resolution of phylogenomic patterns (Van Rossum et al.

2020). More generally, Drosophila is a fast-emerging system

to investigate ecological and evolutionary questions regarding

animal-associated microbiomes (Broderick and Lemaitre

2012; Erkosar et al. 2013; Wong et al. 2016; Douglas

2019) and there are indications that, as for the mammalian

gut microbiome, the Drosophila metagenome displays incon-

gruence between functional traits and taxonomic composi-

tion (Newell et al. 2014; Petkau et al. 2016; Adair et al. 2018;

Consuegra et al. 2020; Kang and Douglas 2020). However,

the relationship between taxonomy and distribution of traits

has not been robustly tested.

For our analysis, we focused on bacterial taxa isolated from

natural populations of Drosophila, which are associated with

rotting fruits (Markow 2015). The gut microbiome of wild

Drosophila is dominated by members of the bacterial orders

Enterobacterales, Lactobacillales, and Rhodospirillales, al-

though the relative abundance of the different taxa varies

among individuals and collections (Chandler et al. 2011;

Adair et al. 2018; Walters et al. 2020; Wang et al. 2020).

Long-term laboratory cultures of Drosophila were not used

because their gut microbiome is of low diversity (Cox and

Gilmore 2007; Staubach et al. 2013; Wong et al. 2013;

Obadia et al. 2018) and can be functionally different from

wild populations (Winans et al. 2017; Bost et al. 2018). The

great majority of published studies on the genome sequences

of Drosophila gut microorganisms have concerned bacterial

taxa derived from laboratory lines (Broderick and Lemaitre

2012; Matos and Leulier 2014) with few sequences available

from field isolates (table 1). Therefore, this study was initiated

by the isolation of bacteria from field-collected Drosophila. In

total, we isolated and sequenced the genomes of 81 bacterial

strains associated with wild Drosophila. We performed com-

parisons of metabolic traits among all field-isolated strains,

and then examined the metabolic pangenomes of prevalent

species to assess the scale of within-species variation. Within

this panel of bacteria, the three bacterial orders were strongly

differentiated by primary metabolic functions, and a subset of

species also displayed strain-level variation in metabolism-
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Table 1

Bacterial Strains Used in Comparative Genomics Analyses

Order Family Genus Species (Strain ID) No. Strains Sequenced

(no. flies)

Publicly Available

Strains

Enterobacterales Enterobacteriaceae Citrobacter sp. (C) 1 (1)

Enterobacter asburiae (Ea) 1 (1)

ludwigii (El) 1 (1)

mori (Em) 1 (1)

sp. (E) 1 (1)

Klebsiella michiganensis (Km) 1 (1)

variicola (Kv) 1 (1)

Erwiniaceae Pantoea dispersa (PAd) 2 (1)

sp. (PA) 1 (1)

Tatumella sp. #1 (T) 6 (6)

sp. #2 (T) 1 (1)

Morganellaceae Providencia alcalifaciens (PRa) 1b

burhodogranariea (PRb) 1b

rettgeri (PRr) 4 (4) 1b

sneebia (PRs) 1b

sp. (PR) 3 (3)

Yersiniaceae Nissabacter archeti (Na) 1 (1)

Serratia rubidaea (Sr) 1 (1)

Lactobacillales Lactobacillaceae Lacticaseibacillusa paracasei (LApa) 1 (1) 1c

Lactiplantibacillusa plantarum (LApl) 5 (5) 1d

Leuconostoc citreum (LEc) 1e

mesenteroides (LEm) 1 (1)

pseudomesenteroides (LEp) 1 (1)

suionicum (LEs) 1 (1)

Levilactobacillusa brevis (LAb) 5 (5)

Weissella cibaria (Wc) 1f

minor (Wm) 1 (1)

Streptococcaceae Lactococcus lactis (Ll) 1g

Rhodospirillales Acetobacteraceae Acetobacter cibinongensis (Ac) 1h

indonesiensis (Ai) 1h

okinawensis (Aok) 2 (1)

orientalis (Aor) 2h

persici (Ap) 3 (2)

thailandicus (Ath) 4 (4) 1h

tropicalis (Atr) 1h

Gluconobacter albidus (Ga) 1 (1)

cerinus (G8c) 13 (5)

japonicus (Gj) 1 (1)

kondonii (Gk) 6 (5)

sp. #1 (G) 3 (2)

sp. #2 (G) 1 (1)

sphaericus (Gs) 3 (2)

wancherniae (Gw) 3 (1)

NOTE.—Prevalent species (detected in four or more flies and represented by >4 strains in our data set) used for pangenome analyses are in bold.
aGenus formally known as Lactobacillus.
bGalac and Lazzaro (2012).
cHammer et al. (2017).
dPetkau et al. (2016).
eWright et al. (2017).
fRicks et al. (2017).
gChaston et al. (2014).
hWinans et al. (2017).
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related genes. The taxonomically variable traits include func-

tions likely to be adaptive for utilization of the sugar-rich rot-

ting fruit environment and are predicted to influence

Drosophila physiology and performance.

Results

Sequencing and Characterization of Bacterial Genomes

We assessed whether primary metabolism functions found in

gut bacterial microbiome members of wild Drosophila can be

mapped onto bacterial taxonomy. First, we characterized the

genomic features of the strains from each bacterial order.

Given that few bacterial species associated with wild

Drosophila have been isolated and sequenced previously,

we collected and sequenced 81 newly isolated strains that

are members of the three dominant bacterial orders (i.e.,

Enterobacterales, Lactobacillales, and Rhodospirillales) found

within the fly gut to complement the 15 genomes currently

available (table 1 and supplementary table S1, Supplementary

Material online). Genome features (genome size, number of

coding sequences [CDS], and GC content) of all newly se-

quenced taxa (supplementary table S1A, Supplementary

Material online) were similar to publicly available species.

The estimated genome sizes of the strains sequenced ranged

from 1.8 to 5.8 Mb with 1,879–5,983 CDS and GC content of

37–60% for the 96 Drosophila-associated strains. Average

coverage (i.e., sequence depth) of genomes ranged from

53� to 1,390� (supplementary table S1A and data set S1,

Supplementary Material online). The number of metabolic

functions per genome annotated by RAST (i.e., RAST role or

encoded gene function) ranged from 286 to 968 (supplemen-

tary data set S1, Supplementary Material online).

Comparisons of genomic features indicated that all measures

significantly differed by bacterial order (fig. 1A–D). In addition,

phylogenetic signal was assessed among the 96 Drosophila-

associated strains to determine whether genome character-

istics were shared among closely related taxa. Using two com-

plementary methods, 1) Pagel’s k and 2) patristic distance

(based on phylogenomic analysis) as a covariate in ANOVA

and logistic regression analyses, all four genomic features

scored had statistically significant results for both tests (fig.

1A–D), indicating that closely related taxa tend to have similar

genome characteristics.

The taxonomy of the newly isolated bacterial strains was

characterized by two methods: genome comparisons of av-

erage nucleotide identity (ANI) to genomes of type specimens,

and BlastN search of genome extracted 16S rRNA gene

against the nonredundant NCBI database. Based on ANI

scores, 80% of the strains were identified to the species level

(supplementary table S1A, Supplementary Material online).

The remainder of the strains was identified to the genus level

using 16S rRNA gene sequence where no close ANI match

was available (supplementary table S1A, Supplementary

Material online). In addition, a previously sequenced genome

Acetobacter sp. DmW-043 (Winans et al. 2017) was identified

as Acetobacter thailandicus (98.9% ANI to A. thailandicus

LMG 30826, accession: GCA_011516655, which was not

available at the time of publishing this genome sequence).

A phylogenomic analysis of 52 single-copy orthologs sup-

ported the ANI species boundaries with strong bootstrap

node support (generally >95%, although some of the

Rhodospirillales species had node support >70%; fig. 1E–G

and supplementary fig. S1, Supplementary Material online).

All species and genera formed monophyletic clades. In addi-

tion, the formerly paraphyletic genus Lactobacillus, which

was recently reclassified into 25 different genera, matched

the results from larger phylogenomic analyses of this group

with Leuconostoc and Weissella spp. embedded among

Lacticaseibacillus, Lactiplantibacillus, and Levilactobacillus

spp. (Salvetti et al. 2018; Zheng et al. 2020). Similarly,

the evolutionary relationships between taxa of the

Enterobacterales and Rhodospirillales were consistent with

published data sets containing additional species from each

order (Matsutani et al. 2011; Adeolu et al. 2016; Baek et al.

2020; Yukphan et al. 2020).

Association of 16S rRNA Gene with Phylogenomic
Relationships

As 16S rRNA gene amplicon sequencing is widely used in

taxonomic surveys for microbiome studies, we investigated

how well 16S sequence predicted species identity and phylo-

genomic relationships of the strains used in this study. In the

BLAST top matches with 16S rRNA genes, 77% of the strains

had more than one species match (supplementary table S1A,

Supplementary Material online). Similarly, many of the 16S

rRNA genes of bacterial strains identified to different species

yielded sequence identity matches �97%, which is the gen-

eral threshold for species boundaries in bacteria. This indicates

that sequence identity scores were not appropriate to resolve

species boundaries for these taxa. This applied especially

to Gluconobacter and Leuconostoc spp. and many of

the Enterobacterales strains (supplementary table S2,

Supplementary Material online), which is consistent with pub-

lished data of these taxa (Matsutani et al. 2011; Adeolu et al.

2016; Jeon et al. 2017), and indicated that the 16S rRNA gene

does not always infer species identity reliably. Phylogenetic

analysis of 16S rRNA genes tended to have lower bootstrap

support than the phylogenomic analysis (supplementary

fig. S2, Supplementary Material online). Many of the species

clusters identified by phylogenomics were evident in the

16S phylogeny, but some of the Enterobacteriaceae and

Gluconobacter spp. were mis-identified as polyphyletic (sup-

plementary fig. S2, Supplementary Material online).

Two complementary methods were implemented to com-

pare congruence between the phylogenomic analysis and 16S

rRNA phylogeny. First, normalized Robinson–Foulds index was

McMullen et al. GBE

4 Genome Biol. Evol. 13(8): doi:10.1093/gbe/evab127 Advance Access publication 3 June 2021

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab127#supplementary-data


A E

F

G

B

C

D

FIG. 1.—Genomic features and phylogenomic analysis of Drosophila-associated bacteria. (A) Estimated genome size, (B) number of CDS (coding

sequences), (C) GC content, and (D) RAST metabolic function counts by bacterial order. (E and F) Phylogenomic reconstruction for (E) Enterobacterales,

(F) Lactobacillales, and (G) Rhodospirillales. For all genomic features, the raw means and standard error are displayed, except for box plots used in panel (C) to
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used to compare dendrogram topologies, which indicated

that 16S rRNA gene phylogeny had the best correspondence

with Lactobacillales and weakest association with the

Rhodospirillales (fig. 2). Second, a Mantel test was imple-

mented to correlate the cophenetic distances between all

taxa of each dendrogram. All three bacterial orders displayed

strong, statistically significant correlation, indicating that 16S

rRNA gene phylogeny retains much of the overall higher order

taxonomic placement of species relationships found in the

phylogenomic analysis, but fails to discriminate some taxo-

nomic distinctions at finer resolutions between and within

species; its shortcomings are considered further in the

Discussion section.

Correspondence between Metabolic Traits and Phylogeny

Bacterial traits (in this case encoded metabolic gene functions)

were grouped by the 38 RAST subcategories related to pri-

mary metabolism to infer correspondence between bacterial

phylogeny and distributions of metabolic functions. Despite

some variability in counts between genomes from each order,

the taxa belonging to the order Enterobacterales tended to

have more functions related to amino acid, carbohydrate, and

vitamin metabolism than Lactobacillales and Rhodosprillales,

whereas functions involved in lipid, nitrogen, and nucleotide

metabolism generally had similar counts across all taxa (fig.

3A). The expanded range of functions in the Enterobacterales

is likely linked to the relatively large genome size and CDSs in

these bacteria (fig. 1).

Principal coordinates analysis (PCoA) was applied to visual-

ize the relationship between taxonomy and metabolic poten-

tial using relative counts to normalize the data (fig. 3B). On

the first axis, the three bacterial orders were distinctly sepa-

rated, whereas on the second axis, the Enterobacterales were

separated from the other two orders. PERMANOVA indicated

a large effect by bacterial order on metabolic trait groupings

(F2,93¼ 61.72, P¼ 0.001, R2¼ 0.57) and a pairwise

PERMANOVA analysis revealed that all three orders were sig-

nificantly different from each other (q< 0.05) (supplementary

table S3A, Supplementary Material online). In addition, each

of the clusters separated by genus-level taxonomy, apart from

some mixing between Providencia and Tatumella spp., further

indicating metabolic differentiation by taxonomy (supplemen-

tary fig. S3, Supplementary Material online).

The top 15 loadings from PCoA were displayed to identify

RAST subcategories that were associated with each bacterial

order (fig. 3B). Generally, each order was associated with

different metabolic functions; the Rhodospirillales were driven

by amino acid metabolism, whereas the Lactobacillales were

associated with carbohydrate, nucleotide, and lipid metabo-

lism and Enterobacterales were influenced by arginine, urea

cycle, and polyamine metabolism. Both the Lactobacillales

and Rhodospirillales were associated with functions related

to vitamin and cofactor metabolism. Lastly, the

Rhodospirillales may share some of the nitrogen metabolism

functions with Enterobacterales, as it relates to different or-

ganic and inorganic nitrogen metabolic pathways (subcate-

gory contains ammonia fixation, allantoin utilization, and

amidase subsystems).

The metabolic functions of each strain were further clus-

tered using an agglomerative hierarchical method and signif-

icant clusters were identified using a multiscale bootstrap

resampling approach with 10,000 replicates (fig. 3C). The

three orders separated from one another with >50% boot-

strap probability support. The Enterobacterales and

Rhodospirillales bacteria formed two significant clusters with

almost all of the genera grouped together for each order

(except some of the Gluconobacter spp.). The Lactobacillales

formed three significant clusters by species (Lacticaseibacillus

paracasei, Lactiplantibacillus plantarum, and Levilactobacillus

brevis), as well as another Leuconostoc spp. cluster (fig. 3C),

which all had >95% bootstrap probability support. The re-

mainder of the Lactobacillales species only had single strain

representatives, likely influencing the lack of clusters.

To further understand the relationship between phylogeny

and distribution of metabolism functions, the hierarchical

cluster was correlated with phylogenomic and 16S rRNA

gene dendrograms using normalized Robinson–Foulds index

(nRF) and Mantel test. Overall topologies of dendrograms

were moderately associated between phylogeny and meta-

bolic traits (phylogenomic analysis: nRF¼ 0.53, r¼ 0.79,

P¼ 0.001; 16S rRNA gene analysis: nRF¼ 0.62, r¼ 0.68,

P¼ 0.001), with the best congruence found when associating

function with phylogenomic analysis (likely driven by the con-

gruence of the Enterobacterales members with nRF of 0.37

compared with Lactobacillales and Rhodospirillales nRF scores

of 0.53 and 0.65, respectively) (supplementary fig. S4,

Supplementary Material online). Results from Mantel test

comparing cophenetic distances of each phylogeny with

Bray–Curtis dissimilarities supported this finding with a 1.2�
increase in correlation statistic when using the phylogenomic

reconstruction compared with the 16S rRNA gene phylogeny,

show GC content. Pagel’s k and F or v2 statistics for model predictors (order and phylogenetic distance) are displayed for each panel (residual df¼92). *All P

values are <0.01. Phylogenetic distance is calculated from branch lengths of phylogenomic reconstruction. Letters represent statistical grouping from post

hoc Tukey’s test. Phylogenomic analysis is based on the concatenated sequence (length¼13,238 amino acids) of 52 genes (details in supplementary table

S7, Supplementary Material online and alignment in supplementary data set S4, Supplementary Material online), and the genus names of Drosophila-

associated strains studied are displayed near the nodes. The circles near the tips of the phylogenies indicate genomes that are previously published (red,

Drosophila-associated; blue, references). Dendrograms are scaled to amino acid divergence. Data for panels (A–D) are provided in supplementary data set S1,

Supplementary Material online. E, Enterobacterales; L, Lactobacillales; R, Rhodospirillales.
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FIG. 2.—Relationship between multilocus and 16S rRNA gene phylogeny. Tanglegrams for (A) Enterobacterales. (B) Lactobacillales. (C) Rhodospirillales.

Normalized Robinson–Foulds (nRF) indices and Mantel test correlations are displayed for each order. Subtrees with the same topologies between each

dendrogram are colored. *P¼0.001.
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suggesting that the increased resolution of the species tree

amplified the phylogenetic signal for overall distribution of

metabolic traits. Further inspection of the tanglegrams indi-

cated that few strains had overlapping topologies between

dendrograms (i.e., displayed the same node-edge relation-

ships), further supporting weak to moderate congruence be-

tween dendrograms found for each order (supplementary fig.

S4, Supplementary Material online).

As a complementary analysis, orthogroups were identified

between all 96 taxa to determine whether a finer resolution at

the gene family incidence level (i.e., presence–absence of

orthogroups) would reflect the functional relationships ob-

served based on RAST annotations. A PCoA was used to vi-

sualize the 13,170 orthogroups with genes from at least three

genomes (supplementary table S4, Supplementary Material

online) using a Jaccard similarity coefficient to determine

whether there are differences by bacteria order based on

orthogroup assignments. All three bacterial orders clustered

away from one another, with Rhodospirillales separating on

the first axis away from the Enterobacterales and

Lactobacillales and all three orders distinctly separating on

the second axis (supplementary fig. S5, Supplementary

Material online). Orthogroup composition of each genome

significantly differed by order (PERMANOVA: F2,93¼ 63.2,

R2¼ 0.58, P¼ 0.001, supplementary table S3B,

Supplementary Material online). Of the total orthogroups

identified, 8% were involved in metabolism-related functions

(defined by RAST annotations). These 1,055 orthogroups

A C

B

FIG. 3.—Taxonomic correspondence with encoded metabolic functions. (A) Heatmap of raw function counts in RAST subcategories displayed by

bacterial order. Rows and columns are organized by alphabetical order for RAST categories and bacterial taxonomy. Gray cells in heatmap indicate function is

absent in genome. RAST subcategories are grouped by categories: A, amino acids and derivatives; C, Carbohydrates; V, cofactors, vitamins, prosthetic

groups, and pigments; L, fatty acids, lipids, and isoprenoids; Ni, nitrogen metabolism; Nu, nucleosides and nucleotides. (B) Principal coordinates analysis

(PCoA) of relative counts for RAST subcategories with Bray–Curtis dissimilarity matrix. Arrows indicate the loading subcategories (top 15 displayed) and the

percent variance explained for each axis is displayed. (C) Hierarchical cluster of relative counts for RAST subcategories. Significant clusters are boxed and

colored by bacterial order. Cophenetic distance scale for Ward’s linkage is displayed. RAST function counts are provided in supplementary data set S3,

Supplementary Material online.
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were extracted and subjected to the same analysis, resulting

in a similar finding that all three bacterial orders are distinct on

both PCoA axes (supplementary fig. S5, Supplementary

Material online), with PERMANOVA support (F2,93¼ 106.5,

R2¼ 0.7, P¼ 0.001, supplementary table S3C,

Supplementary Material online). In addition, a Procrustean

randomization test indicated that the orientation of

metabolism-related orthogroups was highly correlated with

the overall relationship among all orthogroups (m2¼ 0.008,

r¼ 0.996, P¼ 0.001).

Variation in Metabolism Genes of Prevalent Species

To extend our analysis of metabolic variation among the

Drosophila-associated bacteria, we focused on seven species,

which we termed “prevalent” by the criteria that they were

isolated from at least four flies and were represented by >4

strains (table 1). Based on the incongruence observed be-

tween metabolic function and taxonomy (supplementary

fig. S4, Supplementary Material online), we further analyzed

these taxa to identify differences among and within species to

better understand functional variation and redundancy at

finer phylogenetic scales. Specifically, these taxa provide the

opportunity to define the distribution of metabolic traits from

a pangenomic perspective, including comparisons in

orthogroup membership between species and identification

of among-strain variation, that is, enriched functions in the

accessory genome, with taxa that are well-represented within

the data set.

A pangenome analysis was performed using Roary to iden-

tify single-copy orthologous genes encoding metabolic func-

tions found within each of the seven species and to define the

distribution of genes found in the metabolic pangenome.

Across the seven species, the total pangenome ranged from

287 to 538 metabolism-related genes (based on RAST anno-

tations) with core genome size of 264–488 genes and acces-

sory genome size of strains ranging from 0 to 102 genes (fig.

4A and supplementary data set S2, Supplementary Material

online). A distribution index was generated to compare the

relative sizes of the metabolic pangenome with values close to

1 indicating a small accessory genome with few genes per

strain; values closer to 0 indicated high strain diversity with

equal numbers of genes in the core and accessory genome for

a strain. A beta regression of indices for each species indicated

significant differences by species (likelihood ratio test:

v2
6¼ 200.2, P< 2.2� 10�16) with no specific statistical sim-

ilarities between species with similar taxonomy, although

both Providencia rettgeri and Tatumella sp.

(Enterobacterales) had small metabolic accessory genomes

(fig. 4B). The relatively large accessory genome sizes of

Gluconobacter cerinus, G. kondonii, and La. plantarum corre-

lated with increased residue diversity (index for measuring

average strain diversity within species using the amino acid

alignments from the phylogenomic analysis) by correlation

analysis (Pearson’s product-moment correlation: r¼ 0.9,

P¼ 0.003) (fig. 4C and supplementary fig. S6,

Supplementary Material online). This result gives confidence

that the identified accessory genome has a biological basis,

and is not a sequencing artifact; accessory genome size is

predicted to increase positively with strain diversity.

Additionally, nucleotide diversity based on 16S rRNA genes

among strains was also assessed and no significant relation-

ships were found, indicating the increased resolution of the

phylogenomic analysis was required to score strain diversity

between species (supplementary fig. S6, Supplementary

Material online).

The contribution of between- and within-species differen-

ces to variation in metabolic traits was investigated using two

methods. In the first approach, the metabolic traits (defined

by RAST annotation) between species were compared using

Fisher’s exact test on metabolism orthogroup incidence (i.e.,

orthogroup presence–absence by species; minimum thresh-

old of three genomes represented per orthogroup) (supple-

mentary table S5A, Supplementary Material online). After P

value adjustment, 597 of the 717 orthogroups were signifi-

cantly different between species (q< 0.05) (supplementary

table S5A, Supplementary Material online). A PCoA with a

Jaccard similarity coefficient was used to visualize how species

separated by significant orthogroups to summarize these dif-

ferences. All seven species formed distinct taxonomic clusters

(PERMANOVA: F6,39¼ 775.23, R2¼ 0.99, P¼ 0.001, supple-

mentary table S3D, Supplementary Material online) with bac-

teria separating by order on the first axis and Lactobacillales

and Rhodospirillales separated from the Enterobacterales

strains on the second axis (fig. 4D). The top RAST category

was assigned to each orthogroup and associated with each

PCoA axis, indicating Rhodospirillales were enriched in amino

acid, nucleotide, and vitamin metabolism in PC1, whereas

Enterobacterales were enriched in all metabolism categories

except nucleotide metabolism in PC2 (supplementary fig. S7,

Supplementary Material online). This analysis of seven species

largely recapitulates the analysis of all strains, as displayed in

figure 3B.

Further investigation into the orthogroup analysis estab-

lished that the top significant orthogroups from the Fisher’s

exact test (supplementary table S5A, Supplementary Material

online) were primarily involved in carbohydrate metabolism

(�50%) and that most orthogroups were present in the

two Gluconobacter spp., whereas the other taxa had lower

incidence rates across gene families (supplementary table S5B,

Supplementary Material online). When a given species was a

member of a top orthogroup identified, all strains were found

to contain at least one gene from this gene family (supple-

mentary table S5A, Supplementary Material online). In addi-

tion, all of the top orthogroups were present in at least two

species, and they were generally not defined by higher order

taxonomy (e.g., Gluconobacter and Tatumella spp. tended to

have similar orthogroup functions). Of the top gene functions
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identified, several were noteworthy for known effects on

Drosophila physiology. Some of the sugar and sugar derivative

dehydrogenases have been implicated as determinants of re-

duced lipid content in adult flies by incomplete oxidation of

external carbohydrates (Chaston et al. 2014). Our analysis

(supplementary table S5B, Supplementary Material online)

also identified a bacterial methionine salvage gene (5-meth-

ylthioribose kinase), which bacterial methionine metabolism

lowers starvation resistance of Drosophila (Judd et al. 2018),

and the hydroxymethylpyrimidine ABC transporter involved in

the production of thiamine (vitamin B1) (supplementary table

S5B, Supplementary Material online), an important determi-

nant of larval development and survival on low-nutrient diets

(Sannino et al. 2018). In addition, several gene functions that

aid in the bacterial growth and utilization of Drosophila met-

abolic waste products (Winans et al. 2017; Storelli et al. 2018)

were identified (supplementary table S5B, Supplementary

Material online). Notably, N-acetylglucosamine gene families

(the monomer of chitin found in the peritrophic envelope of

the insect gut as well as fungal cell walls) and xanthine deg-

radation gene families (part of an Acetobacteraceae uric acid

degradation locus, the primary nitrogen waste product of

Drosophila) were among the bacterial functions found in

the top orthogroups identified from the Fisher’s exact test

(supplementary table S5B, Supplementary Material online).

For the latter orthogroup, we further inspected whether the

A B C

D E

FIG. 4.—Metabolic pangenome analysis of prevalent species. (A) Distribution of metabolism genes in pangenome of each species with number of strains

listed below each taxon identifier. (B) Relative pangenome distribution by species. (C) Strain diversity by species using Shannon’s entropy score. (D) PCoA of

orthogroup composition among species. (E) Heatmap of function counts (20–140) in accessory genome by species. In panels (B) and (C), estimated marginal

means and standard error are plotted from each model with letters from post hoc Tukey’s test representing statistical groups. Percent variation explained

among significantly different orthogroups is shown for each axis in panel (D). Gray cells in heatmap of panel (E) indicate function is absent in accessory

genome. Species identifiers: Ath, Acetobacter thailandicus; Gc, Gluconobacter cerinus; Gk, G. kondonii; LEb, Levilactobacillus brevis; LApl, Lactiplantibacillus

plantarum; PRr, Providenica rettgeri; T, Tatumella sp. RAST categories: A, amino acids and derivatives; C, Carbohydrates; V, cofactors, vitamins, prosthetic

groups, and pigments; L, fatty acids, lipids, and isoprenoids; Ni, nitrogen metabolism; Nu, nucleosides and nucleotides. Data are provided in supplementary

data set S2 and table S5, Supplementary Material online.
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uricase gene was also present in the genomes of the prevalent

strains, as it is not a function classified by the RAST subsystem

annotations. This gene was present in all genomes of preva-

lent Gluconobacter and Tatumella spp. and is part of the

orthogroup OG0001450 (supplementary table S4B,

Supplementary Material online), indicating these taxa may

potentially utilize uric acid in the excreta of Drosophila.

Our second analysis of variation in metabolic traits across

the seven prevalent species identified gene functions

enriched in the accessory genome of each species com-

pared with the core genome (supplementary table S6A–G,

Supplementary Material online), which may indicate adap-

tive functions that enhance strain fitness. Among the dif-

ferent functional annotation counts in the accessory

genome, amino acid metabolism in G. cerinus and carbo-

hydrate metabolism in La. plantarum were the highest and

nitrogen metabolism were low or absent in all seven species

(fig. 4E). Only seven RAST subsystems were identified as

enriched in the accessory genome of four species (G. kon-

donii, Le. brevis, La. plantarum, and P. rettgeri) after P value

adjustment for multiple testing (q< 0.05) (supplementary

table S6H, Supplementary Material online). Each species in-

cluded carbohydrate metabolism gene functions predicted

to expand the capacity of the bacteria to utilize and fer-

ment different carbohydrates (potentially glucose, gluco-

nate, fructose, mannose, and trehalose) and the carboxylic

acid citrate, which is important for the growth and acid

resistance of lactobacilli (Martin et al. 2005). Lipid/carbohy-

drate metabolism (related to short chain fatty acid butyric

acid fermentation) and purine biosynthesis were implicated

as enriched in the P. rettgeri accessory genome (supplemen-

tary table S6F, Supplementary Material online). Most of the

ortholog functions in La. plantarum and P. rettgeri were

exclusively found in these taxa, whereas the other orthologs

of G. kondonii and Le. brevis were found in the pange-

nomes of at least one other prevalent species examined

(supplementary table S6H, Supplementary Material online),

indicating that some of the accessory genome functions can

be redundant among closely and distantly related taxa.

Discussion

A robust understanding of the relationship between the tax-

onomic identity and functional traits of microorganisms is es-

sential for detailed analyses of the ecological and evolutionary

processes that shape microbial communities. This relationship

is particularly important for the microbial communities in an-

imal guts because microbial function can influence many host

traits, but the pattern and scale of the effect of variation in

taxonomic composition on microbial function are poorly un-

derstood. This study on the comparative genomics of bacteria

isolated from the guts of wild Drosophila focused on bacterial

metabolic traits, which have been implicated in the metabolic

health and fitness of animal hosts (McFall-Ngai et al. 2013;

Visconti et al. 2019), including Drosophila (Chaston et al.

2014; Newell et al. 2014; Bost et al. 2018; Consuegra et al.

2020). Two key results were obtained. First, representatives of

the three dominant bacterial orders (Enterobacterales,

Lactobacillales, and Rhodospirillales) can be differentiated by

key metabolic traits, based on annotations and homology of

metabolism-related genes. Second, evidence for within-

species variation in metabolic functions was obtained, includ-

ing functions relevant to utilization of the sugar-rich habitats

and interactions with the Drosophila host. Here, we consider

these two issues in turn.

Our finding that the variation in metabolic function parti-

tions by the three bacterial orders of gut bacteria (fig. 3)

reflects the differences in lifestyles of the bacteria.

Important for interpretation of these results, these differences

relate exclusively to the panel of genomes isolated from

Drosophila guts, comprising members of just one, two, and

four families for Rhodospirillales (five families in total on

NCBI), Lactobacillales (five families in total on NCBI), and

Enterobacterales (nine families in total on NCBI), respectively

(table 1). The diversity of taxa studied are functionally re-

stricted by the conditions in the Drosophila gut, including

physical instability, hypoxia (but not anoxia), low pH, and im-

munological defenses (Lemaitre and Miguel-Aliaga 2013;

Douglas 2018). A further potential issue is that some taxa in

the Drosophila gut microbiome may be intractable to cultiva-

tion but the magnitude of this difficulty is likely low because

the taxa in the genome panel (table 1) match well to the

results from cultivation-independent studies on Drosophila

collected from the same habitats in New York State (Adair

et al. 2018; Bost et al. 2018; Kang and Douglas 2020). Further

studies are required to assess whether these conclusions apply

to flies in other locations.

The key lifestyle features of Acetobacteraceae

(Rhodospirillales) relate to their adaptation to high sugar hab-

itats, such as the rotting fruits utilized by Drosophila (Lievens

et al. 2015). The distinctive metabolic features identified in

this study (fig. 3B) relate to aerobic fermentation of exoge-

nous sugars via processes dependent on the tetrapyrrole de-

rivative pyrroloquinoline quinone (Matsutani and Yakushi

2018) and the capacity to utilize simple inorganic and organic

nitrogenous substrates for the synthesis of amino acids re-

quired for protein synthesis and proliferation (Sainz et al.

2017). Similarly, all but one of the Lactobacillales in this study

comprised members of the family Lactobacillaceae and have

the functional traits of fermentative metabolism, especially of

sugars and other organic compounds, including terpenes and

nucleotides (Duar et al. 2017). Many of the products from

these metabolic pathways are likely to be important for

Drosophila growth and physiology, as illustrated by the evi-

dence that the amino acids produced by Acetobacter may

promote Drosophila larval development (Consuegra et al.

2020).
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On the contrary, the Enterobacterales associated with

Drosophila are taxonomically and functionally more diverse

(fig. 1D and E). The lifestyles represented by the

Enterobacterales in our panel likely include both free-living

bacteria associated with the food ingested by the flies and

taxa that may be pathogenic to Drosophila, for example,

some strains of P. rettgeri (Galac and Lazzaro 2011; Adair et

al. 2018). This metabolic diversity probably accounts for the

single metabolic trait (i.e., arginine, urea cycle, and polyamine

metabolism pathway) that partitions with the

Enterobacterales (fig. 3B). Unlike the Acetobacteraceae and

Lactobacillaceae, relatively little is known about the dynamics

of Enterobacterales and other c-Proteobacteria in the

Drosophila gut, beyond the observations that c-

Proteobacteria are generally not detectably beneficial, or

can be detrimental, to Drosophila (e.g., Galac and Lazzaro

2011; Chaston et al. 2014), and that host filtering processes

may limit their abundance in the gut (Wang et al. 2020). The

association of Enterobacterales with the urea cycle and poly-

amine synthesis raises the possibility that the association of

these bacteria with Drosophila may be facilitated by their ca-

pacity to utilize Drosophila waste urea as a nitrogen source

and to tolerate hostile conditions in the gut via polyamine-

mediated stabilization of the genome and membranes.

Microbiome-mediated polyamine production has also been

implicated in microbiome effects on human health (Tofalo

et al. 2019), but the role of this class of metabolites in

Drosophila-microbe interactions has not been investigated.

The parallel analysis of within-species variation, conducted

on seven species with at least five sequenced genomes, pro-

vided the opportunity to assess the scale of among-strain ge-

netic and functional variation in metabolism, including

metabolic traits with known effects on Drosophila nutritional

physiology and performance (e.g., Shin et al. 2011; Chaston

et al. 2014; Winans et al. 2017; Judd et al. 2018; Kang and

Douglas 2020). For this analysis, we used two approaches.

First, we compared between-species genetic variation (fig.

4D), which was congruent with annotation-based analysis in

figure 3B. Of the top gene functions found to vary by species,

only a few are known to be relevant determinants of

Drosophila physiology and some were functionally redundant

across disparate taxa (supplementary table S4, Supplementary

Material online). Several genes involved utilization of

Drosophila nitrogenous waste products were identified, pri-

marily among Gluconobacter spp., and these capabilities may

allow the taxa to use host nitrogenous waste for their own

growth. The second analysis focused on identifying functions

enriched in the accessory genome of each species.

Interestingly, the majority of the genes that differed within

species related to carbohydrate digestion and fermentation as

well as carboxylic acid and short chain fatty acid metabolism.

The enrichment of carbohydrate metabolism genes is also

supported by published pangenome analyses of La. plantarum

and P. rettgeri (Galac and Lazzaro 2012; Martino et al. 2016).

Taken together, the identified gene functions are suggestive

of survival in sugar-rich rotting fruit environment that is

enriched by the waste products of Drosophila larvae and pos-

sibly adults (Lievens et al. 2015; Winans et al. 2017; Storelli et

al. 2018).

Rotting fruit provide an energy-rich but ephemeral re-

source colonized by numerous microorganisms. In this envi-

ronment, there is strong selective pressure to utilize carbon

sources due to exploitative competition and the release of

toxic metabolic by-products by co-occurring microbes (e.g.,

citrate lyase gene functions can be involved in acid stress in

lactobacilli; Martin et al. 2005). Although we did not sample

strains from rotting fruits, various studies indicate that there is

frequent cycling of microbes between wild Drosophila gut

and the external environment (Blum et al. 2013; Inamine et

al. 2018; Pais et al. 2018), and that this likely limits taxonomic

and functional differentiation between strains in Drosophila

and the external environment (Winans et al. 2017; Bueno et

al. 2019; Wang et al. 2020). A related issue is the taxonomic

and functional differences between bacteria in the natural

environment and associated with laboratory cultures of

Drosophila. The limited data available have not identified fixed

differences between laboratory-derived bacteria and field iso-

lates, although a higher incidence of genes coding uric acid

degradation in laboratory isolates, and of motility genes in

wild isolates has been reported in one study of

Acetobacteraceae (Winans et al. 2017). Much of the knowl-

edge of microbiome effects on Drosophila metabolism has

focused on bacteria isolated from laboratory flies (e.g., Shin

et al. 2011; Chaston et al. 2014; Newell and Douglas 2014;

Consuegra et al. 2020), and future work would benefit from

the inclusion of wild-derived bacterial strains.

This study also raises methodological issues. One issue

relates to the utility of 16S rRNA gene sequence data for

taxonomic identification and inference of functional traits.

Our analysis reinforces the conclusion of many previous stud-

ies, including research on microbiomes, that 16S data can be

insufficiently precise to discriminate functionally different

microorganisms because functionally important sequences

are gained, lost or modified by mutation more rapidly than

16S sequence change (Koeppel and Wu 2013; Ellegaard and

Engel 2016; Llad�o Fern�andez et al. 2019). 16S rRNA gene

sequence evolution can also yield phylogenetic patterns that

are incongruent with patterns from phylogenomic data, as

illustrated for several taxa in figure 2 as well as other bacterial

orders (Maayer et al. 2019). Although not explored in this

study, other housekeeping genes, for example, gyrB, rpoB,

have been suggested as alternatives to 16S rRNA gene for

amplicon-based microbiome studies (Moeller et al. 2016;

Ogier et al. 2019). For these reasons, inferring function

from 16S gene surveys (Langille et al. 2013) is less satisfactory

than genomic and metagenomic data. A second issue relates

to the key limitation of genomic data, that these data provide

the genetic capacity for function, and the realized capacity is
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dictated by gene expression, enzyme activity, and pattern of

flux through the metabolic network of individual microbial

cells and the microbial community (Heintz-Buschart and

Wilmes 2018). In microbiomes, as in other complex microbial

communities, the metabolic traits of individual bacterial taxa

can be strongly dependent on the identity and metabolic ac-

tivity of other co-occurring microorganisms, such that the

metabolic function of any taxon can be resolved most effec-

tively by a community approach (e.g., Fischer et al. 2017;

Douglas 2020; Henriques et al. 2020; McMullen et al.

2020). A final issue relates to the use of draft genomes in

comparative genomics analyses. Draft genomes include

poorly sequenced regions of the genome (e.g., due to repet-

itive regions and mobile genetic elements) and can have

genes split across contigs (Ricker et al. 2012). For pangenome

analyses, these limitations can lead to genes being miscate-

gorized as accessory (i.e., not present in all strains). In the

present analysis, many of the genomes were of draft status,

and therefore some designations of accessory functions may

be inaccurate. Nevertheless, the highly significant positive cor-

relation between strain diversity and the accessory genome

size (supplementary fig. S6B, Supplementary Material online)

indicates strongly that the observed variation in pangenome

size has a biological basis.

We conclude by considering how this study informs our

understanding of metabolic trait distribution among members

of animal gut microbiomes. The taxonomic and functional

composition of animal gut microbiomes are influenced by

diet, host, and co-occurring microorganisms. By identifying

the microorganisms that mediate different functions and their

evolutionary relationships, this study provides a basis to un-

derstand and predict microbiome functions, which is the

foundation for rationally designed routes to manipulate

microbiomes for treatment of metabolic disease and applica-

tion of probiotics (Bauer et al. 2015). The identification of

variation in metabolic functions at different phylogenetic

scales in this study provides the basis for future studies to

determine the ecology and evolution of microbiome functions

of Drosophila in natural settings.

Materials and Methods

Isolation of Drosophila-Associated Bacteria

Wild D. melanogaster flies were collected from compost bins

or other food waste from five domestic kitchens in Ithaca, NY

and from a dumpster containing rotting fruits at the Cornell

Orchards, Ithaca, NY, from 2015 to 2019 (see supplementary

table S1A, Supplementary Material online, for collection

details). Flies were starved for 1–3 h to allow any food in

the gut to be eliminated, and then anesthetized with CO2

and sorted by sex (distinguished visually by genitalia morphol-

ogy) and species following the key of Werner and Jaenike

(2017) to obtain D. melanogaster adults. Although D.

melanogaster female flies are indistinguishable from

Drosophila simulans female flies, we did not detect any D.

simulans males in our collections and included female flies

to enhance our collection in 2015. The flies were washed in

sterile phosphate buffered-saline (PBS) (Cold Spring Harbor

2018), and hand-homogenized in 100ll PBS (except 200ll

for 2019 Lactobacillales collections) with a disposable pestle

(Kontes/Kimble-Chase, Vineland, NJ) using aseptic technique.

Each homogenate was inoculated onto an agar medium

(yeast–peptone–dextrose [YPD] or modified De Man,

Rogosa, and Sharpe [mMRS]) and incubated at 30 �C for up

to 1 week under aerobic or high CO2 conditions by placing a

lit candle in a glass jar (Fan and Li 1997) (supplementary table

S1A and B, Supplementary Material online). YPD is a nutrient

rich medium that supports the growth of sugar-rich environ-

ment microorganisms (Dunitz et al. 2014), whereas mMRS is

a more selective medium that promotes the growth of acetic

acid bacteria (Rhodospirillales) and lactobacilli (Lactobacillales)

associated with Drosophila (Newell and Douglas 2014). In

2019, the procedure was modified to enhance the efficacy

of isolating lactobacilli, which tend to have low relative abun-

dance in wild fly guts (Chandler et al. 2011; Staubach et al.

2013; Adair et al. 2018; Kang and Douglas 2020). Specifically,

the homogenates were allowed to settle for 5–10 min (allow-

ing large microorganisms, e.g., yeasts, to settle) and 75ll

supernatant was inoculated on agar plates. The mMRS me-

dium was also supplemented with azide, Tween-80, and bro-

mocreosol purple (supplementary table S1B, Supplementary

Material online) to select for Lactobacillales taxa (Choi et al.

2016). Individual colonies representative of different morphol-

ogies were isolated and streaked onto fresh agar (same me-

dium as initial growth but lacking any antibiotics or dyes). A

single representative colony was grown in broth of the same

medium, visually confirmed as a bacterium by light micros-

copy (DM5000 B, Leica Microsystems, Buffalo Grove, IL), and

stored in 20% glycerol (Sigma, St. Louis, MO) at �80 �C.

DNA Extraction of Bacterial Isolates

A chunk of frozen glycerol stock was inoculated either onto

mMRS or YPD agar and a single colony was obtained to grow

in 5 ml broth until turbid (see supplementary table S1B,

Supplementary Material online, for media). Following Bueno

et al. (2019), a 1 ml sample of the cell suspension was centri-

fuged at 19,000� g for 5 min and cells were resuspended in

678ll cell lysis buffer (108 mM Tris–HCl, pH 8.0; 1.5 M NaCl;

21.6 mM EDTA; Sigma) and 16 U proteinase K (Qiagen,

Hilden, Germany) with either 30ll 1 mm diameter glass

beads (Scientific Industries, Bohemia, NY) and 250ll

2.3 mm diameter zirconia beads (BioSpec, Bartlesville, OK)

or 200ll 1 mm diameter glass beads. Samples were homog-

enized for 35 s at 5.5 m/s with a FastPrep-24 instrument (MP

Biomedicals, Santa Ana, CA) and incubated at 56 �C for 2 h.

Homogenates were incubated overnight at 37 �C with 35 U
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RNaseA (Qiagen). DNA was extracted from homogenate with

750ll phenol:chloroform:isoamyl alcohol (25:24:1; Thermo

Fisher Scientific, Waltham, MA) and centrifuged at

19,000� g for 15 min at 4 �C. To precipitate DNA from

450ll aqueous layer, 900ll ethanol and 45ll 3 M sodium

acetate (pH 5.2; Sigma) were added to each sample and in-

cubated overnight at �20 �C. Following centrifugation at

19,000� g for 15 min at 4 �C, the DNA pellet was washed

in 75% ethanol, centrifuged at 19,000� g for 10 min at 4 �C,

air-dried for 10 min, and resuspended in 50ll nuclease-free

water (Ambion, Austin, TX). DNA was stored at �20 �C until

PCR amplification and whole-genome sequencing.

Molecular Identification of Bacteria

Molecular characterization was first performed by Sanger se-

quencing of bacterial 16S rRNA gene amplicons obtained by

PCR with the primers 16SA1 (forward: 50-

AGAGTTTGATCMTGGCTCAG-30) and 16SB1 (reverse: 50-

TACGGYTACCTTGTTACGACTT-30) from Fukatsu and Nikoh

(1998). Approximately 1mg DNA template (quantified using

Nanodrop; Thermo Fisher Scientific) was added to 0.2lM

primers and 1 U OneTaq 2� Master Mix with Standard

Buffer (New England BioLabs, Ipswich, MA). PCR reaction

conditions were 94 �C for 30 s, 30 amplification cycles of

94 �C for 30 s, 55.3 �C for 60 s, and 68 �C for 60 s with a final

extension for 5 min at 68 �C. PCR products were purified us-

ing ExoSAP-IT PCR Clean Up Reagent (Applied Biosystems,

Waltham, MA) and submitted for Sanger sequencing (both

forward and reverse directions) at Cornell University

Genomics Facility using Applied Biosystems 3730xl.

Consensus sequences were generated from forward and re-

verse sequences and taxonomic identity was assigned using

BlastN (https://blast.ncbi.nlm.nih.gov/Blast.cgi; last accessed:

June 14, 2021) against the NCBI nonredundant nucleotide

collection with Geneious Prime 2019.2.1 (Biomatters,

Auckland, New Zealand). Bacterial isolates were selected for

genome sequencing by maximizing taxonomic, fly replicate,

and collection diversity within Enterobacterales,

Lactobacillales, and Rhodospirillales.

Sequencing and Genome Assembly

Genomic DNA (0.2 ng/ll; quantified by Qubit 2.0 fluorimeter;

Invitrogen, Waltham, MA) was submitted to Cornell

University Genomics Facility for whole-genome shotgun se-

quencing using an Illumina NextSeq500 Platform with the

Nextera XL DNA Library Preparation kit (Illumina, San Diego,

CA) to generate 150-bp paired-end reads according to man-

ufacturer’s protocol. Libraries were pooled in equal propor-

tions across three runs and their quality was assessed with a

Fragment Analyzer (Advanced Analytical Technologies, Ames,

IA). A Blue Pippin device (Sage Science, Beverley, MA) was

used for further size-selection of pooled libraries to target

fragments �800 bp, if required.

Between 1,033,730 and 28,432,172 reads were obtained

for 81 bacterial genomes (supplementary table S1A,

Supplementary Material online). Read quality was assessed

using FastQC v0.11.3 (www.bioinformatics.babraham.ac.uk/

, last accessed: June 14, 2021) and were trimmed with trim-

momatic v0.36 (Bolger et al. 2014). Reads were trimmed on

the ends if the quality score was <3 or the terminal base was

unidentified (“N”), and sequences were only retained if they

had a quality score of �15 over a 4-bp moving window and

length of 125 bp. Then, SPADES v3.11.1 (Bankevich et al.

2012) was used to assemble reads into contigs (k-mer lengths

21, 33, 55, and 77 were used) following default parameters.

The careful option was included for genome polishing. Low k-

mer coverage contigs were filtered to reduce contamination

following Douglass et al. (2019); see supplementary table

S1A, Supplementary Material online, for cutoffs applied to

each genome. SSPACE v3.0 (Boetzer et al. 2011) was used

for contig extension and scaffolding following default param-

eters with a minimum 100 bp contig length (insert size was

estimated from subsampling 1,000,000 reads). Genome as-

sembly statistics were obtained using Quast v4.6.3 (Gurevich

et al. 2013) with contigs less than 500 bp removed. To

assess average sequence depth, reads were mapped to

final contigs using Bowtie2 v2.2.6 (Langmead and Salzberg

2012) following default parameters and the SAMtools

v0.1.19 (Li et al. 2009) depth function. ConEst16S (Lee

et al. 2017) was used to identify bacterial contamination

when more than one 16S rRNA gene was detected for a

genome (supplementary table S1A, Supplementary Material

online); none of the genomes were found to have bacterial

contamination.

Genome Annotation

Genomes were annotated using the RASTtk pipeline on RAST

server with error correcting (Overbeek et al. 2014; Brettin et

al. 2015). Specifically, the settings were set to automatically

fix errors and fix frameshifts. For analysis of primary metabo-

lism genes, the following RAST categories were extracted:

amino acids and derivatives; carbohydrates; cofactors, vita-

mins, prosthetic groups and pigments; fatty acids, lipids,

and isoprenoids; nitrogen metabolism; and nucleosides and

nucleotides. The RAST subsystems associated with secondary

metabolism (cyanate hydrolysis, hopanes, polyhydroxybuty-

rate metabolism, nitrilase, and nitrosative stress), and the

nucleosides and nucleotides subcategories detoxification

and “no subcategory” were removed to retain the main nu-

cleotide biosynthesis, conversion, and degradation genes. For

the selected primary metabolism functions, all genes in the

“no subcategory” subsystems were combined into an

“other” subcategory for each RAST category (apart from nu-

cleoside and nucleotide category). This final set of functions

largely focuses on primary metabolism traits, although some

of these genes may, additionally or alternatively, encode
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functions that contribute to secondary metabolism (due to

gene duplication or as by-products of primary metabolism).

For analyses, each RAST role (or gene function) was counted

once, although there may be several genes (or RAST features)

that are annotated with each function due to gene duplica-

tion events, fragmented genes across contigs, or nonspecific

annotations of function. Due to the large variation in total

CDSs for each strain (supplementary table S1A,

Supplementary Material online), relative counts were gener-

ated for the number of functions found in each RAST sub-

category (scaled to the total number of primary metabolism-

related functions). The full data set (including categorization

prior to extraction) is provided in supplementary data set S3,

Supplementary Material online. The GenBank flat file of pub-

licly available genomes for other wild Drosophila-associated

bacteria was downloaded from NCBI (supplementary table

S1C, Supplementary Material online) and were reannotated

using RAST to obtain functional trait data. For pangenome

analysis, metabolic genes were extracted using a custom R

script for species with more than four strains and were rean-

notated using PROKKA v1.14.6 (Seemann 2014). For

orthogroup analysis, Eggnog Mapper v2 (Huerta-Cepas et

al. 2019) was implemented to annotate representative

sequences from each orthogroup as a general annotation,

whereas a custom R script was used to associate RAST met-

abolic functions with metabolism-related orthogroups for sta-

tistical analyses.

Orthologous Group Gene Clustering and Pangenome

Analysis

OrthoFinder v2.4.0 (Emms and Kelly 2015, 2019) was imple-

mented to cluster protein-coding sequences into orthogroups

for all Drosophila-associated bacteria with default settings.

Several reference genomes (supplementary table S1C,

Supplementary Material online) were included in the initial

run for analysis of species tree to identify single ortholog genes

shared across all taxa for phylogenomic analysis. For

metabolism-related clusters, reference genomes were pruned

from orthogroup list, and a custom R script was used to extract

orthogroups containing relevant metabolic functions (based

on RAST annotations). HMMER v3.3.1 was used to identify

representative amino acid sequences for each orthogroup us-

ing “hmmbuild” and “hmmsearch” functions (HMMER:

hmmer.org, last accessed: June 14, 2021) for Eggnog

Mapper annotation. In addition, Roary v3.13.0 (Page et al.

2015) was used to assess variation in metabolic repertoire of

prevalent species using PROKKA annotations. The pangenome

distribution index was calculated as a corrected proportion of

the number of core genes (subtracting the accessory gene

count from the core gene count of each strain) scaled to the

total number of genes found in the pangenome.

Phylogenetic and Phylogenomic Reconstructions

Sequences for single-gene and multilocus phylogenies were

aligned using MUSCLE (Edgar 2004) with default settings in

Geneious Prime and phylogenetically informative sites were

selected with GBlocks v0.91b (Castresana 2000) using less

stringent options (b1–b5 settings: 0.5, 0.55, 8, 5, half).

Maximum likelihood phylogenies were generated using IQ-

TREE v1.6.12 (Nguyen et al. 2015) with model of evolution

chosen by lowest BIC score with ModelFinder

(Kalyaanamoorthy et al. 2017). Bootstrap replicates (10,000

replicates with ultrafast bootstrap approximation method)

were performed to identify node support using UFBoot2

(Hoang et al. 2018). For the phylogenomic reconstruction,

single orthologous gene clusters identified using

OrthoFinder (52 amino acid sequences, see supplementary

table S7, Supplementary Material online) were concatenated

with SequenceMatrix v1.8 (Vaidya et al. 2011) for a parti-

tioned model (proportional branch lengths implemented)

with IQ-TREE (Chernomor et al. 2016).

Species boundaries of sampled taxa were determined us-

ing a 95% average nucleotide identity (ANI) score threshold

using JSpecies v1.2.1 (Richter and Rossell�o-M�ora 2009) with

MuMmer v3.23 (Kurtz et al. 2004) at default settings. Taxa

identities were confirmed by comparing each strain to related

genomes (type specimens accessed from NCBI) and a BlastN

search for genome extracted 16S rRNA gene sequences (sup-

plementary table S1A, Supplementary Material online).

Individual phylogenies for each bacterial order were drawn

by extracting each clade from the entire reconstruction using

the packages ape v5.4 (Paradis and Schliep 2019) and ggtree

v2.2.4 (Yu et al. 2017) with Vibrio cholerae, Bacillus subtilis,

and Rhodospirillaceae spp. (Magnetospirillum magneticum

and Rhodospirillum rubrum) used to root phylogenies of the

Enterobacterales, Lactobacillales, and Rhodospirillales,

respectively.

Statistics

All analyses were performed using R v4.0.2 (R Core Team

2018) with a significance a threshold of 0.05. All statistical

analyses were performed using Drosophila-associated strains

and did not include the reference strains (supplementary table

S1C, Supplementary Material online) used for phylogenetic

analyses (taxa excluded: B. subtilis, Enterococcus faecalis,

Streptococcus pyogenes, Haemophilus influenzae, Pasturella

multocida, Granulibacter bethesdensis, M. magneticum, R.

rubrum, and V. cholerae). Genome features (CDS, genome

size, metabolic function count, and GC content) were

assessed for phylogenetic signal using two different univariate

methods. First, Pagel’s k was imputed to determine whether

genomic features could be explained by phylogenetic related-

ness as compared with a Brownian motion model of evolution

using a likelihood ratio test (null hypothesis: k¼ 0 or

completely random) with the package phytools v0.7.47
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(Revell 2012). Then, an analysis of variance (ANOVA) was

implemented to assess the categorical effect of taxonomy

on genomic features with patristic distance (sum of branch

lengths from root tip) as a covariate using the car package

v3.0.8 (Fox and Weisberg 2019), except a logistic regression

(quasibinomial distribution with logit link) was implemented

to analyze GC content with a Wald’s v2 test for the omnibus

test. Patristic distance was calculated with the “distRoot”

function from the package adephylo v1.1.11 (Jombart et al.

2010) using a Lactococcus lactis Bpl1 rooted tree (note: ref-

erence strains were removed for statistical analyses).

Normality and homoscedasticity of residuals were visually

assessed for each model. For all models, genome size and

CDS were log10-transformed.

Several multivariate methods were implemented to identify

relationships among bacterial metabolic traits and

orthogroups. First, RAST subcategories were visualized by

bacterial strain using PCoA with Bray–Curtis dissimilarities

on relative counts (proportions were based on total number

of function counts in selected RAST subcategories related to

primary metabolism pathways to reduce the variation in

counts; see heatmap of relative counts in supplementary

fig. S8, Supplementary Material online) using the “capscale”

function in the vegan package v2.5.6 (Oksanen et al. 2019).

Orthogroup incidence was visualized with a PCoA using a

Jaccard similarity coefficient for presence–absence data.

Second, a permutational multivariate analysis of variance

(PERMANOVA) was performed with the “adonis” function

to determine whether metabolic traits and orthogroup inci-

dence varied by bacterial taxonomy with 999 permutations

and Bray–Curtis dissimilarities on relative count data or

Jaccard similarity coefficient for presence–absence data. A

post hoc pairwise PERMANOVA was implemented using the

“adonis.pair” function from the EcolUtils package v0.1

(Salazar 2020) with 999 permutations and Benjamini–

Hochberg false discovery rate P value adjustment method

(FDR). Then, a Ward’s linkage agglomerative hierarchical clus-

ter was applied to relative count data with Bray–Curtis dissim-

ilarities to generate a dendrogram by bacterial strains. The

pvclust package v2.2.0 (Suzuki et al. 2019) was implemented

to identify significant clusters in the hierarchical cluster with

approximately unbiased P values and bootstrap probability

support values (n¼ 10,000). Finally, PCoA of the

metabolism-related orthogroups were correlated with the

PCoA of all orthogroups using a Procrustean randomization

test (999 permutations) in the vegan package with the func-

tion “protest.”

Correlation between dendrograms was determined using

two metrics. First, normalized Robinson–Foulds (nRF) metric

was calculated using the phangorn package v2.5.5 (Schliep

2011) to test for congruence between dendrogram topolo-

gies. nRF values are bounded between 0 and 1, correspond-

ing to complete congruence to incongruence. Then, a Mantel

test was performed to associate two distance matrices using

Spearman’s rank correlation with 999 permutations using

vegan. For phylogenies, cophenetic distances (pairwise sum

of branch lengths) were calculated using the

“cophenetic.phylo” function in ape. Bray–Curtis dissimilarities

were used for the relative function counts. Tanglegrams were

generated using the dendextend package v1.13.4 (Galili

2015) with the “step2side” aligner.

For the analysis of prevalent species, represented in at least

four flies and comprising >4 strains, several methods were

used to compare pangenome distribution and functional con-

tent. Differences in the pangenome distribution index were

examined with a beta regression using the betareg package

v3.1.3 (Cribari-Neto and Zeileis 2010). A likelihood ratio test

was used to assess the effect of species by comparing the

regression to an intercept-only model with the package lmtest

v0.9.37 (Zeileis and Hothorn 2002) and a post hoc Tukey’s

test was implemented with the emmeans package. Pearson’s

product-moment correlation coefficient was used to assess

linear association between strain diversity and pangenome

distribution gene count. Strain diversity was scored in two

ways: first with Shannon’s entropy on the concatenated

amino acid sequence alignment used in the phylogenomics

analysis with the Bio3d package (Grant et al. 2006) and then

nucleotide diversity was obtained for 16S rRNA gene align-

ment with the pegas package (Paradis 2010). A two-sided

Fisher’s exact test was used to compare orthogroup incidence

between species, whereas a one-sided Fisher’s exact test was

used for enrichment of subsystems in the accessory genome

compared with the core genome of each species. The odds

ratios (OR) were calculated based of the function count of a

given subsystem in the accessory genome relative to the rest

of the function counts in the core genome. FDR method was

used to adjust for multiple Fisher’s exact tests.
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Supplementary data are available at Genome Biology and

Evolution online.
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