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ABSTRACT

We describe the methodology and results from our participation in the second Antibody Modeling Assessment experiment.

During the experiment we predicted the structure of eleven unpublished antibody Fv fragments. Our prediction methods

centered on template-based modeling; potential templates were selected from an antibody database based on their sequence

similarity to the target in the framework regions. Depending on the quality of the templates, we constructed models of the

antibody framework regions either using a single, chimeric or multiple template approach. The hypervariable loop regions

in the initial models were rebuilt by grafting the corresponding regions from suitable templates onto the model. For the H3

loop region, we further refined models using ab initio methods. The final models were subjected to constrained energy min-

imization to resolve severe local structural problems. The analysis of the models submitted show that Accelrys tools allow

for the construction of quite accurate models for the framework and the canonical CDR regions, with RMSDs to the X-ray

structure on average below 1 Å for most of these regions. The results show that accurate prediction of the H3 hypervariable

loops remains a challenge. Furthermore, model quality assessment of the submitted models show that the models are of

quite high quality, with local geometry assessment scores similar to that of the target X-ray structures.
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INTRODUCTION

Knowing the detailed three-dimensional structure of a
protein can offer valuable insights into its function and
interactions with other molecules. This is of particular
importance in the design and optimization of drug can-

didates. Over the last decade, homology modeling1 has
become an important method for structure prediction of
proteins for which no experimental structures are avail-
able. The CASP experiments,2 which have been con-
ducted every 2 years since 1994, have been documenting
the significant progress in the field over the last two dec-
ades. In general it can be quite difficult to accurately pre-

dict a protein structure from its sequence. However, if an
X-ray structure for a protein with a high degree of
sequence similarity is available, quite accurate models
can be built using currently available tools, such as
MODELER,3 RosettaAntibody,4 or MOE.5

Antibody-based therapeutics have become important

tools in the treatment of cancer and other diseases.6,7

Building computational models is frequently an impor-

tant step in the antibody design process that allows

researchers to study antibody properties such as stability,

antigenicity, aggregation propensity, solubility, viscosity,

and more. In addition, homology models can be used to

gain insight into and predict antibody-antigen interac-

tions when used in combination with protein-protein

docking methods, such as ZDOCK8 or SnugDock.9 The

area of antibody design and engineering represents a spe-

cial case to which homology modeling is particularly well

suited, because in general the overall sequence and struc-

tural similarity between antibodies is very high. In
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particular, the framework regions of antibodies are very

well conserved, with most of the variability occurring in

the complementarity-determining regions (CDRs).

A blind prediction experiment, similar to CASP, but

limited to antibody structure prediction was performed

in 2009.10 The results of Accelrys’ participation in this

experiment generally validated our template-based mod-

eling approach, including the effectiveness of using chi-

meric templates (separate templates for the light and

heavy chains, oriented by a template containing both a

light and a heavy chain). However, it also highlighted

some deficiencies in our modeling process. Since the first

experiment, we have improved our tools, incorporating a

number of lessons learned from the 2009 experiment,

as discussed below. The second installment of the anti-

body prediction experiment was executed in early

2013.11 Here we discuss what we did well and what

can be improved based on the results from our participa-

tion in the second Antibody Modeling Assessment

(AMA-II).12

MATERIALS AND METHODS

The AMA-II prediction experiment consisted of two

stages. In the first stage, only the sequences of the 11 Fv

targets were available to predictors and the goal was to

build models of the Fv region based on this sequence

information. For the second stage, the X-ray structures

for all target Fv domains, with the H3 CDR residues

removed, were made available. The task for the second

stage was to predict the conformation of only the H3

loop given the correct crystallographic environment. For

details on the targets and a general description of the

experiment, consult the description and assessment of

the experiment by the organizers.11 The following is a

description of our methods used for model construction

for each stage of the model construction process.

Stage 1

Framework template selection

Templates for each of the 11 targets were selected by

aligning the target sequences against sequences in a pre-

curated database of antibodies extracted from the Protein

Data Bank (PDB).13,14 Alignments were performed

using a Hidden Markov Model.15,16 Based on this align-

ment, potential templates were identified by calculating

the sequence similarity and identity against the target Fv

framework region, excluding the CDR loops. The ration-

ale for excluding the CDR loops was that these regions

showed a high degree of sequence and structural variabil-

ity, and therefore might have masked high degrees of

similarity for the framework regions. We also identified a

separate list of potential templates for the VL and VH

domains, again, based on sequence similarity and iden-

tity of the framework regions for these domains.

By default, the structures with the highest sequence

similarity to the target for the framework regions were

selected as the framework templates. However, in cases

where several top templates with similar framework

sequence similarity were available, team members consid-

ered additional criteria such as the similarity of the CDR

loops, X-ray resolution, matching organism and germ-

line, structural consensus between templates (i.e., we

tried to avoid templates that were obvious outliers in the

sense that they had significant structural differences from

the majority of the top templates) and binding to anti-

gen or not, etc. to make the final template selection.

For this analysis, the framework region and CDR loops

used in the sequence similarity calculations were defined

according to the IMGT Unique Numbering Scheme.17

Framework model construction

We used three different methods to construct models

based on the framework templates identified by the pro-

cedure described above:

1. The first approach was to build a model based on a

single Fv framework template. Below, we refer to this

approach as “single template.”

2. The second approach was to build a model based on a

chimeric template. The template was assembled from

the individual VL and VH templates based on a third

interface template that contained both VL and VH

domains to determine the relative spatial orientation

of the individual VL and VH templates. Below, we

refer to this approach as “chimeric template.” Note

that the VL or VH templates can be identical to the

corresponding domain of the interface template.

3. The third approach was to build a model based on

five overall Fv framework templates. The models were

built based on a multiple sequence alignment of all

five templates to the target sequence using the capabil-

ity of MODELER to construct models based on multi-

ple templates. MODELER uses an additive distance

restraint function that peaks at the equivalent distance

between atoms in each template. The contribution for

each template is weighted by local sequence similarity.

For a more detailed description of the MODELER

algorithm refer to Ref. 3. Below we refer to this

approach as “top5 template” method.

In all cases, 50 models were built using MODELER.3

The top model as ranked by the MODELER PDF Physi-

cal Energy was selected for further refinement.

CDR refinement

The framework models from the previous step were

inspected to determine whether further refinement of the

hypervariable loop regions (L1, L2, L3, H1, H2, and H3)

was required. In cases where the template CDR region of

the framework template already had identical sequence to
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the target CDR loop, the framework CDR model was kept.

However, in most cases the hypervariable loops were rebuilt.

The CDR loop residues selected for refinement were

either based on the Chothia18–20 (targets Ab01, Ab02,

Ab03, Ab07, Ab09, Ab10, Ab11) or IMGT17 CDR defini-

tions (Ab04, Ab05, Ab06, Ab08). Note that for this study,

we refer to the range of residues specified by the respective

CDR definition (Chothia or IMGT) as “CDR loop,” the

adjacent residues at either terminal of the CDR loop as

“stem residues,” and loop and stems together as “CDR

region.”

CDR loop refinement was performed using the follow-

ing approach: we identified a set of loop templates for each

CDR region based on an alignment of the target sequence

to antibody sequences in our antibody database. Template

CDRs must be of the same length as the target loops, and

templates were ranked by a BLOSUM62 based similarity

score of the CDR region, including stems.

H3 refinement

For the modeling of the H3 loops, we used three dif-

ferent approaches:

� The first was purely template based, using the same pro-

cedure as described above for L1, L2, L3, H1, and H2.

However, in addition to the similarity score, we also

took into account the H3 classification described in the

work by Kuroda et al.21–23 and selected templates in

agreement with these rules whenever available.

� The second method employed was to build the most

variable region of the loop with an ab initio approach

using Looper.24 However, we did not usually rebuild

the entire H3 region. We determined the range to

model by examining the conformation of the tem-

plates used in the first approach. Typically, the tem-

plates agreed quite well in the stem regions so that

only the center of the loop needed to be rebuilt. We

identified the residue range for ab initio modeling by

determining the residue at which the backbone confor-

mation of the templates started to diverge.

� The third method added a round of neighboring side-

chain refinement to the preceding ab initio methodol-

ogy. The goal of this step was to fix incorrectly posi-

tioned neighboring side-chains, which can prevent the

ab initio modeling methods from successfully finding a

correct solution. For this method, the side-chains of the

H3 loop were mutated to Alanine. Then side-chains

neighboring the H3 loop were selected and refined using

CHIROTOR.25 The loop side-chains were then mutated

back to their original identity, and then a final round of

ab initio refinement was performed.

Final minimization

After H3 refinement, all models were inspected for

structural problems, such as clashes between atoms. For

severe clashes, a limited short energy minimization of

the affected regions (typically side-chains) was performed

using CHARMm.26,27 During the minimization,

restraints were applied to the backbone and non-affected

side-chains as to not perturb the rest of the structure.

Stage 2

For the second stage of the Antibody Modeling Assess-

ment experiment (AMA-II), the X-ray structure of the

target (with the exception of the H3 CDR residues), was

known. The task was to model the missing section, given

the X-ray environment. We used the following approach:

� In the first step, we built the missing region based on

homology modeling or simple grafting of the pre-

sumed best H3 loop from AMA-II part 1. When using

the homology modeling approach, we typically used

the same templates as for H3 modeling in the first

stage. However, a few of the templates were excluded

because of incompatibility of the stem regions in the

template structures compared to the known stems in

the target X-ray structures.

� The next step was to determine which region to model

ab initio. Since accuracy in loop prediction typically

decreases with loop length,24 we tried to restrict the

ab initio prediction range as much as possible by using

information from the available templates. The stems in

H3 loops are often conserved, so we restricted the ab

initio loop prediction range to the regions where the

available templates started to diverge. This range was

determined by visually inspecting a superposition of

the target structure with H3 templates.

� We then built 50 models using Looper.24 Looper pro-

vides an energy score and a clustering of the output

loops. To pick the models to submit, we identified the

clusters with the most low energy structures and sub-

mitted the lowest energy model from top ranked clus-

ters. Predictions for a single target typically take less

than 30 min on a standard desktop machine.

Manual versus automated predictions

For models submitted for AMA-II first stage, the tar-

gets were split up between the six team members, with

one member taking the lead for each target. Each team

member was working on either one, two, or three struc-

tures. Team members used a combination of the meth-

ods described above, with each team member manually

choosing the methods they thought were most appropri-

ate for their target, based on the available templates.

For framework modeling our strategy was to use a sin-

gle template approach if a very high sequence similarity

template was available for the target, the chimeric

approach if templates for the VL and/or VH domains

were available that showed significantly higher sequence
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similarity than the best corresponding domains of the

best overall Fv template, and to use the top5 approach if

several Fv templates with high sequence similarity were

available. However, apart from target Ab01, where only

one good template was available, we did not observe evi-

dence indicating a clear choice as to which method was

most suitable for each target. The selected method is

mainly a preference of the individual team member who

worked on the target. Table I summarizes the methods

used for each model submitted.

The data from the manual models submitted for

AMA-II stage 1 gives a good indication of the perform-

ance of our software in “real-life” situations, where the

software is used by domain experts with some degree of

manual intervention in choosing methods and the final

selection of templates. However the manual interventions

make it more difficult to evaluate the performance of the

underlying methods. In order to understand which

method works best in general, we ran post-experiment

automated analysis, where we systematically applied each

method to all the targets and simplified template selec-

tion to only use those with the highest sequence similar-

ity to make the comparison more consistent. For the

models that deviated significantly from the automated

methods, more in-depth analysis is provided in the dis-

cussion section.

Evaluation of structures

To evaluate our models, we compared them to the cor-

responding X-ray structures provided by the organizers.

Note that most of these structures are not yet released by

the Protein Data Bank14 at the time of writing of this

manuscript, so some minor revisions of the final struc-

tures are possible.

Models and X-ray structures were compared by calcu-

lating root-mean-square deviations (RMSD) between the

two structures. For the calculations, we followed the

approach used in the assessment of the experiment11 as

closely as possible. For RMSD calculations, structures

were superimposed using the b-sheet core, which was

defined as follows: VL: 3-13,† 18-25, 33-38, 43-49, 61-67,

70-76, 85-90, 97-103; VH: 3-7, 18-24, 34-40, 44-51, 56-

59, 67-72, 77-82a, 87-94, 102-110. The CDR loops for

the purpose of the RMSD calculations were defined as

the following ranges: CDR-L1:27-32, CDR-L2:50-53,

CDR-L3: 91-96, CDR-H1: 26-33, CDR-H2: 52-55, CDR-

H4: 73-76 and CDR-H3: 95-100x, where 100x refers to

whatever residue is just before position 101 in the Cho-

thia numbering scheme.11 All ranges are based on the

Chothia numbering scheme.18–20 RMSDs were eval-

uated over different ranges: the CDRs, the b-sheet core,

as defined above, and the framework residues. The

framework residues are defined as all residues except

CDRs L1, L2, L3, H1, H2 and H3, and the termini.‡

Unless otherwise stated, all RMSDs reported in this

study were calculated using the peptide carbonyl atoms

C and O. The carbonyl RMSD is used by the general

evaluation of all models by the organizers11 and we fol-

lowed their definition to make the discussion clear. The

reason for this choice by the organizers is that carbonyl

RMSDs are more sensitive to local structural deviations,

such as peptide flip than the more commonly reported

C-a or backbone RMSDs. Note however that carbonyl

RMSDs cannot directly be compared to C-a RMSDs. On

average, carbonyl RMSDs are on the order of 10% higher

than the corresponding C-a RMSDs. In cases involving

peptide flips, the difference can be much bigger as

pointed out in Ref. 11. To allow for easier comparison

with results reported elsewhere in the literature, we also

include C-a RMSDs for our models in the Supporting

Information.

In addition to the RMSDs, we also calculated the devi-

ation in angle of the VL and VH domains between

model and X-ray structure. For consistency we follow the

approach outlined in Ref. 11. The calculation was done

by sequentially superimposing the b-sheet core regions

of the model and X-ray VL and VH domains and deter-

mining the v-angle, in spherical polar coordinates

(x/v), of the second superimposition transformation.

Note that the tilt angle calculated this way only partially

captures the difference in orientation of VL/VH domains

between model and target structure; it leaves out the

direction of the tilt as well as any relative translations.

RESULTS AND DISCUSSION

Framework models

Template selection

The templates selected for building models for the first

stage are listed in Table I. In order to evaluate our tem-

plate selection we calculated the framework RMSDs of all

Fv structures in our database with respect to X-ray struc-

tures of the 11 targets. Figure 1(a) compares the Fv

framework RMSD of templates used in building the sub-

mitted models (plotted as solid colored circles) to the

overall RMSD-distributions of all structures in the data-

base (indicated by the box plots). RMSDs of templates

selected for single template or chimeric template models§

for the manual predictions are plotted as red circles.

RMSDs of templates used for manual predictions using

the top5 approach are plotted in orange. The plot also

†The original residue range described in the experiment assessment include resi-

dues VL 3-8, but the residues were removed from the superposition range by the

organizers because several groups submitted models that had incorrectly placed

strands that affected the alignment.11

‡The terminal residues excluded are the same as for the b-sheet core (i.e. any res-

idues before residue 3 in VL and VH and any residue after residue 103 in VL or

after residue 110 in VH.)
§For chimeric models, the RMSD of the interface template is plotted.
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shows the RMSDs of the five templates in the database

with the highest sequence similarity to the target (shown

as blue circles). Note that the blue circles correspond to

the templates selected for the automated predictions

because template selection for the automated prediction

was based purely on sequence similarity, whereas the

manual predictions (red and orange circles) sometimes

used additional criteria, which lead to templates with

slightly lower sequence similarity, particularly for targets

Ab05, Ab06, and Ab11. These cases will be discussed in

more detail below.

For most targets, one of the top five templates ranked

by similarity is close to minimum of the RMSD distribu-

tion, but the template with the lowest RMSD does not

always have the highest sequence similarity, which was

not unexpected: In general, pairs of protein structures

with high sequence similarity (>50%) align to within �1

Å or less.28 However, structural differences remain even

at 100% sequence identity.29 For antibodies, structural

variations are typically most prominent in the CDR

regions, which were excluded from the RMSD calcula-

tion. However, framework-RMSDs of up to �0.5 Å are

observed in cases where multiple structures of an anti-

body were solved in the asymmetric unit in a crystal.10

In addition, antigen binding may affect the tilt angle of

the VH and VL domains leading to even larger RMSD

differences relative to unbound antibody as indicated in

a systematic comparison by Sela-Culang et al.30 Since

our database included both bound and free structures,

we expect some variation in template RMSD even for

structures with strong similarity.

Note that we made use of both ligand-bound and

unbound structures as framework templates, and used

antigen binding only as a minor consideration among

other factors. In many cases, the highest sequence simi-

larity template was a ligand-bound structure, and the

tradeoff between selecting an unbound template with

lower sequence similarity over an antigen-bound tem-

plate with higher sequence similarity is not clearly under-

stood. In fact, for Ab05 model 2, we chose a template

without bound ligand as tradeoff for high sequence simi-

larity, which turned out to be a bad choice as seen in

Figure 1. Additionally, a post-experiment comparison of

antigen-bound templates to unbound templates did not

reveal any advantage of systematically selecting unbound

structures over bound structures with similar sequence

Table I
Summary of Methods and Templates Used for the Models for Each Target

Model VH Templ VL Templ FV Templ Framework H3 Refinement
accAb01m1 4hbc 4hbc 4hbc Single Template
accAb01m2 4hbc 4hbc 4hbc Single Looper
accAb01m3 3nl4 3nl4 3nl4 Single Looper
accAb02m1 3umt 3mbx,1sbs,1il1 2gki Chimeric Environment
accAb02m2 3umt 3mbx 2gki Chimeric Environment
accAb02m3 3umt 3mbx 2gki Chimeric Environment
accAb03m1 2xtj 1hez 2xtj Chimeric Looper
accAb03m2 3ma9 1dee 2xtj Chimeric Looper
accAb03m3 2xtj 2xtj 2xtj Single Environment
accAb04m1 3mxv 3mxv 3mxv Single Looper
accAb04m2 3mxv 3mxv 3mxv Single Environment
accAb04m3 3mxv 3iu4 3mxv Chimeric Looper
accAb05m1 2xwt,3mlw,3n9g,4d9l,4fqj 2xwt,3mlw,3n9g,4d9l,4fqj 2xwt,3mlw,3n9g,4d9l,4fqj Top 5 Template
accAb05m2 3na9 4d9l 3n9g Chimeric Template
accAb05m3 2xwt,3mlw,3n9g,4d9l,4fqj 2xwt,3mlw,3n9g,4d9l,4fqj 2xwt,3mlw,3n9g,4d9l,4fqj Top 5 Looper
accAb06m1 1dee,1hez,2uzi,3bn9,3s34 1dee,1hez,2uzi,3bn9,3s34 1dee,1hez,2uzi,3bn9,3s34 Top 5 Environment
accAb06m2 1dee,1hez,2uzi,3bn9,3s34 1dee,1hez,2uzi,3bn9,3s34 1dee,1hez,2uzi,3bn9,3s34 Top 5 Looper
accAb06m3 3h42 1vge 3bn9 Chimeric Template
accAb07m1 1nsn,1c12,1wej,3rvu,3rvv 1nsn,2aab,2xqy,3ddg,3pqh 1nsn Chimeric Template
accAb07m2 1nsn,1c12,1wej,3rvu,3rvv 1nsn,2aab,2xqy,3ddg,3pqh 1nsn Chimeric Looper
accAb07m3 1nsn,1c12,1wej,3rvu,3rvv 1nsn,2aab,2xqy,3ddg,3pqh 1nsn Chimeric Looper
accAb08m1 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt Top 5 Template
accAb08m2 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt Top 5 Environment
accAb08m3 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt 1pkq, 2gki, 2i9l, 3q3g, 3ujt Top 5 Looper
accAb09m1 3na9 3na9 3na9 Single Template
accAb09m2 3na9 3na9 3na9 Single Looper
accAb09m3 3na9 3na9 3na9 Single Looper
accAb10m1 2gki 2gki 2gki Single Environment
accAb10m2 2gki 2gki 2gki Single Looper
accAb10m3 2gki 2gki 2gki Single Template
accAb11m1 2w9d 2ih3 2w9d Chimeric Environment
accAb11m2 2w9d 2ih3 2w9d Chimeric Looper
accAb11m3 2w9d 2ih3 2w9d Chimeric Template

White background indicates a single template model, light gray a chimeric model, and dark gray a top5 template model.
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similarity for the AMA-II targets. However, the data

from the 11 AMA-II targets is not sufficient to draw any

definitive conclusion about how the presence of antigens

in templates influences the model quality. This will

involve analysis of the entire antibody structure database

and is beyond the scope of current work.

The variation in RMSD among top templates is illus-

trated in Figure 1(b), which displays the framework

RMSD as a function of sequence similarity for the five

sequences with the highest sequence similarity to the cor-

responding target. The top five templates for all targets

have more than 90% sequence similarity, with the excep-

tion of target from rabbit, Ab01, for which only one

template has more than 90% sequence similarity. How-

ever, even though the difference in sequence similarities

between templates is �3% or less for all targets (except

Ab01), the spread of template RMSD values can be rela-

tively large. The most extreme case is target Ab03, for

which the top template (2XTJ) has 98.9% sequence simi-

larity for an RMSD of 0.6 Å, and the second template

(1RZI) has 97.8% sequence similarity with an RMSD of

1.4 Å. For other targets (Ab04, Ab07, Ab08) templates

with slightly lower sequence similarity have lower

RMSDs than templates with higher sequence similarity.

It therefore appears that picking templates purely based

on a single sequence similarity score does not always

result in an optimal template.

Nevertheless, it should be noted that most of the five

top sequence-similar templates have RMSD values below

1 Å with respect to the target structures, so models built

using any of these templates should have RMSDs below

1 Å in most cases.

For most targets, predictors selected the default tem-

plates (i.e., the structures with the highest sequence simi-

larity) for building the models. In most cases, this

resulted in a template with an RMSD below 1 Å. For

three targets (Ab05, Ab6, Ab11), slightly different strat-

egies were used to select the templates. Target Ab06 was

a case where a large number of templates with very high

sequence similarity to the target sequence (�95%) were

available. The set of templates was pruned by looking for

structural consensus among templates and the quality of

the selected templates was similar to that of the default

selection. For targets Ab05 and Ab11, the RMSD of the

manually selected templates was significantly larger than

that of the default template with the highest sequence

similarity. These two cases are discussed in detail below.

Figure 1.

Figure 1
(a) Framework RMSDs (peptide carbonyl) of potential templates for
the eleven targets. The box plots show the distribution of the Frame-

work RMSD with respect to the target for all Fv structures in the anti-

body database (2099 structures). The horizontal bar inside the box
indicates the median of the distribution, the top and bottom of the box

are the 75th and 25th percentiles. The tails indicate the highest/lowest
RMSD value that fall within a factor of 1.5 times the interquartile dis-

tance of the box boundaries. Outliers are not shown, except for the
minimum of the distribution which is plotted as a triangle. The blue

circles indicate the RMSDs of the top five most sequence-similar tem-

plates identified in the database, with the larger circle indicating the
structure with the highest sequence similarity (similarity calculated over

framework residues only). The red circles show the RMSD of the inter-
face template used in the submitted models, for models built with the

single or chimeric template approach. The orange circles indicate the
templates used for manual predictions using the top5 template

approach, which the largest circle corresponding to the template with

the highest sequence similarity to the target. (Note that for the manual
top5 predictions (orange circles) in some cases templates were selected

using additional criteria. As a result the set of structures used for man-
ual predictions can differ from the five most-sequence similar templates

in the database (blue circles).) In general, at least one of the five most
sequence similar templates had an RMSD close to the lowest RMSD

structure in the database. For models using the single or chimeric tem-

plate approach, we typically chose the structure with the highest
sequence similarity as interface template, except for targets Ab05 and

Ab11. (b) Framework RMSD (peptide carbonyl) of the top five tem-
plates for each of the targets vs. sequence similarity. The sequence simi-

larity was also calculated considering only framework residues. The plot
shows a generally negative correlation between the sequence similarity

and the RMSD. However, the correlation is not very strong, especially

for similarities greater than 90%, which includes the templates for all
targets, except Ab01 (4MA3).
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Submitted models

The results for the framework regions of the models

are summarized in Table II and Figure 2. In the table,

the columns VL and VH give the RMSD over the b-core

regions, as defined above. The column FR lists the

RMSD values of the models when comparing the entire

structure, excluding CDRs and termini.

VL domain. From Table II, we can see that the models

are very accurate for the VL region, with all but the

models for target Ab04 having RMSD values below 0.5

Å. The distribution in Figure 2(a) also shows that the

Accelrys models (acc) are generally below the median of

the distributions of all submitted AMA-II models, with

models for target Ab08 standing out for low RMSDs.

The comparatively high RMSDs for the VL domain

for the target Ab04 models seem to be caused by a sub-

optimal choice of template; the VL domain of 3MXV,

which was used for the single template models

accAb04m1 and accAb04m2, is not among the top VL

templates for this target. As pointed out in Ref. 11

3MXV has a cis-proline at position 8 in VL, which is

replaced by a histidine in Ab04. However, the cis-

conformation at position 8 was incorporated into the

model accAb04m1 and accAb04m2, which lead to an

incorrect conformation of the backbone in that region.

Using a separate template for VL seems to help in this

case. Chimeric model accAb04m3, which used 3IU4 as

VL template, had a VL RMSD of 0.5 Å compared to 0.7

Å for the models based entirely on 3MXV (accAb04m1,

accAb04m2).

VH domain. For VH, results are similar with slightly

higher RMSDs than those for VL. They are displayed in

Figure 2(b) and Table II. Most submitted models have

RMSDs of around 0.5 Å or slightly better, with the

exceptions being targets Ab05 and Ab11.

The relatively high RMSD value of the VH domain of

the models for target Ab11 highlights the sensitivity of

model accuracy to the selection of the template. We

selected 2W9D, the template with the highest sequence

similarity to target Ab11 (96.7%), but another structure,

1F11, with slightly lower sequence similarity (94.5%),

would have been a better choice. The H1 and H2 loops

and stem residues in 1F11 adopt very similar conforma-

tions to those in the X-ray structure of Ab11, with

RMSDs around 0.5 Å, whereas H1 and H2 CRD regions

in 2W9D adopt very different conformations from Ab11

(with RMSDs greater than 2 Å). Retrospective analysis

shows that 1F11 has a slightly higher sequence identity

to the target (87.9% vs. 86.8% for 2W9D) and the resi-

dues in CDRs H1 and H2 loops and the corresponding

stem regions are more conserved in 1F11. However, it is

important to note that selecting the better template

(1F11) was very difficult in this case as the sequence-

differences are quite subtle. As shown in Figure 2, the

top5 templates approach improves the accuracy of the

model in this case since the method is less dependent on

the choice of a single best template.

For target Ab05, models accAb05m1 and accAb05m3,

which have relatively high VH RMSD values, were built

using the top5 approach. When selecting the five

Figure 2
Plots in this figure compare the quality of the framework region of
models for each target. In each panel, the results for the Accelrys mod-

els submitted for AMA-II are shown as red (model 1), blue (model 2),
and green (model 3) bars. The results for models built using different

automated approaches in the post-experiment analysis are shown as

purple (single template), orange (chimeric template) and yellow (top
five templates) bars. In each panel, the box plots in the background

indicate the distribution for the models submitted by AMA-II partici-
pants (as reported in Ref. 11k). The thick black bar inside the boxes

indicates the median, the top and bottom boundaries of the boxes indi-
cate the first and third quartiles (i.e. 25th and 75th percentiles). The

tails indicate the highest/lowest RMSD value that fall within a factor of

1.5 times the interquartile distance of the box boundaries. Any outliers
fall in the regions beyond the tails are drawn as black circles. (a) Plots

RMSD of the model structures compared to the X-ray structure calcu-
lated over b-core of the VL region. (b) Plots the same data for the VH

region. (c) The results of the Tilt angle.

kData used for boxplots in figure is from a prepublication manuscript provided

by organizers.
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templates, we picked only three from the default list with

the highest sequence similarity for the overall Fv region

(3MLW, 2XWT, 3N9G). The remaining two templates

from the default list had comparatively low sequence

similarity for the light chains and were replaced by a

manual selection of templates with higher light chain

similarity (4D9L and 4FQJ). Analyzing the germlines of

Ab05 and the selected templates explained why this was

not a good choice; Ab05 is composed of germlines

IGLV1-40 and IGHV5-51.¶ All of the top four default

overall templates also had VH domains from the VH5

germline family and VL domain from the VL1 germline

family, matching the target exactly. By contrast, three of

the templates we used in the manual selection, 3N9G,

4D9L, and 4FQJ have VH domains from the VH1 family.

The manually selected templates produced models with

Table II
Peptide Carbonyl RMSD Values of the Models Submitted

CDR regions for which the X-ray structure adopts a non-canonical structure are indicated by black bars on the side of the table cells. Double bars indicate CDRs for

which the X-ray structure adopts a minor canonical conformation (classification according to Ref. 33, adopted from Ref. 11. Averages are shown for the entire set of

models (All), as well as model 1 for each target (M1) (excluding the rabbit structure Ab01, which was considered an outlier because of the low number of rabbit tem-

plates in the PDB). The ranking of models was determined manually. Note that the carbonyl RMSDs reported here can be substantially higher than the more com-

monly reported C-a RMSDs (reported in the Supporting Information Table S1).

¶As determined by the IMGT/GapAlign server.31
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VH RMSDs of 0.8 Å. By contrast, the VH domain of the

chimeric model accAb05m2, which was based on 3NA9

from the VH5 germline family, had a VH RMSD of 0.3

Å. As pointed out in Ref. 11, one of the distinguishing

features of the VH5 germline is a buried TRP residue in

Chothia position 82, which leads to a displacement of B

and E b-strands of �2 Å compared to VH domains

from other germlines, which typically feature a LEU or

MET residue in position 82.

In retrospect, given the structural differences between

members of the VH5 and VH1 germline family, selecting

templates from the same germline family should have

trumped selecting by higher light chain similarity. As the

results for the automated methods show, this would have

led to better models. It is not clear to what extent this

generalizes to other germline families.

FV domain. RMSD values for the overall framework

region, including both the VL and VH domains, are

listed in the C-b and FR columns of Table II. The C-b

columns measures the RMSD only over the b-sheet core

residues used for superposition, as defined previously in

the methods section. The values in the FR column

include all residues in the domain, except the CDR

regions, and the termini residues. Additionally, the table

lists the tilt angle, which compares the relative orienta-

tion of the domains between the model and X-ray

structure.

Given that the quality of the VL and VH domains is

good for most models, large values in the RMSD of the

overall framework should be explained by the relative

orientation of the domains. The tilt angles of the models

are also plotted in Figure 2(c). The data in Table II

shows that the FV b-core RMSDs for most models are

around 0.7 Å or below, with the exception of models for

targets Ab04, Ab05, and Ab11, which have RMSD values

around 1 Å. The tilt angle correlates relatively well with

the RMSD of the b-core region. Figure 2(c) shows that

the models submitted by Accelrys typically have tilt

angles near the median for the submitted models. Mod-

els submitted for targets Ab08 and Ab09 have very good

tilt angles below 2�. On the other hand, the deviation of

tilt angles for models for targets Ab05 and Ab11 are

comparatively high.

For target Ab11, this can be explained by the use of a

sub-optimal interface template. Models for target Ab11

were built using the chimeric template approach, with

2W9D as the interface template. We selected 2W9D,

rather than the highest sequence similarity template

(2OZ4) as the interface template because it was the top

heavy chain template per sequence similarity and was

among the top 10 overall templates. This approach of

choosing the top heavy or light chain template as the

interface template was an approach successfully applied

in the first Antibody Modeling Assessment experiment.10

However, in the case of target Ab11, this was not an

optimal approach. This can be seen in Figure 1(a), which

shows that any of the top five templates had lower

RMSDs than 2W9D. The default setting in our software

would have picked 2OZ4 as the interface template, which

has a sequence similarity and identity of 94.5% and

86.1% respectively. 2W9D, as the 8th best template by

comparison has a sequence similarity and identity of

90.0% and 73.4% respectively, which is significantly

lower. Indeed, single and chimeric models using 2OZ4 as

interface templates produce models with tilt angles

between 6� and 7�.
Similarly, the interface template for chimeric model

accAb05m2, 3N9G, was also a lower ranked overall tem-

plate (ranked 5th with sequence similarity of 91.1%),

which was manually chosen over templates with higher

overall sequence similarity because all the top templates

were ligand-bound. However, 3N9G has a much higher

RMSD with respect to the target X-ray structure than the

top template [cf. Fig. 1(a)]. Here a chimeric model built

on the top template (3MLW, 96.1% sequence similarity)

has a tilt angle of around 6.5�. Again, an indication that

this manual choice was ill-advised is provided by the

germline makeup of 3NG9 (IGLV1, IGHV1), compared

to the makeup of the target and the default template

3MLW (IGLV1, IGHV5).

For the multi-template models for target Ab05, the high

tilt angles are most likely due to the choice of templates

with VH domain from a germline other than VH5, as dis-

cussed previously. Interestingly, the two templates with

VH domains from the VH5 family, 3MLW and 2XWT,

have tilt angles of 4.9� and 6.4�. The templates with VH

domains from the VH1 germline family all have tilt angles

above 10�, with 3N9G, which was the template selected for

the chimeric model accAb05m2 having a tilt angle of

12.0�. Not surprisingly, the models built on these templates

have comparatively high tilt angles.

There seem to be some interesting systematic differen-

ces between structures and sequences from VH from

germline VH1 compared to those of germline VH5

around residue H60, a region in close proximity to L3.

However it is not clear from this limited set of data to

what extent germline specific properties influence the tilt

angle and by what mechanism. A more detailed examina-

tion of this issue is warranted.

Automated models

Figure 2 shows the performance of the different frame-

work modeling approaches for automated modeling. The

single and chimeric approaches typically perform simi-

larly to the corresponding submitted models, though the

chimeric approach in some cases, such as target Ab07,

performs better in modeling the VL and VH domains, as

expected.

For the automated approach we do not expect much

difference in tilt angle between the single and chimeric
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template approaches since in both cases, the same struc-

ture (highest sequence similarity template), was used to

model the overall orientation of the VH and VL

domains.# There is no clear trend to which method, sin-

gle or chimeric, performs better on average. Single tem-

plate models on average have a RMSD of 0.67 Å 6

0.18Å over the b-core region, compared to 0.65 Å 6

0.12 Å for the chimeric template models. On the other

hand, the top5 template approach seems to outperform

the other approaches on average, with 0.53 Å 6 0.12 Å

RMSD for the b-core regions. However due to the small

sample size, the difference is not statistically significant

at the 5% level.

For the VH and VL domains, with the exception of

VL for targets Ab01 and Ab09, the top five template

models is always better than the median of all submitted

AMA-II models and it is often as good as the best sub-

mitted models. The performance of the multiple tem-

plate approach is even better for the tilt angle; for 9 out

of the 11 targets, it produces a model with a tilt angle of

less than 6�. This is somewhat surprising. To better

understand this, we looked at the templates used in the

automated top5 template approach. Figure 3 shows the

framework RMSDs to the target X-ray structure for all

five templates involved in model construction, along

with the RMSDs of the corresponding top5, chimeric

and single template models for each targets. It is clear

from the figure that the top template does not always

have the best RMSD as already discussed in the section

on template selection. Also note that the single template

and chimeric models have RMSDs very close to that of

the top template,** which is expected. Somewhat surpris-

ingly, the RMSD of the model produced by the top5

multiple template approach is almost always near the

low end of the RMSD range of the 5 templates used, and

sometimes below the lowest template RMSD.

This can most likely be explained by the way MOD-

ELER combines information from the different tem-

plates: As mentioned in the methods section, MODELER

uses an additive distance restraint function that incorpo-

rates information from each template, weighted by local

sequence similarity. This results in models that locally

agree with one or another of the templates, not the aver-

age of all templates.3,32

For the top5 template approach used here, this effec-

tively ignores outlier regions in the templates: If three or

more of the templates agree on the local conformation

or some templates have more similar sequences in a

region, models that agree with this template conforma-

tion will have a better energy than models based on the

deviating structures. An illustration of this effect can be

seen in Figure 4, which shows a region of the backbone

near the N-terminal for target Ab08. In this region, two

of the templates, among them the top template 1PKQ,

deviate from the conformation of the backbone of the

target. However, the other three templates agree with the

target structure, which results in the top model built by

MODELER being very similar to the target in this

region. It is possible that this is a general effect; because

the templates in antibody modeling typically have high

sequence similarity to the template and by extension to

each other, they will typically have similar framework

structures, with some local deviation for individual tem-

plates. The top model built by MODELER is then one

that is based on the most common or most similar local

substructures, thus eliminating outliers. As long as the

target agrees with these local conformation most of the

time, the overall RMSD is likely to be lower than any of

the templates with local deviations.

An interesting case is target Ab03, where the top5 tem-

plate approach produced a model with a tilt angle of

about 9�. Closer inspection reveals that three of the five

templates in this case were from the same structure,

Figure 3
Peptide carbonyl RMSD of the Fv framework region for five most

sequence-similar templates and models built using automated methods
during post-experiment analysis. The filled blue circles indicate the

RMSD for the template with the highest sequence similarity; the open

circles indicate the RMSDs for templates with the second to fifth high-
est sequence similarity. The plot also shows RMSDs for the models

built using the single template (red triangles), chimeric template
(orange triangles) and top five templates (green triangles) methods. The

single and chimeric model RMSDs tend to be close to that of the top
template ranked by similarity, whereas the RMSDs for the top five

models tends to be close to that of the template with the lowest RMSD,

and sometime even below.

#Minor differences are expected though since the core regions in the VH and VL

domains will be different for the chimeric and single template approaches.

**The small differences are due to the somewhat different IMGT CDR ranges we

used in the loop remodeling process during the experiment, compared to the

CDR ranges adopted from Ref. 11 for the post-experiment RMSD calculations.
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1RZI, which has eight copies of the Fv region in the unit

cell, all closely interacting. The automated template selec-

tion procedure for the top5 approach currently only

removes 100% sequence redundant templates. This

caused three Fv regions from 1RZI to be picked up, since

they have slight differences in their sequences due to resi-

dues not resolved in the X-ray structure in some of the

domains. Having multiple copies of a very similar struc-

ture would most likely bias the top5 approach towards

that structure, which seems to be what happened in this

case. Further testing should be done to see if adding a

filter to remove copies of Fv domain from the same PDB

entry would improve the results.

Given the relationship between RMSD and sequence

similarity of templates shown in Figure 1, there seems to

be no clear signal in the sequence similarity to pick out

a “best” individual template. A multiple template based

approach with best local conformations modeled from

multiple templates is likely to produce a better model.

We reach the same conclusion when testing using the

nine antibodies from the AMA-I experiment (e.g., frame-

work models built using the top five templates had low-

est RMSD).

However, current results are based on a limited set of

data; a more systematic study on a larger set of data is

needed to confirm the validity of this approach.

Similarity versus identity

We also explored the effect of using sequence identity as

opposed to sequence similarity when selecting the templates

used in building models. For individual targets, such as tar-

get Ab11, the choice of template by identity rather than

similarity can make a big difference. This is expected given

the relatively large variance of template RMSD observed in

Figure 1. For templates with a relatively small difference in

sequence similarity to the target (cf. Fig. 1) there is relatively

large variability in the models built using either approach.

However, on average we did not measure a statistically sig-

nificant difference between choosing templates by sequence

identity versus sequence similarity. In most cases both

approaches result in the same selection, so the number of

data points from this experiment is too small to draw

meaningful conclusions. A more systematic study on a

larger dataset is required.

CDRs

Results for the predictions of the CDR loops are pre-

sented in Table II and Figure 5. In general, predictions

for L1, L2, and L3 were accurate—for L2, all predictions

were 0.5 Å or less, and for L1 and L3, most predictions

were below 1Å. Exceptions with higher RMSDs were the

L1 models for targets Ab01, Ab04, and Ab05 and the L3

models for targets Ab01, Ab02, Ab05, and Ab10. This is

not surprising as these loops are either non-canonical, or

in a minor canonical conformation according to the clas-

sification by North et al.,33 as pointed out by the organ-

izers in their general evaluation.11 Also, target Ab01 is a

rabbit antibody which is hard to model since there are

very few templates from the same organism in the PDB.

One case that turned out to be interesting upon fur-

ther examination was L3 for target Ab05. Our models for

Ab05 have an incorrect conformation of the N-terminal

of the VL domain. Rather than forming an extended

strand as in the target Ab05, the residues assume a

curved conformation. This led to an unusual problem in

the modeling of the L3 loop. Since the N-terminal is rel-

atively close to the L3 loop, the incorrect position of the

N-terminal residues led to incorrect distance restraints

during the building of the L3 loop model with MOD-

ELER based on 2J6E. In order to satisfy the spurious

restraints from the incorrect N-terminal in the model,

the L3 is bent away from the correct orientation in the

template. This leads to the relatively high RMSD of L3

in our models. If the L3 model is rebuilt based on an

input structure for which the first three residues are

removed from VH using 2J6E as a template, the resulting

L3 model has an RMSD of �1.8 Å. This is still not par-

ticularly accurate, but better than the L3 in the submit-

ted models. While this case is relatively rare, it is not

currently well handled automatically and further work is

Figure 4
Backbone conformation of N-terminal of VH domain for X-ray struc-
ture (green), model accAb08m1 (blue), and templates 1PKG (orange),

2GKI (red), 2I9L (red), 3Q3G (red), 3UJT (orange). The range shown
is about residues 3 to 13 based on Chothia numbering. X-ray structure,

model and templates 2GKI, 2I9L, and 3Q3G superimpose well in this
region, whereas 1PKG and 3UJT adopt a different backbone

conformation.
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needed to improve the method to reduce the chance of

spurious restraints.

For the H1 and H2 loops predictions submitted were

not as accurate as for L1, L2, and L3 loops. Although

these loops seem to be more difficult to predict, as this

trend appeared to be true for all participants,11 most of

the predictions were still fairly accurate, with average

RMSDs of �1 Å.

One exception is target Ab11, for which our predic-

tions for H1 and H2 have RMSDs of 2.6 Å and 2.3 Å

RMSD respectively. As discussed above, the origin of

the problem stemmed from the selection of the 2W9D

template for VH. For H1 and H2, the stems of CDR

regions of this template do not superimpose well with

the target structure. As mentioned above, 1F11 would

have been a better choice than 2W9D because the stem

residues for the H1 and H2 CDRs are better preserved

in 1F11 with respect to the target sequence. Though the

stem residues are taken into account for CDR template

selection, they are not rebuilt during the model build-

ing process. Since the stems in this case do not super-

impose well, the rebuilt loops in the model are

deformed substantially in order to accommodate

restraints imposed by the different spacing and orienta-

tion of the stem residues. Indeed, a chimeric model

built based on 1F11 using the same loop templates has

RMSDs for H1 and H2 of 0.6 and 0.5 Å. Interestingly,

if the H2 model had been refined based on the IMGT

CDR definition, the resulting models also would have

been better because the IMGT CDR definition for H2

is longer by two residues at either stem. This would

have caused the incorrectly oriented stems to be

replaced and a model using IMGT with 2W9D as

framework template has an H2 RMSD of 0.7 Å.

The H1 CDR was also a problem in target Ab03. In

this target, we identified H1 templates with 100% iden-

tity for residues 22-36, which includes H1 and the stem

regions on either side, and residue 94, which is part of

the canonical loop definition according to Chothia.20

For models accAb03m1 and accAb03m2 these templates

(2NPS_B, 3QOT_H, and 1RZI_B) were used for model-

ing H1. However the H1 conformations of these tem-

plates have RMSDs of 4.1 Å, 3.3 Å, and 2.3 Å

respectively. The top template found during retrospective

analysis was from 2CMR, with an H1 RMSD of 1.4 Å.

However, 2CMR has an ASP at residue 27, compared

with GLY in Ab03 and the other templates listed above.

Additionally, because H1 in 2CMR is interacting with an

antigen and because it has a lower sequence identity, it

was not an obvious choice as template. The third model

target Ab03, accAb03m3, was submitted without tem-

plate based refinement of CDRs. The heavy chain CDR

regions of 2XTJ, the single template for accAb03m3,

show comparatively low similarity to the corresponding

CDRs in Ab03 when compared to some of the other

available CDR templates. As a consequence the inaccu-

rate predictions for the VH CDRs in accAb03m3 are not

very surprising.

We ran an automated post-experiment evaluation of

different approaches to CDR loop modeling, comparing

loops predicted based on the IMGT17 versus the Cho-

thia18–20 CDR definitions. In addition, we considered

filtering loop templates by canonical type. However,

there was no significant difference between the different

approaches, which was surprising. A closer inspection of

the data revealed that the templates selected by the

IMGT, Chothia, and Canonical filtering approaches were

in fact identical in a majority of the cases. Even in cases

where there was a difference, only one or two of the

three templates were different. Given this, we would not

expect any significant difference in the averages between

the methods over such a small sample size.

Figure 5
Plots in this figure compare the quality of the CDR loops of models for
each target. In each panel, the results for the Accelrys models submitted

for AMA-II are shown as red (model 1), blue (model 2), and green
(model 3) bars. The box plots in the background indicate the distribu-

tion for the models submitted by all groups participating in AMA-II
(as reported in Ref. 11††). (a) Plots average peptide carbonyl RMSD for

non-H3 hypervariable loop regions of the model structures compared

to the X-ray structure. RMSDs are calculated by averaging the peptide
carbonyl RMSDs for the L1, L2, L3, H1, and H2 CDRs (i.e. the average

of the corresponding columns in Table II). The results for models built
using different automated approaches for CDR refinement in the post-

experiment analysis are shown as purple (IMGT), orange (Chothia) and
yellow (Canonical) bars. (b) Plots the H3 backbone carbonyl RMSD

after superposition of the VH b-core regions. The results for models

built using different automated approaches to model H3 in the post-
experiment analysis are shown as purple (Template), orange (Looper)

and yellow (Environment Refinement) bars.

††Data used for boxplots in figure is from a prepublication manuscript provided

by organizers.
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There were cases where individual approaches showed

advantages. For example, for the L1 of target Ab04, a

hydrogen bond between TYR71 and the backbone nitrogen

of THR31 causes a flip in the peptide bond at that position

with respect to structures that do not have TYR at position

71. TYR71 is part of the canonical loop definition for

Chothia canonical type 2B. In the automated runs, all

templates identified using the canonical filtering method

had the correct conformation for the peptide bond at posi-

tion 31, whereas in the runs without canonical filtering,

only one of the three templates had the correct peptide

bond flip. Consequently, the model from the canonical

filtering method had an L1 RMSD of 0.6 Å, whereas the L1

in the IMGT model had an RMSD of 1.1 Å. Interestingly,

the loop from the Chothia based model has the correct

peptide bond orientation despite the fact that only one of

the templates had this conformation, indicating that

MODELER managed to select the correct local template in

this case, possibly due to the sequence identity at residue

71. The submitted models (accAb04m1, accAb04m2,

accAb04m3) were generated without considering canoni-

cal types and as a consequence had comparatively high

RMSDs (�1.2 Å). It is worth noting that this important

structural error is only apparent from the carbonyl

RMSDs. The corresponding C-a RMSDs for L1 for the

submitted models for target Ab04 are 0.4 Å (cf. Supporting

Information Table S1), which highlights the importance of

using carbonyl RMSDs when assessing the models.

Similarly, in some cases it was advantageous to select

the IMGT CDR definition, as was the case for loop H2

in target Ab11, as discussed above.

From this we conclude that while in most cases all

methods result in the same CDR template selection,

there is some anecdotal evidence that considering canon-

cial types, which encode information about key residues

outside the actual CDR region, can improve models in

some cases. Unfortunately, the sample size in this experi-

ment is too small to draw conclusions with statistical

significance.

CDR H3

As expected, predicting the conformation of the H3

loop in the models was the most challenging task. The

prediction targets included a diverse set of loop lengths:

five 8-residue loops (targets Ab01, Ab03, Ab04, Ab05,

Ab07), two 10-residue loops (Ab09, Ab11), three 11-

residue loops (Ab02, Ab08, Ab10), and one 14-residue

loop (Ab06). The results of our predictions are listed in

the H3 column of Table II and in Figure 5(b). For some

of the shorter loops (targets Ab03 and Ab04) as well as

the 11-residue loop in target Ab10, we made some rea-

sonable predictions around 2 Å. As expected, for longer

loops, the predictions were not as accurate.

It is interesting to notice that in most cases where we

submitted a template based model in addition to an ab

initio model, the template-based model tends to do bet-

ter. Furthermore, for the automated models generated in

the post-experiment analysis, we did not observe any

improvement from using the Looper or the environment

refinement approach over the purely template based

models for H3. This is probably a reflection of the fact

that the ab initio loop prediction method is based on

physical energy, which to a large degree depends on a

very accurate environment for the loop (typically not the

case in a homology model).

Model quality

In general, the models submitted for the first stage

were high quality. When evaluated with MolProbity,34,35

the quality scores are generally in line with those of the

target X-ray structures (see Supporting Information Table

S1 of Ref. 11 for a full list of MolProbity scores).

In particular, the models had on average 96.5% of res-

idues in Ramachandran favored areas, with 0.3% outliers,

which indicates good backbone geometry. This is an

improvement over the models submitted for AMA-I for

which the percentage of residues in Ramachandran

favored areas was 91.9%. The average clash score for the

models was also good (4.2); it was only marginally

higher than that of the X-ray structures at 3.1.‡‡

These results indicate that the constrained minimiza-

tion used as last step in the model building process was

clearly beneficial in improving model quality (such a

step was not included for AMA-I); it relieves local stress

in the models while preserving the overall conformation

of the models due to the constraints used in the

minimization.

In terms of cis-trans isomers, the models submitted

exhibited few problems. All of the cis-prolines in the tar-

get were modeled with the correct conformation (cf.

Table 4 in the general assessment11). There were five

cases where an incorrect isomer was copied into the

model from a template. This was the case for the models

for target Ab03, where a cis isomer for GLY104 in VH

was copied from template 2XTJ for models 1 and 3. For

target Ab04, two of our models incorrectly copied the

cis-isomer for HIS8 in VL from template 3MXV, which

has a cis-proline at this position. Finally for model 1 in

target Ab10, there is an incorrect cis-isomer for GLY100

in VH which seems to have been introduced during the

H3-refinement stage.

Stage 2

Supporting Information Table S2 shows the results for

the prediction of the H3 CDR loop. The first column

‡‡Unfortunately, a comparison of the clash scores between our AMA-I and AMA-

II models is difficult since the hydrogen parameters used in the current version of

MolProbity have been updated since the version that was used to evaluate AMA-I

models.36
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labeled acc-m0 shows the RMSD of the best model from

the first stage, whereas the remaining columns show the

RMSDs of the models submitted for the second stage.

With the exception of targets Ab10 and Ab11, the first

model from the second stage is better than the best

model from the first stage. This is not surprising since

predicting a long loop is easier in its crystal environment

than when the prediction is based on a model structure.

For the shorter loops our predictions were generally

good, with predictions of 1 Å or less for the eight residue

loops for targets Ab03, Ab04, and Ab05, and models

with less than 2 Å for target Ab07 (also an eight residue

loop). However, we did not always choose the best gener-

ated loop conformation to be our top model. This was

the case for target Ab05, where we produced a very good

model with 0.8 Å RMSD, but picked the 2.8 Å confor-

mation as our first model.

As expected, the model quality drops for the longer

loops, with predictions in the range of 2 to 5 Å, with

some reasonable predictions for the 10- and 11-residues

loops for targets Ab08, Ab09, and Ab10.

A further analysis of the whole ensemble of loops gener-

ated during prediction reveals that for the longer loops,

the problem was often due to insufficient sampling. For a

majority of the longer loop targets (Ab02, Ab06, Ab08,

Ab09), no acceptable loop conformation (i.e., below 2 Å

RMSD) were among the conformations sampled. For tar-

gets Ab10 and Ab11 acceptable conformations were gener-

ated (0.8 and 1.0 Å), but only for target Ab10 was a

reasonable conformation selected for the models

submitted.

Because our approach required relatively short compu-

tation times (typically less than 30 min), the results were

not unexpected. However, this severely restricts the

amount of conformations sampled, which can be a major

limitation for longer loops. The results of this experiment

(and other studies) indicate that in order to achieve more

accurate predictions, more extensive sampling is required.

However, such resources might not be available for

typical scientists wanting to build models for a large

number of sequences, and the approach used here pro-

duces a reasonable model even with relatively limited

computational resources.

CONCLUSION

Our antibody modeling tools have greatly evolved

since the first Antibody Modeling Assessment (AMA-I)

experiment in 2009. Based on the evaluation of our

models submitted for this blind prediction study, we

conclude that our methods are state of the art (see Sup-

porting Information Table S4 and Ref. 11 for comparison

to other AMA-II groups) and produce accurate models

with RMSDs of the VH and VL framework regions below

1 Å in most cases. Similarly, predictions for the L1 and

L2 CDRs are typically accurate, while predictions for L3,

H1, and H2 are generally a bit less accurate, but still

around 1 Å on average if the outliers discussed previ-

ously (Ab01, Ab05, Ab11) are excluded.

The RMSD values of the models we submitted for

AMA-II on average are lower across the board than the

corresponding numbers for the models submitted to the

first Antibody Modeling Assessment.§§ The source of the

improvement is two-fold: The first is improvements in

our methods, including a new curated antibody structure

and sequence database, better ways to select framework

and CDR templates based on the database, more robust

methods to graft CDR loops using MODELER and the

use of more consistent workflows.

The second source of improvement is better database

coverage. Since AMA-I, the number of antibody X-ray

structures in the PDB has greatly increased, making it

more likely to find one or several very close templates

for a target. (Indeed, the average sequence identity for

top templates during AMA-I was about 83%, whereas in

AMA-II, it was about 90%).

We did try to address the question of the relative contri-

bution of these two sources by re-predicting AMA-I mod-

els using a database consisting of only structures available

during that experiment, but using recent methods (unpub-

lished data). The results indicate that improved methodol-

ogy plays a central role in the improved results.

The analysis presented above suggests that the best

approach for building a model for a new antibody is to

consider a number of templates with the highest sequence

similarity to the target structure as potential templates. If

there are a number of templates with very similar sequence

similarity, building a model based on multiple templates

seems to yield the best result. If a model on a simple or

chimeric template is built, the available templates should

be inspected to avoid outliers. When building CDRs it also

appears beneficial to use multiple templates. In general, it

does not appear to make much of a difference which par-

ticular loop definition (e.g., Chothia or IMGT) is used,

since both seem to result in identical or very similar CDR

template selection. However, in cases where the CDR defi-

nitions are very different, one should check which defini-

tion better captures the local variation of potential

templates for a given CDR to ensure variations in stem

regions do not lead to inaccurate models. For H3 refine-

ment, ab inito remodeling of the region does not seem to

offer much benefit in terms of the RMSD from the real

structure. However, one has to note that ab initio remodel-

ing often resolves other structural problems, such as steric

clashes, and can therefore be important in preparing a

structure for further use. Similarly, further minimization

of a structure can help in resolving such issues, but care

should be taken to restrain unaffected parts of the

§§Comparison based on backbone atom RMSD, which was used in the evaluation

of AMA-I.10
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structure as to not introduce inaccuracies due to the

minimization.

It also appears that our tools have evolved to the point

that manual intervention does not always lead to better

models. While manual intervention helped in many

cases, there were several instances where a decision by a

predictor to select one template over another actually

lead to a worse model than using the default template

suggested by the automated approach. Of course, domain

experts with in-depth knowledge of the targets would

most likely always be able to improve models compared

to an automated approach. On the other hand, our

results and analysis indicate that the automated

approaches in most cases are sufficient to create quite

accurate models without direct manual intervention.

The AMA-II experiment also pointed to a number of

areas we will explore to further improve our tools. The

first concerns CDR refinement. As discussed above for

the refinement of CDR L3 of target Ab05, there are cases

where our current approach can lead to spurious

restraints. While this seems to occur rarely, it needs to be

addressed by more careful screening of restraints used in

CDR loop refinement. A second area that needs

improvement is H3 modeling. Our current methods are

designed to rapidly build fairly accurate models for rela-

tively short loops (ten or fewer residues). This speed is

achieved in part by limiting the amount of sampling per-

formed, which compromises the accuracy of the longer

loops (e.g., loops with 12 residues or more). For the

framework model construction, the top5 template

approach looks promising. In general, selecting the top

five sequence-similar templates seems to perform very

well. However as some of the cases discussed show, the

approach does not work well in all cases and more work

is needed to determine more specific rules to guide auto-

mated template selection for multiple template models.

More generally, the results of the AMA-II experiment

indicate that selecting templates based purely on

sequence similarity does not always identify the optimal

templates, and that additional criteria might improve the

quality of the selected templates. However, the dataset of

the current study is not large enough to clearly identify

the factors that would allow for a more reliable selection

of templates. Studies on larger datasets are required.
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