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Immune checkpoint inhibitors (ICI) have emerged as a powerful oncologic treatment
modality for patients with different solid tumors. Unfortunately, the efficacy of ICI
monotherapy in ovarian cancer is limited, and combination therapy provides a new
opportunity for immunotherapy in ovarian cancer. DNA damage repair (DDR) pathways
play central roles in the maintenance of genomic integrity and promote the progression of
cancer. A deficiency in DDR genes can cause different degrees of DNA damage that
enhance local antigen release, resulting in systemic antitumor immune responses. Thus,
the combination of DDR inhibitors with ICI represents an attractive therapeutic strategy
with the potential to improve the clinical outcomes of patients with ovarian cancer. In this
review, we provide an overview of the interconnectivity between DDR pathway deficiency
and immune response, summarize available clinical trials on the combination therapy in
ovarian cancer, and discuss the potential predictive biomarkers that can be utilized to
guide the use of combination therapy.

Keywords: ovarian cancer, DNA damage response, PARP inhibitors, combination therapy, immune checkpoint
inhibitors (ICI)
BACKGROUND

Immune checkpoint inhibitors (ICI), such as CTLA-1, PD-1, and PD-L1, have emerged as a
powerful oncologic treatment modality and have become a standard treatment for patients with
different tumor types (1, 2). Unfortunately, the results of several studies on monotherapy ICI agents
in epithelial ovarian cancer (EOC) are disappointing (3, 4). Different combinatorial therapeutic
strategies to enhance tumor immunogenicity are needed to improve the efficacy of ICI therapy in
ovarian cancer. The data suggest that DNA damage repair (DDR) deficiency promotes local antigen
release, resulting in systemic antitumor immune responses (5). As such, combining ICI agents with
DDR-targeting agents provides a new opportunity in the treatment of ovarian cancer.
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DNA damage constantly occurs in cells under the threat of
both exogenous and endogenous stressors. Under these
conditions, cells initiate a series of DNA damage responses to
maintain genome integrity. DNA damage commonly falls into
single-strand breaks (SSBs) and double-strand breaks (DSBs),
and the DDR pathways are used to repair them through damage
recognition and DNA repair depending on the specific type of
damage detected. In normal cells, if the DNA damage is too large
that it exceeds the capacity of DDR, then an apoptosis program is
activated to eliminate unrepaired DNA damage. In cancer cells,
the damaged DNA, which may be due to endogenous
physiological factors (e.g., aldehydes and reactive oxygen
species) or external physical and chemical therapeutic agents
(e.g., ionizing radiation and platinum drugs), is often complex
and exceeds the repair capacity of DNA damage responses.
Moreover, cancer cells have the characteristics of high division
rate and rapid accumulation of related aberrations, which lead to
genome instability (6). Inhibition of DDR is an effective
therapeutic strategy for cancers. For ovarian cancer, mutations
in the homologous recombination (HR) repair genes BRCA1 and
BRCA2 are the most common alterations and inhibitions of the
DDR pathway protein poly(ADP ribose) polymerase (PARP).
These mutations are an attractive synthetic lethal target for
therapy with the greatest efficacy observed. A phase III study
on patients with platinum-sensitive recurrent ovarian cancer
taking PARP inhibitors as maintenance therapy found that
these patients had longer progression-free survival compared
with the placebo group, independent of the BRCA1/2 mutation
status or other HR repair gene status (7). A study on breast
cancer cell lines and animal models revealed that PARP
inhibitors upregulated PD-L1 by inactivating GSK3b, and the
combination of PARP inhibitors and anti-PD-L1 demonstrated
better therapeutic benefit than each treatment alone (8). The
combination of PARP inhibitors and ICI therapy is being tested
in several clinical trials in ovarian cancer currently. A better
understanding of the interconnectivity between PARP inhibitor
and immune responses would facilitate efforts in the
development of single and combination of agents.

In this review, we discuss in detail the molecular mechanisms
by which PARP inhibitor treatment induces immune responses,
summarize available clinical data on combination therapy in
ovarian cancer, and explore the potential predictive biomarkers
that are utilized to guide the use of combination therapy
DNA DAMAGE REPAIR PATHWAYS IN
OVARIAN CANCER

Over 450 proteins have been identified to be involved in DDR
pathways. These proteins are involved in various DDR pathways
according to their mechanisms of action and functions to
different types of DNA damage (9). Mismatch repair (MMR) is
one of the most widely studied DDR pathways. The principle of
MMR is that, in the process of replication, base mismatches can
distort the helical structure of a DNA, which will lead to the
excision of the mismatched DNA and then replacement of the
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damaged site with newly synthesized DNA (10). The MMR
pathway can identify abnormalities in DNA strands and repair
defects. The main proteins involved in these processes are MSH2,
MSH3, and MSH6 and MLH1, MLH3, PMS1, PMS2, and PMS3,
respectively (11, 12). About 29% of ovarian cancer cases have
been found to lose the function in any of the MMR pathway
proteins (13). Base excision repair (BER) is the major repair
route for endogenous SSBs. This pathway removes damaged
bases from the double helix and excises the damaged section
from the DNA structure (14). In ovarian cancers, overexpression
of the BER pathway proteins FEN1 and XRCC1 are reportedly
linked to high clinical stage and poor survival (15, 16).
Nucleotide excision repair (NER), the removal of large DNA
lesions, is specific to single-strand DDR that causes structural
distortions within the DNA double-helix (17). The NER pathway
proteins are key factors involved in response to treatment and
prognosis in ovarian cancer, among which the most important
are XPA-G, XRCC1-DNA ligase, RPA, polymerase epsilon,
RAD23A and B, CAS and CSB, and ERCC1 (18, 19). HR is an
accurate and error-free pathway utilized to detect and repair
DSBs. This process is mainly confined to the S and G2 phases of
the cell cycle. Nucleotides are removed from both upstream and
downstream at the damaged site, and new DNA is synthesized
using the homologous sister chromatid as a template (20). The
HR pathway includes various molecules, such as BRCA1,
BRCA2, and XRCC2/3 (21, 22). In high-grade serous ovarian
cancer, BRCA1/BRCA2 gene mutations are important players in
the HR pathway and account for 20% of patients with ovarian
cancer with BRCA1/BRCA2 somatic or germline mutations (23).
Additionally, mutations in other genes involved in the HR
pathway are seen in ovarian cancers (24). Non-homologous
end joining (NHEJ), an independent additional repair pathway,
functions throughout the cell cycle to repair DSBs (25). NHEJ
does not require a homologous template, unlike the HR pathway,
which is mediated by joining the ends of broken DNA strands
together and therefore is prone to high rates of DNA deletion
and mutation. NHEJ pathway proteins mainly include DNA-
dependent protein kinase catalytic subunit, Ku70, Ku80,
Artemis, XRCC4, XLF/Cernummos, and ligase IV (26, 27).
Defects in NHEJ in ovarian cancer are more likely to be
resistant to treatment with PARP inhibitor (28). Alternative
endjoining (A-EJ) pathways are utilized to perform DSB repair.
Based on the number of complementary DNA sequences used to
align the ends of DNA, A-EJ includes three distinct pathways,
namely, single-strand annealing (SSA), microhomology-
mediated end joining (MMEJ), and end joining (EJ) pathways,
which is similar to NHEJ in that it does not use a homologous
template in the process of joining the ends of DNA. A-EJ is an
alternative approach to DSB repair and a potential therapeutic
for HR- and NHEJ-deficient cancers (29). In addition, there are
many other DSB repair mechanisms. Galanty et al. demonstrated
that PIAS1 and PIAS4 promoted DSB repair and conferred
ionizing radiation resistance (30). Mirman et al. revealed that
CTC1-STN1-TEN1-Pola-mediated fill-in helps to control the
repair of DSB by 53BP1, RIF1, and shieldin (31). PI3K-related
ATM kinase can trigger the chromatin domains decorated with
October 2021 | Volume 12 | Article 661115
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phosphorylated histone H2AX and form the DDR foci (32, 33).
Furthermore, interstrand crosslink repair (ICL repair) for repair
of ICL injury is formed by alkylating agents (34). Fanconi anemia
pathway is thought to involve the ICL repair, and proteins
implicated in this pathway include FANCA, FANCB, FANCC,
etc. (35). Mutations in one of the FANC gene lead to severe
sensitivity to ICL agents and genomic instability (36). In
addition, proteins with other biochemical functions also play
an important role in the repair of ICLs, such as XP, CS, COFS,
and TTD. A study on hereditary breast cancer/ovarian cancer
revealed that the mutations in BRCA1, BRCA2, RAD51, PALB2,
and PRIP1 are associated with the ICL repair pathways (34).

Compared with SSBs, DSBs are more lethal to cells, and rapid
countermeasures are needed to ensure cell survival. Therefore,
DDR pathways provide vulnerabilities to kill cancer cells without
affecting the normal cells that target these specific pathways,
thereby increasing replication stress and thus the frequency of
DSBs (37). Cancer cells with defects in DDR exhibit a
hypersensitivity to drugs targeting DDR. The use of PARP
inhibitors for the treatment of HR-defective ovarian cancer is a
successful example. PARP inhibitors inhibit the catalytic activity
of PARP protein and block the DDR mechanisms dependent on
it. Moreover, PARP inhibitors can trap PARP protein in the
DNA and obstruct the replication fork progression. Both
mechanisms can cause fatal DNA damage to HR-deficient
tumor cells (38). A growing number of research suggest that
DDR defects can promote the response and sensitivity to
immunotherapy (39, 40).
LINKS BETWEEN PARP INHIBITORS
AND IMMUNE RESPONSES IN
OVARIAN CANCER

Neoantigen Dependence
Defects in the DDR pathway are often associated with an
increased tumor mutation burden (TMB) (41). However, a
study on Lynch syndrome reported that a deficiency in MMR
can also lead to a low TMB and found that the discordance of
tumor with deficiency in MMR and TMB may make it resistant
to immunotherapy (39). TMB is considered an alternative for
neoantigen burden (42). High neoantigens stimulate the increase
of tumor-infiltrating lymphocytes (TILs), and accumulated TILs
can be counterbalanced by the overexpression of immune
checkpoint regulators, such as PD-L1 and PD-1 (43, 44). In
ovarian cancer, BRCA1/2-mutated tumors with a higher level of
neoantigens than those without alterations in HR genes and
BRCA1/2 defects are associated with an increase of PD-L1
expression and T-cell infiltration (45, 46). However, the
immunogenicity of BRCA1/2 mutation-associated ovarian
cancers does not exhibit improved responses to ICI, most
likely because of the overall low TMB, and carry a limited
predictive value in ovarian cancer (47). PARP inhibitor-
mediated catastrophic DNA damage often heralds the
therapeutic response of ICI treatment independently of
BRCA1/2 mutations. However, no evidence has demonstrated
Frontiers in Immunology | www.frontiersin.org 3
yet whether PARP inhibitors might increase TMB to improve the
efficacy of ICI treatment in cancer cells. PARP inhibitors could
inactivate GSK3b, which increased PARP inhibitor-mediated
PD-L1 upregulation and enhanced cancer-associated
immunosuppression. Anti-PD-L1 could potentiate the anti-
tumor efficacy of PARP inhibitors compared with each agent
alone significantly (8) (Figure 1). In fact, although neoantigens
and the immunogenicity of tumors correlated with improved
outcomes to ICI, no threshold has been established that clearly
discriminate responders and nonresponders to ICI therapy.
Numerous studies have shown that low TMB can also be
sensitive to ICI, and increased tumor neoantigen burden
(TNB) does not correlate with T cell inflammation in some
human tumors (48, 49). DDR deficiency in driving ICI treatment
with non-neoantigen-dependent mechanisms has been proposed
(50, 51).

Non-Neoantigen-Based Mechanisms
Failure of DDR of cancer cells, genomic instability, and
incomplete DNA repair repertoire usually lead to chromosome
mis-segregation during cell division (52), which are wrapped by
primitive nuclear membrane and further forms micronuclei (53).
The membrane of micronuclei is easy to rupture and double-
strand DNA (dsDNA) is exposed in the cytoplasm (54, 55).
Cytosolic dsDNA stimulates the activation of cyclic GMP-AMP
synthase (cGAS) and subsequently catalyzes the generation of
cyclic dinucleotide (CDN) (56). CDN is a second messenger, a
unique phosphodiester linkage that uses ATP and GTP (56, 57),
which promotes the activation of the stimulator of interferon
genes (STING). Activated STING mainly recruits TBK1 to
further phosphorylate transcription IRF3 and upregulates the
expression of inflammatory cytokines and type I IFN (58). Type I
IFN is essential for dendritic cells (DCs) and CD8+ T cells in their
antitumor immune responses (59, 60). Furthermore, the STING–
TBK1 association phosphorylates IkB kinase, leading to the
noncanonical activation of the NF-kB pathway. In turn, this
pathway cooperates with the TBK1–IRF3 pathway to induce the
expression of type I IFN (55). Type I IFN has a substantial
influence on systemic immune response and promotes the
maturation, migration, and activation of immune cells,
especially DCs, natural killer cells, and T cells (Figure 1) (61, 62).

DDR defects can dramatically impact the microenvironment.
The cytosolic DNA-mediated cGAS–STING pathway promotes
the reshaping of the immune environment, thus making tumor
cells more sensitive to be killed by immune cells (63, 64). cGAS
interacts with PARP1 and impedes the formation of the PARP1-
Timeless complex via poly(ADP-ribose), which suppresses HR
(65). cGAS can also suppress HR by impeding RAD51-mediated
DNA strand invasion (66). All these processes can lead to DDR
deficiency. Owing to the activation of the cGAS–STING
pathway, DDR-deficient tumors can increase immune
infiltration and elevate the level of PD-L1 expression by PARP
inhibitors through the inactivation of GSK3b activity (8) and by
BRCA2 and ku70/80 deficiency in an IFNa- and CHEK1-
dependent manner (67, 68). In addition, cancer-derived DNA
can stimulate the cGAS–STING-type I IFN pathway, which
subsequently enhances the recruitment and activation of T
October 2021 | Volume 12 | Article 661115
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cells (61) and weakens the immunosuppressive function of Treg
by downregulating the level of cyclic AMP (69).

PARP inhibitors lead to the failure of DDR and promote the
accumulation of cytosolic dsDNA, which activates the cGAS–
STING pathway, thereby stimulating the production of type I
IFN to induce antitumor immunity and enhancing the
recruitment and infiltration of T cells into tumors (70). A
study on the loss of BRCA1 and p53 and overexpression of c-
Myc in high-grade serous ovarian cancer model of syngeneic
genetically engineered mouse showed that PARP inhibitors
induced the activation of the STING pathway, accompanied by
an increased expression of IFNb, PD-L1, and CXCL10 (71). In a
HR-proficient ID8 model, PARP inhibitor talazoparib induces
STING activation, increases the expression of CCL5, CXCL10,
and PD-L1, and exhibits synergistic activity with an anti-PD-L1
antibody (72). The increased levels of chemokines induce the
activation of cytotoxic CD8+ T cell (70).

DDR deficiency may also increase the sensitivity of tumor to
ICI by activating other signaling pathways (73)—for example, in
Frontiers in Immunology | www.frontiersin.org 4
pancreatic tumor, inhibition of ATM increases the expression of
tumor type I IFN through a SRC- and TBK1-dependent manner.
Moreover, ATM silencing increases PD-L1 expression and
increases the sensitivity to anti-PD-L1 therapy. In preclinical
models, ATM and ATR have been shown to upregulate
NKG2DL, which binds the NKG2D receptor, triggering
degranulation and cytokine production and contributing to
inflammation and NK-mediated cytotoxicity. Defects of the
MMR pathway lead to the accumulation of mismatch errors,
resulting in microsatellite instability (MSI) and tumorigenesis
(74). Tumors with MSI are associated with T cell infiltration and
high neoantigen load (75). Chan et al. found that the deficiency
of RecQ DNA helicase WRN can cause DDBs, apoptosis, and cell
cycle arrest in MSI tumor cells, indicating that WRN is a lethal
target for MSI tumor synthesis and can improve the efficacy of
ICI therapy (76). Together these results underscore that tumor
with underlying DNA repair defects may better respond to ICIs,
and targeting DDR is an effective strategy for increasing the
efficacy of ICI for cancer therapy (77).
FIGURE 1 | The mechanisms by which poly(ADP ribose) polymerase (PARP) inhibitors promote immune response against tumor cells. The PARP inhibitor
inactivates GSK3b, which can lead to increased PD-L1 expression in tumor cells. The release of dsDNA and the activation of the cGAS–STING pathway results in
the increased expression of type I IFN via the TBK1-IRF3 and TBK1-NF-kB pathways. Type I IFN activates immune effector cells by promoting the presentation of
tumor dendritic cell antigen/neoantigen, and the major histocompatibility complex of a dendritic cell binds to T cell receptors and activates T cells. The activated T
cells infiltrate the tumors and recognize tumor antigens that presented on the tumor cell surface. PD-L1 expression, as an immune escape signal, can be targeted
with immune checkpoint inhibitor therapy (red dotted line).
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Tumor Immune Escape of
DDR-Deficient Tumor
Despite that DNA damage can promote immune activation,
immunotherapeutic agents produce strong and durable
responses in only a subgroup of DDR-deficient patients
because a tumor with a DDR deficiency can eventually escape
immune control and grow unchecked. One of the reasons that
DNA damage fails to be eliminated is DDR defects, but at a low
level that is not fatal to tumors. This failure could drive
inflammatory signaling, stimulate continued infiltration by
innate immune cells, and promote the release of free radicals.
This series of processes leads to further DNA damage and
promotes the transformation from a Th1-skewed immunity to
chronic inflammation and immunosuppression in the immune
microenvironment, both of which promote cancer progression
and immune escape (78, 79). Breaking through a self-sustaining
cycle of DNA damage and chronic inflammation is challenging
by using any single therapeutic approach. Nevertheless, a
combination of drugs, such as PARP inhibitors combined with
ICI agents, may offer opportunities for treatment.
COMBINATION OF PARP INHIBITORS
WITH IMMUNOTHERAPIES IN
OVARIAN CANCER

The interest in combining immunotherapy with PARP inhibitor
in ovarian cancer is growing, owing to PARP inhibitors with the
ability of synthetic lethality in cancer cells and their important
roles in enhancing the efficiency of immunotherapy. Preclinical
studies revealed that PD-L1 blockade augments antitumor effects
when given with a PARP inhibitor. Furthermore, PD-L1
blockade prolongs the survival and reduction in tumor growth
compared with either agent alone in murine models (71, 73). On
the basis of these encouraging preclinical results, multiple clinical
studies are recently performed to investigate the clinical activity
of PARP inhibitors in combination with immunotherapy for
ovarian cancer. These studies were mainly divided into four
indications (1): first-line maintenance treatment [i.e., FIRST trial
(NCT03602859), JAVELIN Ovarian PARP 100 (NCT03642132),
ATHENA (NCT03522246), DUO-O (NCT03737643), and
KEYLYNK-001 (NCT03740165)] (2), platinum-sensitive
relapse treatment [i.e., MEDIOLA (NCT02734004), JAVELIN
PARP Medley trial (NCT03330405), NCT04034927,
NCT03806049, NCT03695380, and NCT03101280] (3),
platinum-resistant relapse treatment [i.e., TOPACOP/Keynote-
162 (NCT02657889), OPAL (NCT03574779), MOONS TONE
(NCT03955471)], and (4) independent of the platinum status
[i.e., NCT02571725, NCT02953457, ROCSAN (NCT03651206),
ANITA (NCT03598270), NCT02484404, NCT02873962,
N C T 0 2 4 8 5 9 9 0 , A R I E S ( N C T 0 3 8 2 4 7 0 4 ) , a n d
GUIDE2REPAI (NCT04169841)].

Five phase III clinical trials on maintenance setting are
ongoing. The FIRST trial was designed to evaluate platinum-
based therapy with TSR-042, followed by TSR-042 and niraparib
Frontiers in Immunology | www.frontiersin.org 5
maintenance therapy versus standard platinum-based treatment,
followed by maintenance niraparib or placebo in advanced
ovarian cancer (80). JAVELIN Ovarian PARP 100 was
designed to assess the efficacy and safety of avelumab in
combination with chemotherapy, followed by avelumab in
combination with talazoparib as maintenance therapy versus
chemotherapy, followed by single-agent talazoparib
maintenance or chemotherapy in combination with
bevacizumab, followed by bevacizumab maintenance therapy
(81). ATHENA is a four-arm study being undertaken to
evaluate the efficacy of frontline platinum-based treatment,
followed by rucaparib and nivolumab as maintenance
treatment in a patient with newly diagnosed ovarian cancer
(82). DUO-O evaluated the efficacy and safety of platinum-
based chemotherapy in combination with durvalumab and
beveacizumab, followed by durvalumab and bevacizumab or
durvalumab, bevacizumab, and olaparib as maintenance
treatment in patients with newly diagnosed advanced ovarian
cancer (83). Finally, KEYLYNK-001 assesses the efficacy and
safety of chemotherapy with or without pembrolizumab,
followed by olaparib maintenance in patients with EOC (84).
Unlike these studies, KEYLYNK-001 regards immunotherapy as
a therapeutic agent but still uses PARP inhibitors as maintenance
treatment agents. All of these studies utilized platinum-based
agents with or without immunotherapy treatment as the first-
line therapy.

The MEDIOLA trial (NCT02734004), a phase I/II study,
evaluated the combination of olaparib and durvalumab in
platinum-sensitive EOC. The first stage of this trial was
conducted in women with platinum-sensitive recurrent EOC
associated with germline BRCA mutation. The second stage was
performed in patients with platinum-sensitive recurrent EOC
with or without BRCA mutation. In the phase II study involving
32 patients with germline BRCA1/2 mutant platinum-sensitive
ovarian cancer, the disease control rate (DCR) at 12 weeks was
81%, and the objective response rate (ORR) was 63%, with
acceptable toxicity (85). Aside from platinum-sensitive
recurrent pat ients , a phase I/II study (TOPACIO,
NCT02657889) evaluated the effects of niraparib combined
with anti-PD-1 antibody pembrolizumab therapy in platinum-
resistant or refractory recurrent ovarian cancer. This therapy
strategy was well tolerated and had an ORR of 18% and a clinical
benefit rate of 65%, exceeding that of monotherapy of either drug
in platinum-resistant recurrent ovarian cancer clearly (86).
NCT02484404 is a phase I/II study of durvalumab in
combination with olaparib and/or cediranib for advanced or
recurrent ovarian cancer. However, the combined durvalumab
and olaparib therapy did not show a significant improvement in
clinical efficacy according to the RECIST criteria, with an ORR of
only 14% irrespective of BRCA status and a DCR of 71%. A third
of the patients received clinical benefit lasting longer than 6
months, irrespective of BRCA mutation status in patients with
heavily pretreated platinum-resistant recurrent ovarian cancer
(87). À correlative analysis of fresh core biopsy and blood
samples collected from this trial matching pre- and on-therapy
found that the treatment enhanced CXCL9/CXCL10 and IFNg
October 2021 | Volume 12 | Article 661115
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expression, systemic IFNg/TNFa production, and TILs,
i n d i c a t i n g t h a t o l a p a r i b / d u r v a l umabh a d h a s a
immunomodulatory effect on patients (88). The IFNg
expression correlated positively with the clinical efficacy of this
combination therapy, whereas the level of VEGFR3 was
negatively associated with PFS, suggesting that VEGF/VEGFR
pathway blockade would improve the efficacy of this
combination (88). Several clinical trials are under way to
investigate the efficacy of PARP inhibitors in combination with
ICI and target VEGF drugs in the treatment of ovarian cancer.
NCT02734004 and NCT03806049 investigated the efficacy of the
treatment of platinum-sensitive EOC. NCT03574779 is a phase
II study that aims to evaluate the efficacy and safety of niraparib,
TSR-042, and bevacizumab in platinum-resistant ovarian cancer.
NCT02873962, a phase II trial, seeks to evaluate the efficacy of
the combination of nivolumab, bevacizumab, and rucaparib in
the treatment of relapsed ovarian cancer, regardless of the
platinum reaction state.

Many studies evaluated the efficacy of various combinations
of PARP inhibitors (olaparib, niraparib, rucaparib, and
talazoparib) and ICI agents [anti-PD-1 antibodies
(pembrolizumab and nivolumab), anti-PD-1 antibodies
(avelumab, atezolizumab, and durvalumab(and anti-CTLA-4
antibodies (tremelimumab)] in the treatment of patients with
ovarian cancer (Table 1). A clinical study indicated that other
key mediators of DDR, such as CHK1, ATM, CHK2, and ATR,
may also contribute to ICI combinations in several tumor types
(89), and the efficacy of other DDR inhibitors combined with ICI
in the treatment of ovarian cancer requires further validation.
POTENTIAL PREDICTIVE BIOMARKERS
FOR COMBINATION THERAPY

A study on PARP inhibitor and anti-PD-L1 combination therapy
found no clinical efficacy and no significant changes in TMB or
STING expression. Nevertheless, a third of the patients received
clinical benefit on platinum-resistant and heavily pretreated
ovarian cancer (88). A retrospective pan-cancer analysis
revealed that TMB predicted an increased response to ICI in
the cancer types where CD8+T cell levels correlated with TNB
positively (90). However, tumor types where CD8+T cell levels
did not correlate with TNB showed a significantly lower ORR in
TMB-high tumors (90). This result suggested that reliable
predictive biomarkers independent of TMB are required to
guide the selection of patients who are most likely to benefit
from the treatment. The discovery of biomarkers in peripheral
blood is helpful in monitoring the effects of combination therapy,
especially for patients with heavily pretreated ovarian cancer.
Combination therapy induces immune activation probably in a
STING-independent manner, including increasing the
expression of IFNg and related immunostimulatory
chemokines, enhancing the systemic production of TNFa and
IFNg, and increasing the number of TILs in patients with ovarian
cancer. Lampert et al. found that an increase in IFNg plasma level
after treatment is associated with improved response to PFS (88).
Frontiers in Immunology | www.frontiersin.org 6
The overexpression of angiogenic factors in the tumor
microenvironment has been preclinically shown to promote
immunosuppression and facilitate cancer growth and
metastases (91). Lampert et al. also demonstrated that
increased post-treatment levels of VEGFR3 are associated with
worse PFS in ovarian cancer (88). Immunogenomic profiling
analysis on tumor samples from TOPACIO trial showed
mutational signature 3 as a surrogate of homologous
recombination deficiency (HRD) and a positive immune score
reflecting interferon-primed CD8-exhausted effector T-cells in a
tumor microenvironment, and both of them were identified as
determinants of response to niraparib plus pembrolizumab
combination therapy (92).

In high-grade serous ovarian cancer, mutations in synthetic
lethality targets for PARP inhibitors can result in high
neoantigen load, increased TILs, and enhanced PD-1 and PD-
L1 expression. Therefore, mutations in BRCA1/BRCA2 or HRD
genes might be effective predictive biomarkers for combination
therapy (45). In patients with breast invasive carcinoma, colon
adenocarcinoma, and uterine corpus endometrial carcinoma,
BER-defective tumors exhibit elevated neoantigen production
and upregulated PD-L1 expression (93). However, clinical
evidence on the use of combination therapy in BER-defective
tumors in ovarian cancer has not been reported. FDA approved
microsatellite instability/defective mismatch repair (MSI/
dMMR) as a DDR defect biomarker to predict responses to ICI
inhibitor therapy (94). dMMR tumors harbor numerous
mutations that are associated with T cell infiltration and high
neoantigen load. MSI/dMMR is a potential biomarker for
combined targeting on the MMR pathway and ICI therapy. In
addition, whether other factors that lead to genomic instability,
such as NER-defective (95) or POLD1/POLE mutations (96, 97),
can act as predictive biomarkers for ovarian cancer needs to be
validated further. A single biomarker is insufficient to predict
patients who will likely benefit from combination therapy based
on our current understanding of clinical response. The discovery
of combined predictive biomarkers is of great significance for the
selection of benefit subgroups.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The combination of DDR inhibitors and ICI agents is a
promising novel modality in cancer treatment. In ovarian
cancer, PARP inhibitors were initially designed for BRCA
mutations in patients with ovarian cancer. PARP inhibitors
were then observed to induce tumor genomic instability and
immune modulation, thereby increasing antitumor immune
responses. Owing to the modest response of monotherapy in
ovarian cancer, the combination therapy of PARP inhibitors with
ICI agents provides an opportunity to increase the effectiveness
of therapy. In this review, we summarized existing evidence on
the relationship between DDR pathways and ICI responses. We
summarized current ongoing clinical trials on combinations of
PARP inhibitors with ICIs. In to-date clinical trials, combination
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TABLE 1 | Clinical trials using poly (ADP ribose) polymerase (PARP) inhibitor and immunotherapy in ovarian cancer.

Treatment setting Trial Agents Phase design Patients/sample size Primary
endpoint

First line NCT03602859
(FIRST trial)

Drug: niraparib, TSR-042
Chemo + placebo, maintenance
placebo
Chemo + placebo, maintenance
niraparib
Chemo + TSR-042, maintenance
niraparib + TSR-042

III Maintenance Stage III/IV EOC
n = 912

PFS

NCT03642132
(JAVELIN
Ovarian PARP
100)

Drug: talazoparib, avelumab
Chemo + avelumab, maintenance
talazoparib + avelumab
Chemo, maintenance talazoparib
Chemo + bevacizumab,
maintenance bevacizumab

III Maintenance Untreated advanced OC
n = 720

PFS

NCT03522246
(ATHENA)

Drug: rucaparib, nivolumab
Rucaparib + nivolumab
Rucaparib + placebo
Placebo + nivolumab
Placebo + placebo

III Maintenance Stage III/IV EOC, platinum sensitive
n = 1,012

PFS

NCT03737643
(DUO-O)

Drug: olaparib, durvalumab,
bevacizumab
Olaparib placebo + bevacizumab +
durvalumab placebo
Olaparib placebo + bevacizumab +
durvalumab
Olaparib + bevacizumab +
durvalumab

III Maintenance Newly diagnosed stage III/IV OC
n = 1,056

PFS

NCT03740165
(KEYLYNK-001)

Drug: pembrolizumab, olaparib,
bevacizumab
Chemo, maintenance
pembrolizumab + olaparib
Chemo, maintenance
pembrolizumab + olaparib placebo
Chemo, maintenance
pembrolizumab placebo + olaparib
placebo

III Maintenance BRCA non-mutated stage III/IV OC
n = 1,086

PFS
OS

Recurrent
(platinum sensitive)

NCT02734004
(MEDIOLA)

Drug: olaparib, bevacizumab,
durvalumab
Olaparib + durvalumab
Olaparib + durvalumab +
bevacizumab

I/II Treatment First stage: platinum-sensitive EOC, germline
BRCA mutated;
Second stage: platinum-sensitive EOC with or
without BRCA mutation
n = 427

DCR
ORR

NCT03330405
(JAVELIN PARP
Medley trial)

Drug: avelumab, talazoparib
Avelumab + talazoprib

Ib/II Treatment Platinum-sensitive recurrent EOC, with or without
BRCA mutation
n = 296

DLT
OR

NCT04034927 Drug: olaparib, tremelimumab
Olaparib
Olaparib + tremelimumab

II Treatment Platinum-sensitive OC
n = 170

PFS
DLT

NCT03806049 Drug: niraparib, TSR-042,
bevacizumab
Chemo + niraparib + TSR-042 +
bevacizumab
Chemo + niraparib + bevacizumab
Chemo

III Treatment Platinum-sensitive EOC
n = 337

PFS

NCT03695380 Drug: cobimetinib, niraparib,
atezolizumab
Cobimetinib + niraparib
Cobimetinib + niraparib +
atezolizumab

Ib Treatment Advanced platinum-sensitive OC
n = 70

AEs
Laboratory
test changed
ORR

Recurrent
(platinum resistant)

NCT02657889
(TOPACOP/
Keynote-162)

Drug: niraparib, pembrolizumab
Niraparib + pembrolizumab

I/II Treatment Recurrent platinum-resistant OC
n = 114

DLT
ORR

NCT03574779
(OPAL)

Drug: niraparib, TSR-042,
bevacizumab

II Treatment Platinum-resistant high-grade EOC
n = 40

ORR

(Continued)
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therapy has achieved good therapeutic effects on ovarian cancer
treatment. However, they have not significantly increased the
antitumor effects compared with those individual agents.

A next critical step is to identify reliable predictive biomarkers,
especially the joint prediction of multiple markers for selecting
optimal patient population that will benefit the most from this
combination. Current clinical studies on PARP inhibitors
combined with ICI for the treatment of ovarian cancer are
mainly divided into four indications: first-line maintenance
treatment, platinum-sensitive treatment, platinum-resistant
Frontiers in Immunology | www.frontiersin.org 8
treatment and regardless of platinum response state. Selecting
specific biomarkers for different indications for patients is
particularly important to achieve precision therapy. In addition,
it is necessary to determine the standardized criteria and cutoff
threshold of biomarkers for the clinical selection of patients. In
vitro and in vivo experiments should be conducted to understand
the drug resistance mechanisms of combination drugs to achieve
the role of an early warning system. Another method for
increasing the efficacy of combination therapy is by converting
nonresponsive “cold tumor” into responsive “hot” tumors. The
TABLE 1 | Continued

Treatment setting Trial Agents Phase design Patients/sample size Primary
endpoint

Niraparib + TSR-042 +
bevacizumab

NCT03955471
(MOONS TONE)

Drug: niraparib, TSR-042
Niraparib + TSR-042

II Treatment Platinum-resistant OC
n = 150

ORR

Recurrent
(independent
platinum reaction
state)

NCT02571725 Drug: tremelimumab, olaparib
Olaparib + tremelimumab

I/II Treatment Platinum-sensitive or -resistant recurrent EOC,
with germline BRCA1 or BRCA2 mutation
n = 50

RP2D
ORR

NCT02953457 Drug: olaparib, durvalumab
Olaparib + durvalumab
Olaparib + tremelimumab

I/II Treatment Platinum-sensitive or -resistant EOC, with BRCA1
or BRCA2 germline or somatic mutation
n = 39

DLT
PFS

NCT03651206
(ROCSAN)

Drug: niraparib, TSR-042
Phase II: niraparib
Niraparib + TSR-042
Niraparib + chemotherapy
Phase III: the best arm of the phase
II
Chemotherapy drugs

II/III Treatment Metastatic or recurrent OC
n = 196

RR
OS

NCT03598270
(ANITA)

Drug: atezolizumab, niraparib
Chemo + atezolizumab,
maintenance niraparib +
atezolizumab
Chemo + atezolizumab,
maintenance niraparib + placebo

III Maintenance Recurrent OC
n = 414

PFS

NCT02484404 Drug: cediranib, durvalumab,
olaparib
Cediranib + durvalumab
Olaparib + durvalumab
Olaparib + durvalumab + cediranib

I/II Treatment Recurrent EOC
n = 384

RP2D
ORR

NCT02873962 Drug: nivolumab, bevacizumab,
rucaparib
Nivolumab + bevacizumab
Nivolumab + bevacizumab +
rucaparib

II Treatment Recurrent EOC
n = 76

ORR

NCT02485990 Drug: olaparib, tremelimumab
Tremelimumab
Tremelimumab + olaparib

I/II Treatment Recurrent or persistent OC
n = 68

DLT

NCT03101280 Drug: rucaparib, atezolizumab
Rucaparib + atezolizumab

Ib Treatment Advanced or metastatic platinum-sensitive OC
n = 48

AE
DLT
RP2D

NCT03824704
(ARIES)

Drug: rucaparib, nivolumab
Rucaparib + nivolumab

II Treatment Platinum-treated advanced OC
n = 139

ORR

NCT04169841
(GUIDE2REPAI)

Drug: durvalumab, tremelimumab,
olaparib
Durvalumab + tremelimumab +
olaparib

II Treatment Carriers of HR repair genes mutation in response
or stable after olaparib treatment
n = 270

PFS
October 2021 | Volume 12 | A
EOC, epithelial ovarian cancer; OC, ovarian cancer; ORR, overall response rate; DCR, disease control rate; DLT, incidence of dose-limiting toxicities; OR, overall response; RP2D,
recommended phase II dose; RR, response rate; AE, adverse events.
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pharmacological activation of cGAS–STING signaling pathway is
also under investigation (39). ADU-S100 and DMXAA are STING
agonists that promote type I IFN induction and CD8+ T cell
activation to increase antitumor responses. In this regard, addition
of drugs, such as STING agonists or VEGF/VEFGR pathway
blockade, which can modulate the immunosuppressive
microenvironment in ovarian cancer may be necessary to
improve the efficacy of PARP inhibitor and ICI combination
therapy. This avenue for research warrants further investigation.

Given that DDR deficiency plays a key role in
immunotherapy response, other targeted agents that move
beyond PARP in targeting DDR pathways, such as CHK1,
CHK2, ATM, and ATR inhibitors, may also contribute to ICI
combination therapy for ovarian cancer. The schedule and
optimal dose for combination treatment needs to be further
determined. The safety of combination therapy needs to be
evaluated by clinical trials. In addition, the selection of
biomarkers utilized to screen the benefit to patients is crucial
to achieve precise treatment. Finally, it is essential to have a
comprehensive understanding of immune responses to DNA
damage at the cellular and organismal levels. Such an
understanding can help in identifying potentially novel targets
for future cancer treatments.
Frontiers in Immunology | www.frontiersin.org 9
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