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Since the first discovery of human immunodeficiency virus 1 (HIV-1) in 1983, the targeted treatment, antiretroviral therapy
(ART), has effectively limited the detected plasma viremia below a very low level and the technique has been improved rapidly.
However, due to the persistence of the latent reservoir of replication-competent HIV-1 in patients treated with ART, a sudden
withdrawal of the drug inevitably results in HIV viral rebound and HIV progression. Therefore, more understanding of the
HIV-1 latent reservoir (LR) is the priority before developing a cure that thoroughly eliminates the reservoir. HIV-1 spreads
through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell
transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection.
This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the
main obstacle for curing the infection. In this review, the definition, establishment, and maintenance of the HIV-1 LR, along
with the state-of-the-art quantitative approaches that directly quantify HIV-1 intact proviruses, are elucidated. Strategies to
cure HIV infection are highlighted. This review will renew hope for a better and more thorough cure of HIV infection for
mankind and encourage more clinical trials to achieve ART-free HIV remission.

1. Introduction

Over 70 million people have been infected with human
immunodeficiency virus 1 (HIV-1) so far since the first out-
break of the HIV-1 epidemic [1] in 1981, and since then,
millions of survivors have lived with HIV-1 who are the
beneficiaries of antiretroviral therapy (ART). The 2019
UNAIDS Report and World Health Organization both esti-
mate that there are 38~70 million people living with HIV-1
infection. Of those individuals, almost 25 million have
access to antiretroviral therapy (ART). Various studies have
shown the half-life of the HIV-1 reservoir can range some-
where between 44 months and 13 years, and in some
cohorts, no decay was observed at all. Thus, lifelong ART
is required to maintain viral suppression and achieve the
best health outcomes in the majority of individuals [2].
Nowadays, a number of evidence has pointed out that the
risk of recurrence is related to the latent reservoir (LR) of
HIV-1, also known as HIV latency, which is a pool of rest-

ing CD4+ T cells infected with replication-competent provi-
ruses in patients treated with ART. These infected cells have
stopped generating new viral particles temporally or for a
long time since the treatment. Nonetheless, these infected
memory CD4+ T cells which permit HIV-1 to escape from
immune surveillance are the main obstacle to HIV elimina-
tion. Thus, using ART treatment to eliminate HIV is cur-
rently unrealistic.

At present, the eradication of HIV is still in need of accu-
rate quantification of the HIV-1 LR. Although a barrage of
improved assays for measuring the HIV reservoir size has
been developed, there is no broad consensus on the method-
ology yet. Despite more than three decades of efforts, the
understanding of the HIV-1 latent reservoir is not enough,
and to have more understanding of it is the priority before
thorough elimination of it can be achieved (a cure) and
plasma viremia can be persistently inhibited after ART with-
drawal (a functional cure) (Figure 1). In this review, the def-
inition, establishment, and maintenance of the HIV-1 LR are
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elucidated, and standard and state-of-the-art approaches to
quantify reservoir size are reviewed. Finally, current progress
of the elimination of the HIV LR is highlighted.

On the left is the ART intervention on HIV-1 virus with
recurrent infection after HIV-1 LR measurement to elimi-
nate HIV-1. On the right is the strategy of eliminating
HIV-1 LR carried out by persistence in long-lived memory
T cell and homeostatic promotion of T cells.

2. Definition of HIV-1 LR

The HIV-1 LR is defined as a small pool of latently infected
cells that persist for decades in people living with HIV
(PLWH) who have received ART [3]. These cells harbor
integrated and intact proviruses that do not actively produce
infectious virions but can do so upon stimulation [4].
Although such cells are extremely rare (around 1 in 1 mil-
lion resting CD4+ T cells), the reservoir is long-lived, with
an estimated half-life of 44 months [5]. This indicates that
ART alone will not eradicate the reservoir in a lifetime.

The precise nature of the HIV-1 LR remains unclear.
The assessment of the transcriptional and translational sta-
tus of persistent HIV proviruses in virally suppressed indi-
viduals challenges our definition of HIV latency. Whereas
viral latency is often associated with transcriptional latency
(i.e., the lack of transcription from the HIV promoter), an
increasing number of studies have indicated that complete
silencing of the HIV promoter is a rare event. Therefore, a
relatively large fraction and possibly the majority of latently
infected cells (cells that do not produce viral particles) may
express low levels of short viral transcripts [6]. Although
these abortive transcripts are frequently produced, they
rarely elongate enough to generate complete or spliced tran-

scripts [7]. Accordingly, the production of viral proteins by
latently infected cells appears to be rare [8].

2.1. Establishment of the HIV-1 LR: When, Where, and How

2.1.1. When. The current consensus is that the reservoir is
established in individuals immediately after HIV-1 infection
and even on early ART [9]. Animal experiments show that
HIV-1 LR stays in lymph nodes (LNs) and gut-associated
lymphoid tissues (GALTs) within the first 72 h of mucosal
simian immunodeficiency virus (SIV) infection [10]. Also,
the HIV-1 LR was established in less than 10 days in a
unique case who initiated preexposure prophylaxis/ART as
long as 10 days after infection, and he experienced viral
rebound 225 days after ART withdrawal [11]. The exact time
of HIV-1 LR establishment in humans remains unclear.

2.1.2. Where. In the case where ART is not administered, the
stimulated CD4+ T cells serve as the main target of HIV
infection and die rapidly [12]. Only a minute fraction of
these infected cells survive and become a long-lived reservoir
of latently infected cells [13]. However, peripheral T cells
only account for less than 2% of the total cells infected, so
circulating T cells are not a unique site of HIV replication
and are unlikely to represent the most favorable environ-
ment for the establishment of HIV latency. In the presence
of ART, these reservoirs are particularly spread in GALTs
and LNs [14] relative to the spleen, liver, lung, central ner-
vous system, and bone marrow [15]. Lymphoid tissues
may especially represent a favorable environment for the
establishment of viral latency. It is not surprising that
HIV-infected cells are found in multiple tissues after years
of ART [16].
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Figure 1: HIV-1 LR measurement and elimination strategy.
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Currently, imaging the persistent tissue reservoir in
living people on ART is not possible. Recently, a study of
tissues collected from 6 postmortem PLHIV patients
revealed that HIV proviruses existed in all 28 tissues exam-
ined wherein the blood and the lymphoid system serve as
the main vectors for virus dissemination throughout the
body [16]. Besides, HIV-1 DNA is highly enriched in
CD4+ tissue-resident memory T (TRM) cells in the female
genital tract (particularly the cervix) [17] and the male gen-
ital tract which may be a tissue reservoir where macrophages
are enriched [18]. Macrophages enriched in these tissues
may serve as potential viral sanctuaries. However, whether
reproductive tracts are tissue reservoirs remains poorly
understood.

2.1.3. How. There are two models for the establishment of
the HIV-1 LR. First, as CD4+ TRM cells are the predomi-
nant population [12], the activation-to-quiescence transition
using a defined cocktail of cytokines, including tumor
growth factor-beta (TGF-β), interleukin-10 (IL-10), and
IL-8, probably provides an opportunity for the establishment
of HIV latency and allows the persistence of latently infected
cells [19]. In the immune microenvironment, checkpoint
molecules expressed on T cells are the immunosuppressive
factors that significantly repress T cell activation and con-
tribute to HIV-1 latency, of which PD-1, LAG-3, and TIGIT
are the known markers to block HIV-1 persistence during
ART [20–22]. More studies have explained the active role
of PD-1 that blocks HIV transcription [23, 24]. Of note,
the coculture of monocytes or myeloid dendritic cells
(mDCs) with activated HIV-infected T cells augments the
transition to a postactivation state of latency, indicating the
potential cell-to-cell contact during the establishment of
HIV latency [25, 26].

The two means for the establishment of viral latency
consist of direct infections in CD4+ TRM cells and cell-to-
cell transmission between infected and uninfected CD4+
TRM cells. Although the inefficient infection in CD4+
TRM cells can be blocked during the HIV replication cycle,
the indirect cell-to-cell transmission gives way to HIV-1
latency [27]. Besides, soluble factors are also contributors
to HIV-1 latency in resting CD4+ T cells. For instance, IL-
7, for T cell homeostasis, regulates the activity of the restric-
tion factor SAMHD1 and exacerbates the vulnerability of
CD4+ TRM cells to HIV-1 [28, 29]. Similarly, the chemo-
kines CCL19 and CCL20 participating in cell trafficking
from other tissues to LNs and GALTs may increase the pos-
sibility of HIV infection in CD4+ TRM cells via modifying
the actin cytoskeleton to allow the nucleus of HIV-1 DNA
to enter a LR of quiescent integrated HIV-1 DNA [30].
The sites of CD4+ TRM cell recruitment may impact HIV-
1 susceptibility: CD4+ T cells derived from lymphoid organs
(the spleen and tonsil), subjected to moderate-level activa-
tion, benefit from the establishment of the HIV LR [31].

3. Maintenance of the HIV-1 LR

Several studies over the past decade have reported that such
clonal expansions of latently infected cells—the duplication

of partial and near-full-length HIV genomes and/or integra-
tion sites—are the key mechanism of maintenance of the
HIV reservoir [32–34]. The infected cells in clones in sam-
ples of patients undergoing ART may differ from each other
[35]. The following mechanisms explain the heterogeneity
[36]: (a) antigen-driven clonal proliferation of infected cells
[37], (b) homeostatic proliferation of infected cells [38],
and (c) HIV integration-induced cell proliferation [39].
Although the first mechanism is a major driver of the main-
tenance of the HIV reservoir as confirmed by most
researchers, the effect of the coexistence of the other two
mechanisms cannot be excluded [36, 40]. Therefore, clonal
expansion of latently infected cells contributes to the main-
tenance of the HIV-1 LR.

4. Measurement of the HIV-1 LR

Despite clinically efficacious ART, replication-competent
HIV-1 persists as latent proviral DNA capable of rekindling
viral replication after ceasing ART. Therapies to eliminate
latent HIV-1 are being developed for a complete cure. Accu-
rate assays to quantify intact or rebound-competent HIV-1
are critical to this effort. Four challenges obstruct the precise
quantification of the HIV-1 LR. The gravest one is that in
ART-treated PLWH with mutations and/or deletions,
HIV-1 proviruses produce defective mutants which are
unable to replicate. However, not all intact genomes (with-
out defective mutations or deletions) can produce virions
after induction. It is more of an occasional incidence of
latently infected cells. Finally, most HIV reservoirs that
reside in tissues cannot be accurately sampled with current
specimen-collection approaches [41–44].

The conventional quantification of HIV, the gold stan-
dard VOA assay, can merely detect the transcribed replicates
of totiviruses; therefore, this technique underestimates reser-
voir levels. However, PCR analysis for total HIV DNA or
Alu-Gag PCR also quantitates a large amount of defective
HIV DNA fragments and thereby overestimates reservoir
levels. Bruner et al. developed a new method, the intact pro-
viral DNA assay (IPDA), to amplify HIV ψ fragments and
the Env gene using droplet digital PCR (ddPCR). HIV DNAs
used for the amplification of ψ are limited to those whose 3′
ends are defective, and only the DNAs used for the amplifi-
cation of Env have defective 5′ ends. Double-positive HIV
DNA amplified using IPDA is intact HIV DNA, which not
only corroborates the results from the VOA assay but also
compensates for the flaw of the PCR assay that can yield
false-positive results due to defective viral fragments. Based
on these studies, reservoirs of potential intact HIV DNA
and those of defective HIV DNA hold completely different
traits and effectively overcome the three challenges men-
tioned above (the fourth challenge is an objective existence).

IPDA for HIV DNA quantification using ddPCR targets
multiply regions of proviral DNA to exclude deleted and
hypermutated proviruses. The ddPCR is the third-
generation PCR technique, which partitions samples into
20,000 droplets, and each droplet contains an independent
reaction system and tremendously reduces interference from
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background nucleic acid molecules during PCR amplifica-
tion. Therefore, it is competent in the quantification of
low-copy nucleic acid molecules of interest. The ddPCR
technique uses the ratio of positive to negative droplets
among the 20,000 droplets to calculate the copy number of
target nucleic acid molecules, without the use of standard
substances for standard curves. Here is the specific principle:
an amplicon is added at the packaging signal and the con-
served site in the env sequence, respectively, excluding 90%
of deficiency; at the same time, a mutant protein is added
to bind to the amplified loci of env, excluding 95% of most
frequent mutations. As a result, double-positive DNA frag-
ments can be identified as intact proviral DNA. Meanwhile,
two amplicons with the same distance as that of the refer-
ence RPP30 gene in another hole are designed for shearing,
control (the strand break of DNA between two amplicons
during DNA extraction will reduce the double-positive
number detected and there by the results could be underes-
timated), and cell quantification. By this means, the size of
reservoirs can be calculated.

IPDA is optimal for high-throughput analysis in large
interventional or observational clinical studies. For instance,
a recent longitudinal cohort analysis has evaluated the decay
rate of intact and defective proviruses in a large number of
patients by using this technique [45]. Another study using
this measurement found no relationship between heroin or
cocaine use and the reservoir size [46]. This technique offers
competitive advantages of 97% elimination of defective pro-
viruses, only about 1.5-fold overestimation of the LR size,
simpler operation, lower cost, and greater speed than tradi-
tional QVOA. Nonetheless, sequence polymorphisms in
some patients, the requirement for alternative primers or
proteins, and within-clade diversity dependence obstruct
the efficient amplification so the provirus inducibility cannot
be accurately quantified.

5. Elimination of the HIV-1 LR

5.1. Strategies Targeting the HIV-1 Replication Cycle

5.1.1. Early ART. Early initiation of ART is aimed at reduc-
ing virus diversification since the diagnosis of HIV infec-
tion can prevent damage of immune function as much
as possible, minimize HIV-related complications in treated
individuals, and prevent human-to-human transmission by
lowering viremia [47]. Early ART initiation currently can-
not achieve an HIV cure in adults or mothers; however,
the infants can be the beneficiaries of the early interven-
tions. As these early interventions reshape the association
between the virus and the immune system, HIV infection
can be ultimately controlled after ART withdrawal in a
certain proportion of patients that have received ART at
an early stage. This population accounts for approximately
5–10% of all HIV-infected individuals, who become post-
treatment controllers achieving ART-free viral remission
[48, 49].

During long-term ART, much of the reservoir derive
from the cells that are infected just before treatment initia-
tion. It is arguable that in the preintervention period, the

putative reservoir is unstable [50, 51]. This implies that dur-
ing early ART, the rapidly changing immune environment
shifts the balance toward a state in which HIV latency can
be achieved. Presumably, the massive reduction in HIV-1-
associated inflammation and T cell activation reduces the
turnover of the reservoir, leading to the generation of
longer-lived cells harboring intact genomes. Immune stimu-
lation under the cover of ART (preferably with the coadmin-
istration of a therapy that induces the killing of infected
cells) might work best during this window of opportunity.

5.1.2. Transplantation. There are two studies of two patients
(from Berlin and London) who underwent allogeneic stem
cell transplantations from CCR5132/132 donors who
achieved an HIV-1 cure. After monitoring their plasma vire-
mia for 10 and 2 years, respectively, negative results were
found after ART withdrawal [52, 53]. These studies reported
the depletion of the HIV-1 LR during pretransplant condi-
tioning, and the reservoirs were replaced with donor cells
with Delta 32 CCR5 deletion to confer resistance to R5-
tropic HIV-1 infection [54]. As there are a lack of
CCR5132/132 donors, diagnosis delay of HIV infection in
most cases, and massive expenditure, HIV cure for most
patients is unrealistic. Therefore, silencing, the basic princi-
ple of HIV-1 cured, or HIV-1 LR elimination is the priority.

5.1.3. Gene Editing. Recent years have seen the emergence of
several gene editing tools, such as CRISPR Cas9 and zinc-
finger nucleases (ZFN). These techniques are potent in
enhancing host resistance or disrupting viral latency through
the silencing of integrated provirus in the host, which paves
the way for an HIV-1 cure. These strategies offer the precise
correction of sequences in a genome. Different from LRAs,
they can produce desired outcomes without a physiological
impact throughout the body. Notably, as several studies
reported off-target effect, the safety of these methods must
be evaluated before the clinical application. [55] So far, the
only clinical study has achieved Delta 32 CCR5 deletion
using ZFN-targeted editing to help patients gain partial
genetic resistance to R5-tropic HIV-1 infection [56]. Most
studies focus on the efficacy of CRISPR-Cas9 because of its
simple operation. Some studies have performed CCR5 or
CXCR4 ablation in CD4+ TRM cells using CRISPR-Cas9
to protect cells against CCR5 or CXCR4 tropic HIV-1 infec-
tion [57–59]. To specifically knockout or silence the HIV-1
proviral genome, which is the premise of HIV-1 LR elimina-
tion, is feasible with CRISPR Cas9 therapy [60, 61]. Besides,
by targeting other domains of the HIV-1 proviral genome,
the resultant indels in these domains introduced by NHEJ-
mediated repair can result in frameshift mutations to deacti-
vate the provirus [62, 63]. This strategy, in combination with
a novel drug delivery system, was successfully performed in
mouse models [64]. During the viral replication cycle,
though multiple editable sites can be targeted in the HIV-1
proviral genome using a CRISPR-Cas9 strategy, therefore,
more options for quasispecies diversity are provided; the
lack of adequate viral vectors or lipid compounds is a barrier
to effective delivery [65]. Considering that there is a substan-
tial number of LNs, GALTs, and other tissues with HIV-1
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LR, the elimination of the reservoirs is a project that has to
be exerted with such great effort that current strategies can
hardly make it.

5.1.4. Shock and Kill. The shock and kill strategy was put for-
ward by Siliciano and Deeks in 2012. It is a combination
strategy using latency-reversing agents (LRAs) in immuno-
therapeutic treatment (e.g., T cell vaccines) to shock and kill
intervention activated cells via reactivating them, thereby
reducing the size of the LR and preventing viremia rebound
[66, 67]. Since the single use of either constituent merely
shows limited clinical benefit, the combination strategy is
yet to be tested, leaving its efficacy to be in doubt. However,
its flaws are currently known as toxic side effects and sys-
temic immune response alongside HIV-1 latency reversal.

The commonly used LRAs can be assigned to six groups
by pharmacological mechanisms: histone posttranslational
modification modulators, nonhistone chromatin modula-
tors, NF-κB stimulators, TLR agonists, extracellular stimula-
tors, and a miscellaneous category of unique cellular
mechanisms [68]. The nonspecific histone deacetylase inhib-
itors (HDACIs) characterized to acetylate the histone of
integrated proviral promoters in vitro are the most promi-
nent at present. Clinical trials for the promising HDACI
candidates, including vorinostat, disulfiram, and romidep-
sin, reported that these HDACIs effectively induced viral
replication and killed activated cells harboring HIV once
the immune system was activated [69–71].

Inspired by a current finding that some of the latently
infected CD4+ T cells are HIV-specific, efforts have been
made to develop cost-effective and safe HIV-specific vac-
cines to reverse HIV latency [72, 73]. HIV vaccines reacti-
vate HIV-specific latently infected cells to eliminate them
via stimulated cytotoxic T lymphocytes (CTLs) [74], thus
offering a near-complete representation of viral quasispecies
and an enhanced killing effect of the shock and kill strategy
[67]. The shock effect can be enhanced using a latency-
reversing intervention with the involvement of other
immune cells. For instance, GS-9620 (a TLR-7 agonist) can
reactivate HIV-infected CD4+ TRM cells probably through
IFN-γ release from plasmacytoid dendritic cells [75].
Despite those reported effective results, some studies had
inconsistent results and reported that these strategies have
nonsignificant effect on diminishing the size of the HIV res-
ervoir in patients [76, 77]. Some studies even reported
adverse effect on immune response after the administration
of these strategies [78, 79]. Some scholars from the Univer-
sity of Pennsylvania proposed that the research and develop-
ment of COVID-19 vaccine will help promote the research
and development of HIV vaccine. These undesirable results
may be ascribed to insufficient killing effect, so extensive
studies using strategies with improved killing effects are
being developed, including employing broadly neutralizing
antibodies and immune checkpoint inhibitors [80], as shown
in the details below.

5.1.5. Block and Lock. There are some data indicating that
the HIV genome that becomes preferentially enriched in
intergenic regions becomes hypermethylated over time

through multiple mechanisms, resulting in less HIV expres-
sion [31]. This evolution of proviral distribution reflects the
survival of cells with defective HIV viruses and that of the
viruses in regions of the genome that promotes “deep
latency.” A relatively novel cure strategy, namely, block
and lock, by contrast, aimed at reinforcing latency (“block”)
rather than inducing latency reversal, has been proposed to
prevent viremia rebound following ART discontinuance
[81, 82]. To illustrate it in detail, transcriptional gene silenc-
ing (TGS) by promoter targeting small interfering RNAs
(siRNAs) can rapidly recruit chromatin remodelers to
repress HIV-1 transcription [81]. To enhance or maintain
the HIV-1 latency, the targeted inhibition of the HIV-1 pos-
itive regulator Tat is employed so that the viral replication
cycle can be blocked (“lock”) at the transcriptional level
[82]. Clinical studies about other potential HIV-silencing
techniques are in progress. Among the potential candidates,
inhibitors of mammalian target of rapamycin (mTOR) have
been justified as effective [83]. Their therapeutic efficacy and
safety have been validated in clinical studies.

Though the efficacy of “shock and kill” approach is
uncertain, evidence has pointed out that it can remarkably
diminish the LR size and is expected to achieve ART-free
HIV remission.

5.1.6. Strategies That Target the Immunity

(1) Therapeutic Vaccination. Therapeutic vaccination
enhances the host immune response to HIV-1, thus eradi-
cating the HIV-1 LR or diminishing viremia rebound as a
cure. This way leverages vaccine inoculation during sus-
tained ART-mediated viral suppression. During ART inter-
ruption, the time to viral rebound, the size of the LR, and
the profile of the host immune response are detected to con-
firm the efficacy of HIV-1 vaccination.

HIV-1 vaccines only trigger narrow CTL response to
specific HIV-1 proteins (e.g., gag) after inoculation. CTL
escape mutants can be enhanced due to a weaker efficacy
since the mutation happens during primary infection [84,
85]. Therefore, HIV-1 vaccine is seemingly more reliable as
it triggers a broader anti-HIV-1 immune response. Some
researchers stated that they would fabricate dendritic cell-
(DC-) based vaccines using autologous DCs cocultured or
transfected with inactivated HIV-1 to stimulate CD4+
TRM cells to boost immune responses [86, 87]. Interestingly,
a study reported that a combination of HIV-1 vaccines and
Tat-based immunization, a “block and lock” strategy, con-
tinually suppressed the proviral reservoir followed by the
recovery of immune function. This suggests that therapeutic
vaccination can boost the immune response in HIV-1 infec-
tion clearances [88].

Currently, HIV-1 vaccines have not yet induced sus-
tained HIV-1 remission. Among these studies, a study by
Davenport et al. expressed their concern that although the
most efficacious vaccines could block 80% of viral reactiva-
tion, viremia rebound could quickly occur in these patients
in less than five weeks after ART withdrawal [89]. This indi-
cates that HIV-1 vaccination cannot thoroughly eliminate

5Disease Markers



the latent HIV-1 reservoir, which means it is insufficient to
overcome viral rebound and further cure HIV-1 infection.
To make up for this shortcoming, in contrast to using
HIV-1 vaccination separately, a proper combination of strat-
egies, such as shock and kill, targeted to suppress viral
rebound can be more effective in the treatment. Two clinical
studies have adopted and validated this combination proto-
col (gag-based vaccination followed by HDCAI latency
reversal); however, plasma viremia has been redetected in
less than two weeks after that [90, 91].

5.1.7. Broadly Neutralizing Antibodies (bNAbs). Immuno-
therapies are popular as the HIV antagonists directly target
cells expressing the HIV envelop proteins that interact with
the lymphocyte cell-surface molecule CD4 so the latent
HIV reservoir can be eliminated. Some studies reported that
bNAbs targeting specific envelope glycoproteins probably
suppress virus replication in vivo [92, 93] by blocking the
entry and spreading of virus. Theoretically, bNAbs can trig-
ger host-mediated cytotoxicity by binding themselves to
envelope proteins expressed on the surface of infected
immune cells that have already been stimulated, thereby
reducing the active reservoir. Whether the infected cells are
killed in vivo remains unproven, though indirect evidence
suggests that it may have some effect [94].

Some early proof-of-concept studies about several strat-
egies aimed at enhancing PTC were being completed. Even
if bNAbs cannot directly clear the latent cellular reservoirs
of HIV infection, it has been postulated that they achieve
this for highly immunogenic antibody-antigen response
and thus might stimulate potent HIV-specific immune
response and achieve post-ART control [95].

Hindered by the barriers to HIV-1 vaccine development
and HIV-1 eradication and remission, passive transfer of
monoclonal HIV-1 neutralizing antibodies is another
option. The small-molecule drugs bNAbs featuring longer
half-lives currently being used not only have an attractive
price but also stimulate the immune response directly and
exert a robust killing effect on the latently infected cells. By
this means, the course of HIV-1 infection can be shortened.
As of now, several clinical trials have used various bNAbs
and successfully verified the efficacy of suppressing and con-
trolling viremia rebound [96].

5.1.8. Chimeric Antigen Receptor T (CAR-T) Cells. CAR-T
cell therapy has been employed to treat B cell malignancies
[97–99], and there is evidence that reveals its potential in
treating HIV-1 infection. For eliminating latently infected
cells, autologous T cells can be engineered to express a
unique CAR to confer HIV-1 antigen specificity. Patients
who receive CAR-T cell therapy can directly raise the CTL
response to cells expressing the disease epitope [100], so
CAR-T cell therapy can eliminate latently infected cells with
HIV-1-associated antigen through the killing effect of CTLs,
aiding in the control of the virus without ART. Some in vitro
experiments using CAR-T cell therapy have ascertained a
satisfactory efficacy of anti-HIV-1 CAR-T cells [101, 102].
An animal experiment based on mouse models where the
mouse cells were infected with HIV-1 showed the effective

eradication of HIV-1 infected cells [103]. Notably, preclini-
cal studies ascertained that bNAb-based CAR-modified
CD8+ T cell therapy is possible as a cure; however, it needs
to be validated by high-quality clinical studies. At present,
CAR T-cell therapy is flawed with CAR T cell expansion,
persistence, off-target effect, and severe cytokine release syn-
drome (sCRS). More work is needed to address these issues.

5.1.9. Immune Checkpoint Blockers. The definition of
immune checkpoints is a large sum of regulatory pathways
that potently suppress the immune activity, particularly the
T cell activity; the associations between immune check-
points, immune exhaustion, and impaired function have
been proven (reviewed by Wykes and Lewin) [104]. CD4+
T cells in the peripheral circulation and lymphoid tissues
express high levels of immune checkpoint markers, includ-
ing programmed cell death protein 1 (PD-1), cytotoxic T
lymphocyte antigen 4 (CTLA-4), and other markers that
adhere to the membrane to exert the killing effect on HIV
once activated [22, 105, 106]. Expressions of immune check-
points are upregulated in HIV-specific CD4+ and CD8+ T
cells when HIV-specific immunity is activated in untreated
and treated cases and ex vivo. The single or combined use
of antibodies against these markers can enhance the upregu-
lation [21]. In this way, the HIV LR can be reduced [104].
The upregulated checkpoints in latently infected T cells
incorporate PD1/PD-L1 and CTLA-4 as the main compo-
nents. These markers are worthy of research on drug deliv-
ery or HIV-1 clearance [107–109]. In vitro studies on the
efficacy of immune checkpoint blockers claimed that the
HIV-1 LR could be inhibited via the IC-mediated manner,
and in vivo studies also confirmed its effect of promoted
latency reversal. These results show the anti-HIV-1 potential
of immune checkpoint inhibitors [23, 24, 110].

6. Combination Therapy for HIV-1 Infection

At present, no single treatment can eliminate HIV-1 LRs,
nor even remission. Combination strategies can minimize
the LR level with the host immune system defending against
latent infection efficiently after treatment. Most ongoing
studies on HIV-1 cures designed to assess their safety and
relevant mechanism remain in preclinical and transitional
phases. Clinical trials for assessment of combination
approaches are getting more and more attention [111], and
more efficacious combination strategies are expected to
achieve a complete cure or remission [91, 112].

7. Conclusions

Some progress in HIV-1 cure development has been made,
such as reduced HIV-1 mortality and HIV-1 LR measure-
ment. But there is still a long way to go for the research
and development of HIV-1 elimination and remission as
preexisting measurement cannot guarantee 100% accurate
quantitation of the HIV-1 LR at each stage, and current ther-
apies cannot achieve complete clearance due to the persis-
tent LR.
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The past decade has witnessed many strategies proposed
as a cure, among which the shock and kill therapy is the
most promising. Validation studies of the shock and kill
strategy reported neither decrease nor increase in the time
to viral rebound, and the virus reactivation still existed
in vivo. Hence, the enhancement of the killing effect against
the HIV-1 LR and alternative methods, such as therapeutic
vaccination and immune boosters against HIV-1 infection
via augmenting immune-mediated control of HIV-1 after
ART withdrawal, is required. Regarding novel methods,
such as immune checkpoint inhibitors, gene editing tools,
and CAR-T cell therapy, their efficacy needs to be verified
in more clinical studies. These approaches have renewed
hope for an HIV-1 cure. Posttreatment complications, such
as adverse effects weakening immune response, pose chal-
lenges in patient compliance and precise assessments of the
therapeutic efficacy. The complexity of LR quantification is
associated with the inherent variability of the HIV-1
genome, the low incidence of latently infected cells, and
the abundance of defective proviruses.

Instead of emphasizing on single-agent strategies, the
combined use of synergistic anti-HIV-1 agents (e.g., LRAs
plus HIV-1 vaccination) is more likely to remarkably reverse
the HIV-1 LR and achieve the ultimate goal of long-term
ART-free viral remission.
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