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Abstract: Macrophomina phaseolina (Tassi) Goid., the causal agent of charcoal rot disease of soybean,
is capable of causing disease in more than 500 other commercially important plants. This fungus
produces several secondary metabolites in culture, including (-)-botryodiplodin, phaseolinone and
mellein. Given that independent fungal isolates may differ in mycotoxin and secondary metabolite
production, we examined a collection of 89 independent M. phaseolina isolates from soybean plants
with charcoal rot disease using LC-MS/MS analysis of culture filtrates. In addition to (-)-botryodiplodin
and mellein, four previously unreported metabolites were observed in >19% of cultures, including
kojic acid (84.3% of cultures at 0.57–79.9 µg/L), moniliformin (61.8% of cultures at 0.011–12.9 µg/L),
orsellinic acid (49.4% of cultures at 5.71–1960µg/L) and cyclo[L-proline-L-tyrosine] (19.1% of cultures at
0.012–0.082µg/L). In addition, nine previously unreported metabolites were observed at a substantially
lower frequency (<5% of cultures), including cordycepin, emodin, endocrocin, citrinin, gliocladic
acid, infectopyron, methylorsellinic acid, monocerin and N-benzoyl-L-phenylalanine. Further studies
are needed to investigate the possible effects of these mycotoxins and metabolites on pathogenesis
by M. phaseolina and on food and feed safety, if any of them contaminate the seeds of infected
soybean plants.

Keywords: moniliformin; kojic acid; mellein; orsellinic acid; cyclo[L-proline-L-tyrosine]; cordycepin;
phaseolinone; botryodiplodin; natural products; phytotoxins; secondary metabolites; fungi

1. Introduction

Soybean (Glycine max L.) is an economically valuable crop due to its high protein and oil content
and wide variety of uses in food, agricultural pharmaceutical and industrial applications [1]. The United
States produces 32.5% of the world’s soybeans (120 million tons/year valued at $31.2 billion), making
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it the second most valuable US crop [2]. In the southern US, high temperatures and dry conditions,
along with poor management, can lead to drought-stressed plants that are susceptible to infection
by opportunistic soil- and seed-borne pathogens, such as Fusarium virguliforme O’Donnell & T. Aoki,
Cercospora sojina Hara, Phomopsis longicolla T.W. Hobbs and Macrophomina phaseolina (Tassi) Goid.,
resulting in significant economic impact due to yield loss and reduced seed quality [3–10]. M. phaseolina
infects over 500 species of commercially important plants, causing various dry-weather wilts and
rots, including charcoal rot disease in soybean [6–10]. In many years, charcoal rot disease is the major
cause of soybean crop yield loss and seed quality deterioration in the southern US states of Arkansas,
Louisiana and Mississippi [11–13], although soybean cyst nematode is the major cause of crop damage
in most parts of the country. It is not understood what factors specific to the region are responsible for
the relatively greater pathogenicity of M. phaseolina there [14].

One plausible explanation for the greater frequency of charcoal rot disease in soybeans in this
region is that M. phaseolina isolates endemic to the region produce unusual levels or diversity of
mycotoxins. Therefore, as an approach to exploring the possible role of mycotoxin production in
the increased pathogenicity of M. phaseolina, the present study was undertaken to investigate the
diversity of known mycotoxins and other secondary metabolites produced in culture by isolates from
regional soybean plants symptomatic for charcoal rot using liquid chromatography tandem mass
spectrometry (LC-MS/MS) with culture medium filtrates. M. phaseolina exhibits extensive genetic
diversity as assessed by DNA markers and differences in pathogenicity [15–18]. The genetic diversity
of M. phaseolina may extend to mycotoxins, given that (-)-botryodiplodin (1) and not phaseolinone (3)
was found [19–21] in soybeans with charcoal rot (Figure 1), whereas phaseolinone (3) (Figure 1) but not
(-)-botryodiplodin was isolated from the culture medium of an M. phaseolina endophyte from mung
bean [22]. Similarly, mellein (Figure 1) has been observed in some but not all isolates of M. phaseolina
from soybean plants symptomatic of charcoal rot in Mississippi, U.S.A. [23].
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(-)-botryodiplodin (1), mellein (2) and phaseolinone (3).

2. Materials and Methods

2.1. M. phaseolina Culture Collection and Sources

For this study, 89 isolates of M. phaseolina were obtained from soybean plants exhibiting symptoms
of charcoal rot disease in various fields in Mississippi and the surrounding areas using the method
described by Mengistu et al. [9], or they were provided by other investigators in the same areas [20,21]
(see Figure 2). Cultures were maintained on potato dextrose agar (PDA) until use.
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Figure 2. Map of M. phaseolina collection sites in the United States. Each point represents a site where
one or more isolates of M. phaseolina were collected. There were 31 collection sites in total. The map
was generated using QGIS software [24] and cartographic boundary files were provided by the US
Census Bureau [25].

2.2. Preparation of Cell-Free Culture Extracts

M. phaseolina isolates were cultured in Czapek-Dox broth (CDB) prepared by dissolving 2.0 g
NaNO3, 1.0 g K2HPO4, 0.5 g KCl, 0.5 g MgSO4, 0.01 g FeSO4 and 30 g sucrose in 1 L water. Aliquots
(200 mL) of CDB in 500 mL Erlenmeyer flasks were sterilized in an autoclave for 15 min at 121 ◦C
then cooled. Each flask was inoculated with five 5 mm mycelial plugs from a 7-day-old PDA culture
of each M. phaseolina isolate. Inoculated flasks fitted with cotton plugs were incubated in an Innova
40 Benchtop Incubator Shaker (New Brunswick Scientific Co., Inc., Edison, NY, USA) for 10 days at
28 ◦C and 110 rpm. After incubation, the liquid cultures were filtered roughly through cheesecloth to
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remove large biomass not able to pass through a fine filter. Cell-free filtrates (CFF) of the M. phaseolina
isolates were prepared by vacuum filtration in Nalgene Rapid-Flow sterile disposable filter units with
0.45 µm pore-size CN membrane filters (Thermo Fisher Scientific, Rochester, NY, USA) and freeze-dried.
Dried CFF powders were stored at −20 ◦C until shipped for chemical analysis studies.

2.3. Chemicals and Reagents for LC/MS Analyses

Reagents for LC-MS analysis included HiPerSolv Chromanorm HPLC gradient grade acetonitrile
from VWR Chemicals (Vienna, Austria), LC-MS Chromasolv grade methanol from Honeywell (Seelze,
Germany) and LC-MS grade ammonium acetate and glacial acetic acid from Sigma-Aldrich (Vienna,
Austria). Reverse osmosis water was purified through a Purelab Ultra system (ELGA LabWater, Celle,
Germany) for analytical use. Mellein was purchased from Cayman Chemical (Ann Arbor, MI, USA);
botryodiplodin was prepared as described in Abbas et al. [21]. The detailed sources of the remaining
analytical standards are listed in the supplementary information (ESM 2) of Sulyok et al. [26].

2.4. LC-MS/MS Analysis

Samples were analyzed by LC-MS/MS as described by Sulyok et al. [26] using an extension of
the method to include botryodiplodin and mellein (Table 1). Briefly, a 1290 series UHPLC system
(Agilent Technologies, Waldbronn, Germany) was connected with a QTrap 5500 MS/MS system (Sciex,
Foster City, CA, USA) containing a TurboV electrospray ionization source (Sciex, Foster City, CA, USA).
A Phenomenex (Torrance, CA, USA) Gemini C18 column (150 × 4.6 mm i.d. and 5 µm particle size)
was utilized for chromatographic separation along with a Phenomenex C18 security guard cartridge
(4 × 3 mm i.d.). An injection volume of 5 µL with a flow rate of 1 mL/min in binary gradient mode was
used for elution. Both mobile phases were methanol/water/acetic acid with Eluent A 10:89:1 (v/v/v) and
Eluent B 97:2:1 (v/v/v) and contained 5 mM ammonium acetate. Initially, 100% A was held for 2 min;
afterwards, B was increased linearly to 50% over 3 min. B was then linearly increased to 100% over 9 min
and B was held at 100% for 4 min. Finally, the column was re-equilibrated back to 100% A within 2.5 min.
Scheduled multiple reaction monitoring (sMRM) was used for analyte detection. Quantification of
the analytes was based on external calibration using a serial dilution of a multi-component stock
solution. The accuracy of the method was verified on a continuous basis by participation in ring trials
organized by BIPEA (Genneviliers, France) with a current success rate (z-scores between −2 and +2) of
approximately 95% for over 1400 results submitted [26]. For confirmation of a positive identification,
the ion ratio had to agree with the corresponding values of the standards within 30% as stated in the
SANTE/12089/2016 document [27], whereas for the retention time, a stricter criterion of ± 0.03 min was
applied in this study.

Table 1. LC-MS/MS parameters for botryodiplodin and mellein.

Compound tR a (min) m/z Q1 DP b m/z (Q3) CE c (V) CXP d (V)

Botryodiplodin 4.7 127.1 61 83.0/85.0 17/17 6/6

Mellein 9.1 179.1 96 105.1/115.1 32/8 40/8
a retention time; b declustering potential; c collision energy; d cell exit potential.

2.5. Statitical Analysis

The frequencies of occurrence of mycotoxins and other secondary metabolites in the study were
analyzed for significant differences by pairwise applications of Fisher’s exact test to rank-ordered
frequencies; p < 0.05 was considered significant.
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3. Results

Identification and Frequency of Secondary Metabolites

Cell-free culture filtrates from a total of 89 M. phaseolina isolates from soybean plants symptomatic
for charcoal rot were analyzed by LC-MS/MS. In addition to the known M. phaseolina metabolites,
(-)-botryodiplodin (1) and mellein (2) (Figure 1), the analysis detected a total of 13 secondary
metabolites (Figures 3 and 4) that have not previously been reported to be produced in culture
by M. phaseolina [19–23]. Several metabolites (Figure 3) were observed at a frequency in the range
of 19% to 84%, as well as the previously reported metabolites (-)-botryodiplodin (1) (82.0%) and
mellein (2) (28.1%). Kojic acid (4), which was produced by 84.3% of isolates in the concentration
range of 0.57–79.9 µg/L, was the most frequently observed metabolite (Table 2). Other previously
unreported metabolites were moniliformin (5) (61.8% of isolates), orsellinic acid (6) (49.4% of isolates)
and cyclo(L-proline-L-tyrosine) (7) (i.e., maculosin) (19.1% of isolates).
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Figure 3. Structures of mycotoxins and secondary metabolites produced in culture media by M. phaseolina
in more than 19% of the 89 M. phaseolina isolates from soybean plants symptomatic for charcoal rot.

Table 2. Mycotoxins and other secondary metabolites occurring in the culture media of a relatively
high percentage (>19%) of the 89 M. phaseolina isolates from soybean plants symptomatic for charcoal
rot included in the study.

M. phaseolina
Metabolite

% of Isolates
Producing the
Metabolite 1

Range of Metabolite
Concentrations
Produced (µg/L)

Mean ± SEM
Concentration (µg/L) of

Producers

Kojic acid (4) 84.3% a 0.57–79.9 13.3 ± 18.6

(-)-Botryodiplodin (1) 82.0% a 15.9–2380 865 ± 651

Moniliformin (5) 61.8% b 0.011–12.9 1.03 ± 1.69

Orsellinic acid (6) 49.4% c 5.71–1960 347 ± 412

Mellein (2) 28.1% e 1.66–74.9 12.5 ± 10.9

Cyclo[L-Pro-L-Tyr] (7) 19.1% e 0.012–0.082 0.038 ± 0.017
1 Values followed by the same letter in Tables 2 and 3 do not have significantly different frequencies (p < 0.05,
Fisher’s exact test).

The LC-MS/MS analysis also detected the production in the culture media of nine previously
unreported metabolites by M. phaseolina at relatively low frequency (less than 5%) among the 89 isolates
in the collection (Table 3). The low frequency metabolites were cordycepin (8), emodin (9), endocrocin
(10), citrinin (11), gliocladic acid (12), infectopyron (13), methylorsellinic acid (14), monocerin (15) and
N-benzoyl-phenylalanine (16) (Figure 4).
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Table 3. Mycotoxins and other secondary metabolites occurring in the culture media of relatively few
(<5%) of the 89 M. phaseolina isolates from soybean plants symptomatic for charcoal rot included in
the study.

M. phaseolina Metabolite Number of Isolates Producing
the Metabolite 1

Range of Metabolite
Concentrations Produced (ng/L)

Cordycepin (8) 4 f 42.2–90.4

Emodin (9) 2 f 0.34–67.3

Endocrocin (10) 2 f 15.3–1180

Citrinin (11) 1 f 10.5

Gliocladic acid (12) 1 f 35.7

Infectopyron (13) 1 f 1960

Methylorsellinic acid (14) 1 f 840

Monocerin (15) 1 f 5.1

N-Benzoyl-L-phenylalanine (16) 1 f 0.68
1 Values followed by the same letter in Tables 2 and 3 do not have significantly different frequencies (p < 0.05,
Fisher’s exact test).
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M. phaseolina in less than 5% of the 89 M. phaseolina isolates from soybean plants symptomatic for
charcoal rot.

4. Discussion

The large number of secondary metabolites produced by M. phaseolina and the differences in the
metabolite profiles of various isolates presumably reflect the genetic diversity of the fungus [15–18].
The diversity of toxins may play a role in the reported differences in pathogenicity of M. phaseolina
isolates [17,18] if any of the toxins are used in the root infection mechanism or to weaken plant
defenses [10,19–23,28].
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Among the M. phaseolina metabolites identified for the first time in this study, kojic acid,
moniliformin, orsellinic acid and mellein are the most notable. Kojic acid is a metabolite originally
isolated from Aspergillus oryzae (Ahlb.) Cohn that has found commercial use as a skin-whitening
agent in cosmetic products [29,30]. Kojic acid has been reported to have mutagenic properties at
high concentrations in several animals, but the amount found in food is generally safe for human
consumption [31,32]. Kojic acid acts by inhibiting the enzyme tyrosinase [33], which is important for
pigment formation and defense mechanisms in plants, animals and insects. Moniliformin usually occurs
as a sodium or potassium salt. It was initially purified from corn contaminated with Fusarium moniliforme
J. Sheld., later classified as F. proliferatum (Matsush.) Nirenberg ex Gerlach & Nirenberg [34]. It has
subsequently been shown to be produced by a variety of Fusarium spp. that contaminate cereal grains
worldwide, including F. moniliforme; F. sporotrichioides, Sherbakoff, 1915; F. avenaceum, (Fr.) Sacc., 1886;
F. culmorum, (W. G. Sm.) Sacc. 1895 and F. oxysporum Schltdl., 1824 [35]. Moniliformin production by
Penicillium melanoconidium (Frisvad) Frisvad & Samson, 2004, which also contaminates cereal grains,
has also been reported [36]. Moniliformin has been extensively studied due to its high acute toxicity in
both plants and animals, particularly cardiotoxicity in poultry [37,38]. Moniliformin is believed to
act by inhibiting mitochondrial respiration by inhibiting pyruvate and α-ketoglutarate oxidation [39].
Orsellinic acid has been isolated from various species of fungi [39,40], but few studies have explored the
biological activities of the underivatized molecule; published reports suggest that the compound has
little to no toxic activity [40,41]. Mellein, also known as ochracin, is a well-known mycotoxin initially
extracted from A. melleus Yukawa in 1933 and subsequently shown to be produced by numerous
organisms, including fungi, plants, bacteria, and insects [42,43]. In 2018, Khambhati et al. [22]
analyzed several M. phaseolina cultures by gas chromatography–mass spectrometry and discovered
that the fungus synthesized mellein as well as other unidentified substances. In 2020, Salvatore
et al. [44] reported the production of mellein by an M. phaseolina isolate from Eucalyptus globulus
Esser, Lora L. Mellein is reported to have numerous biological activities, including phytotoxicity,
cytotoxicity, antifungal activity and others [36]. Cyclopeptides with antifungal activity, such as
cyclo(L-proline-L-tyrosine), are produced by a wide range of bacterial and fungal species [45].

The discovery that a series of mycotoxins and other secondary metabolites are produced in culture
by pathogenic isolates of M. phaseolina raises several issues requiring further study. Additional studies
will be needed to determine if any of the major metabolites identified in cultures of M. phaseolina
impact the pathogenesis of the fungus in soybean and if any accumulate in the seeds at sufficient
levels to affect yield or food safety. Of particular concern are food safety issues that would arise if
any of these secondary metabolites accumulate in seeds or other plant parts that are consumed as
food or animal feed. In the case of (-)-botryodiplodin, Abbas et al. [19] found detectable levels of
the toxin only in the roots of soybeans with charcoal rot disease, which is not a food safety concern,
given that soybean roots are not used for food or feed. However, more extensive studies are needed to
determine if, and under what conditions, each of the mycotoxins and other secondary metabolites
identified in cultures of M. phaseolina accumulate at toxic levels in seeds or other edible plant parts for
soybeans and other food and feed plants susceptible to M. phaseolina infection. The newly identified
M. phaseolina metabolites may also provide tools to better understand the pathology of charcoal rot
disease in soybeans and other commercially important species. Future studies may include expanded
studies on the incidence of the newly discovered secondary metabolites and phytotoxic evaluations in
experimental systems, such as hydroponic culture, monitoring toxicity symptoms including chlorosis,
necrosis, wilting, stunting and/or death [21].
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