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Abstract
The generation of genomic binding or accessibility data from massively parallel sequencing

technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-

art computational approaches for the identification of DNA binding motifs often yield motifs

of weak predictive power. Here we present a novel computational algorithm called Motif-

Spec, designed to find predictive motifs, in contrast to over-represented sequence ele-

ments. The key distinguishing feature of this algorithm is that it uses a dynamic search

space and a learned threshold to find discriminative motifs in combination with the modeling

of motifs using a full PWM (position weight matrix) rather than k-mer words or regular

expressions. We demonstrate that our approach finds motifs corresponding to known bind-

ing specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the

ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the

best existing algorithms. In other datasets, our algorithm identifies novel motifs where other

methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C.
elegans using a dynamic expression similarity metric rather than fixed expression clusters,

and find novel predictive motifs.

Introduction
Multiple mechanisms exist to modulate protein levels in a cell and create a dynamic cellular
phenotype from a static genotype. One such mechanism is transcriptional regulation. Tran-
scription factors (TFs) bind to intergenic cis-regulatory elements and enhance or inhibit the
transcription of their target genes. Identifying the DNA binding specificities of transcription
factors is necessary to decipher the regulatory network in the cell, identify disease causing
mutations in these elements, and engineer synthetic organisms to perform specific biochemical
functions. Several technological platforms can be used to identify the binding specificities of
the DNA-binding domains of transcription factors to cis-regulatory elements in DNA. Binding
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can be directly measured in vivo using chromatin immunoprecipitation followed by microar-
ray hybridization (ChIP-chip) [1] or sequencing (ChIP-seq) [2], or in vitro using protein bind-
ing microarrays (PBMs) [3]. Alternatively, gene co-expression implies the binding of TFs to
cis-regulatory elements, and thus indirectly indicates binding by a common regulator. The spa-
tial resolution of these technologies are typically unable to resolve short TF binding sites, so
motif-finding algorithms are usually used to identify TF binding specificity within the set of
longer experimentally determined regions [2–4].

Despite these significant advances in technology, there is still a substantial gap in our ability
to generate PWMs that accurately describe binding specificities from these experiments. For
instance, 246 candidate DNA-binding proteins from yeast were assayed with PBMs [5]. Of
these, predictive motifs were found in only 89 cases, or 36% of the factors assayed. Similarly, 23
transcription factors from Caenorhabiditis elegans were assayed using ChIP-seq as part of the
modENCODE project [6]. Predictive motifs were found for only 8 (35%) of these factors. Con-
sidering the rapid growth of these technologies [6–9], improved algorithms to extract regula-
tory sequence information from these data sets would be of clear value. In particular, better
motif models could improve the identification of regulatory mutations associated with com-
mon human disease [10] and could be used to develop improved techniques to detect regula-
tory variation responsible for differences in gene expression between species [11–13].

Generally, motif-finding algorithms search a set of sequences for shared cis-regulatory ele-
ments. We term this set of sequences the search space. Early motif-finding algorithms opti-
mized for over-represented sequence motifs, which are sequence patterns found more often in
the search space than would be predicted by a null or background sequence model. Successful
algorithms of this class include AlignACE [4] and MEME [14], which use Gibbs sampling and
expectation maximization respectively, to search for the optimal sequence motif. A discrimina-
tive approach, in contrast, searches for specific motifs, those cis-regulatory elements which are
present at a higher frequency in a positive set of sequences than in a negative set of sequences.
A frequency difference in the positive and negative sets is required for accurate classification of
one set from the other, and is often not reflected by over-representation in the positive set, as
many instances of the over-represented motifs are also found in the negative set. Several algo-
rithms of the discriminative type have been developed previously, including Amadeus [15],
DREME [16], HOMER [17], Dimont [18], DECOD [19], and others [20–23]. By necessity, a
discriminative objective function is more expensive to compute; it requires scoring not only the
sequences in the positive search space, but also those sequences in the negative set to establish
the scarcity of the motif in negative sequences. Consequently, some previous algorithms have
used a k-mer sequence model for the motif while performing discriminative motif finding. Our
algorithm, which we call MotifSpec, uses a full position-weight matrix as its sequence model,
which we show performs better than many existing discriminative models, and is comparable
in accuracy to HOMER [17] and Dimont [18].

The positive set can be defined through one of three methods. First, we might have direct
binding data for the protein or TF, and the set of sequences whose binding score is above a
threshold is used as the positive set. This threshold can be a simple rank, or can result from
computation of a p-value given some null binding model. This approach is common with
ChIP-chip, ChIP-seq and PBM experiments. Second, we might use co-expression as a proxy
for binding, and choose a correlation threshold to define the search space. This method often
involves clustering co-expressed genes and then running a motif-finding algorithm on the
upstream regions of genes in the individual cluster [4,24–27]. Finally, we might use prior bio-
logical annotation to identify bound sequences. In the first two cases, the optimal boundary
between the positive and negative sets is generally not obvious, and changing the boundary
threshold will change the membership of the positive and negative sets.

Discriminative Motifs in Dynamic Search Spaces
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Most existing discriminative motif finding algorithms consider the positive and negative
search spaces to be fixed. Instead of using a fixed set of positive sequences, a dynamic approach
allows the boundary between the positive and negative sequences to evolve during the search
procedure. A dynamic threshold can be applied when searching for motifs in any set of contin-
uous enrichment data, such as ChIP-seq peak intensity. MotifSpec uses such a dynamic search
space to optimize the specificity of the motif, which we show improves quantitative measures
of motif predictive power on PBM and expression datasets.

Methods
MotifSpec is a heavily modified version of the Gibbs sampling algorithm implemented in
AlignACE [26]. The key innovations in MotifSpec are a dynamic search space, a dynamic
threshold for sequence score, and a hypergeometric discriminative objective function.

Dynamic threshold to determine positive and negative sets
As mentioned above, current algorithms typically use a fixed search space. In contrast, Motif-
Spec dynamically optimizes the threshold defining the positive and negative sets using the
objective function discussed below. In the case of TF binding, this threshold is a binding inten-
sity. This dynamic search space is appropriate given that TFs have widely varying target set
sizes.

Dynamic threshold for sequence score
In both AlignACE and MotifSpec, sequence positions are scored according to the equation: L =
Pr(S|θ)/Pr(S|θ0), where L is the site score or likelihood ratio, S is the site being scored, θ is a
PWM sequence model, and θ0 is a background distribution. This odds-ratio is then converted
into a probability using a Bayesian framework. We compute the probability of the PWM
model θ given the site S currently being scored as: Pr(θ|S) = L Pr(θ)/(L Pr(θ) + 1 − Pr(θ)).

In AlignACE, a fixed Pr(θ|S) threshold determines whether a specific site is an instance of
the current PWM, and whether it should be added to the PWM for the next iteration. Instead
of a fixed threshold, MotifSpec dynamically adjusts this threshold to maximize the objective
function discussed below. We call this threshold the "sequence threshold" because it determines
how high the sequence of a site must score by the current PWM to be considered an actual
binding site, and to be added to the model. In addition, AlignACE has a parameter called
expect, which is the prior for number of instances of the motif in the search space. This parame-
ter is used to calculate Pr(θ) = (ew + x(1 − w)) / T, where e is expect, x is the current number of
motif instances, w is a weight assigned to the prior and T is the total number of positions avail-
able in the search space. Instead of relying on the difficult to estimate expect parameter, Motif-
Spec assumes one motif instance per sequence, replacing e with the number of sequences in the
current search space, s1.

Model components and objective function
In order to support the dynamic thresholds for sequence score and search space membership,
the MotifSpec motif model consists of a PWM and two additional components:

1. Search space threshold: the minimum binding score that a sequence must have to be
included in the search space or positive set. The set of sequences that are above this thresh-
old is the set s1. In the case of ChIP-seq, this threshold score is read depth; for PBM, it is the
binding intensity of the oligo; in the case of expression similarity, it is a correlation measure.

Discriminative Motifs in Dynamic Search Spaces
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2. Sequence score threshold: the minimum site score that a site in a sequence must achieve to
be considered an instance of the motif. The set of sequences that have a site scoring above
this threshold is the set s2.

MotifSpec uses a discriminative objective function called a specificity score, which measures
the enrichment for sequences to be in both s1 and s2. Given x sequences that are in the intersec-
tion of the above sets, and N total sequences in the positive and negative sets, the specificity
score is defined using the hypergeometric distribution as

Specificity score ¼ �log
Xminðs1 ;s2Þ

i¼x

Cðs1; iÞCðN � s1; s2 � iÞ
CðN; s2Þ

 !

This specificity score is the negative logarithm of the group specificity score used by Hughes
et al [4]. Since N is typically large for genomic datasets, we calculate the summation in the spec-
ificity score in log space using log(x + y) = log(x) + log(1 + exp(log(y) − log(x))), where x and y
are individual probability terms for different values of i in the equation above.

Weighted PWM
AlignACE and most other motif finders use an equal contribution from each motif instance to
compute the PWM. MotifSpec weights the contribution of each instance to the PWM accord-
ing to the binding score of that instance. Say that we have n instances of a motif. Let w be the
vector of binding scores of the sequences normalized to be between 0 (low) and 1 (high).
Assume that the PWM has k columns and that Ii,j,b is the indicator variable of having the base
b at position j in instance i of the motif. Then the probability fj,b of having base b at position j
in the motif in an unweighted PWM is fj;b ¼ ðPn

i¼1 Ii;j;bÞ=n. Instead, MotifSpec calculates the

weighted PWM using fj;b ¼ ðPn
i¼1 Ii;j;bwiÞ=ð

Pn
i¼1 wiÞ.

Algorithm
The MotifSpec algorithm iteratively optimizes the PWM and the thresholds in the model (Fig
1). MotifSpec initializes the model by choosing a random site from the positive search space.
Similar to AlignACE, convergence is measured by improvement in the specificity score; Motif-
Spec stops iterating after a series of iterations without improvement have occurred, with the
number of iterations being a customizable parameter. MotifSpec then alternately adjusts the
binding score threshold and sequence score threshold to maximize the objective function,
given the current PWM. Sites are rescored using these new thresholds. With the new thresh-
olds, the iteration process is repeated, again untilminpass iterations without improvement
occur, and the current model is output. After the first motif is found, subsequent searches are
performed with new random starts, terminating early if the current model is similar (Compar-
eACE score greater than a threshold, default 0.9) to a motif previously found with a higher
specificity score. The number of such restarts is s1/(w k), where s1 is the size of the search space
(in base pairs), w is the number of columns in the PWMmotif model, and k is a sampling
parameter.

Other Algorithms
All algorithms were run in discriminative mode and with default parameters unless otherwise
noted here. HOMER version 4.7 was downloaded from http://homer.salk.edu/homer/
download.html and run with motif lengths 8,10,12,14,16,18, and 20, and the highest scoring
motif is used for comparison. Dimont was downloaded from http://www.jstacs.de/index.php/
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Dimont/Download, and was run in discriminative mode by giving each positive sequence a
“signal” of 1000, each negative sequence a “signal” of 0, and used a “peak” in the center of each
sequence. DECOD version 1.01 was downloaded from http://sb.cs.cmu.edu/DECOD/, and was
run with motif width 10 and 12, as larger width required excessive memory (>100GB). Ama-
deus was downloaded from http://acgt.cs.tau.ac.il/amadeus/. DREME and MEME were run
from the MEME suite version 4.10.1 downloaded from http://meme-suite.org/. Weeder was

Fig 1. MotifSpec optimizes for specificity rather than over-representation and uses a dynamic search
space. (A) An over-represented motif is found in the search space more often than expected according to
some background model. It is not necessarily predictive. A specific motif is found in a much higher frequency
in the search space than in the background sequences. A dynamic search space threshold finds the optimal
search space such that the motif is most discriminative. (B) A schematic of the MotifSpec algorithm. The
PWMmodel is initialized with a random sequence and position in the search space. The model is iteratively
refined and the motif and binding score thresholds are adjusted at convergence to maximize specificity. (C)
An example of sequences scored using the model. Each sequence has a motif score and a binding score.
The binding score determines if a sequence is in the search space. The motif score determines if the
sequence has an instance of the motif. The sequences are color-coded according to the set to which they
belong as defined in (B).

doi:10.1371/journal.pone.0140557.g001
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downloaded from the ModTools site (http://159.149.160.51/modtools/). Seed-and-Wobble
motifs were downloaded from Uniprobe [9]. Only MEME, Weeder, and AlignACE were run in
non-discriminative mode.

Human, Mouse, andWorm ChIP-seq datasets
We analyzed 16 mammalian ChIP-seq datasets. Three of the datasets (CTCF [27], NRSF [2],
and the estrogen receptor (ER) [28]) measured binding in human cells, while the other 13 mea-
sured binding of mouse TFs in embryonic stem cells [29]. For the human TFs, we downloaded
the raw data from the Gene Expression Omnibus (GEO) database. We re-processed the raw
data using the MACS algorithm [30] with default parameters and designated high confidence
peaks (false discovery rate< 0.01%) as the positive set. This process resulted in positive sets
with 5444, 2417 and 1225 peaks for CTCF, NRSF and ER respectively. A 300 bp window of
genomic sequence around each peak was used for analysis for ER and CTCF, a 500bp was used
for NRSF. For mouse embryonic stem cell datasets, we used the set of bound sequences defined
in [29] as the positive set. We also analyzed ChIP-seq data for C. elegans from the modEN-
CODE project [6]. We used the peaks designated “appropriate for downstream analysis" in
[31] as positive sets. For each positive set, we created a negative set using a previously published
procedure that matched the sequence lengths, GC content and repeat fraction of the positive
set [32]. We have the freedom to select larger negative sets which usually lead to more predic-
tive motifs. For the human and mouse datasets we used 2x each positive set and for worm used
4x each positive set.

Yeast PBM datasets
We downloaded data from 132 PBM experiments with 89 yeast TFs from Uniprobe [9]. The
raw scores for the approximately 40,000 60-mer probes were translated to strictly positive val-
ues and fitted with a log-normal null distribution. The goodness of fit of the scores to the
model was verified with qq-plots (S1 Fig). We used 1-F as a normalized (0; 1) binding score for
each probe, where F is the cumulative distribution function of the log-normal translated scores.
When learning motifs with MotifSpec, we dynamically optimized the positive and negative
sets. For subsequent ROC curve analysis to compare the predictive power of MotifSpec motifs
to previous approaches, we used normalized binding scores greater than 0.9 to define the posi-
tive set, and binding scores less than 0.5 for the negative set. Our comparative analysis is insen-
sitive to these cutoffs.

Synthetic sequence-expression data
To test our dynamic expression clustering, we constructed a synthetic dataset consisting of
5000 sequences with lengths sampled from a Gaussian distribution with mean 800bp and stan-
dard deviation 100bp, and which have the same GC content as yeast intergenic sequences.
Instances of test motifs were seeded into these sequences. To approximately reproduce the
structure of yeast intergenic regions, we seeded two classes of motifs: "functional" and "non-
functional". Four "non-functional" motifs were seeded into each sequence at random, but the
"functional" motifs were only seeded into co-expressed sets of genes. These sets were of varying
size, and one "functional" motif was seeded into each member of a co-expressed gene set. A
total of 80 functional motifs were seeded. To mimic the dominant yeast expression patterns of
stress-induction and stress-repression, 40 of the functional motifs were seeded into stress-
induced gene sets, and 40 were seeded into stress-repressed gene sets. Individual expression
patterns were sampled from a Gaussian distribution with means centered on these two anti-
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correlated expression patterns. This procedure produced pairwise correlations between expres-
sion pattern means that matched the actual expression data described below.

Yeast and C. elegans sequence-expression datasets
We extracted upstream sequences for all yeast (Saccharomyces cereviseae) ORFs as previously
described [25]. We also created a combined gene expression dataset from three different yeast
studies, which included cell cycle timepoints and various metabolic stimuli, for a total of 5228
genes across 292 conditions [33–35]. Similarly, we extracted upstream sequences for all genes
in C. elegans as previously described [25] and combined expression data from three different
studies in C. elegans [36–38] for a total of 82 conditions and 5691 genes.

Evaluation of motifs for ChIP-seq and PBM datasets
To measure the predictive power of our motifs and compare to those previously reported, we
scored the positive and negative sets with each PWM using ScanACE, and ranked all sequences
according to the highest scoring site in each sequence. Using this ranked list, we plotted a
receiver operator characteristic (ROC) curve and used the area under the ROC curve (auROC)
as a measure of how well a motif was able to discriminate between the positive and negative
sets.

Background model
AlignACE uses a single nucleotide frequency model (equivalent to a 0th order Markov model)
to calculate the site score. Later algorithms (e.g. [14]) have shown that the use of a higher order
background model can prove beneficial. In keeping with this trend, MotifSpec can use a back-
ground Markov model with order up to 5. In practice, we tend to use a 3rd order Markov
model. Increasing the order of the background model did not result in consistent improvement
in performance (S2 Fig). Since our objective function penalizes motifs according to their actual
frequency in the negative/background set, it is likely that the background model, which is a
summary statistic of the background set, is not as important to performance.

Gapped motifs and number of PWM columns
One advantage that AlignACE provides over competing algorithms is the ability to find gapped
motifs. The PWMmodel is not necessarily contiguous bases and can actually include gaps. For
example, the width of the motif might be 15 bases, but only 10 of these bases might be informa-
tive and therefore included in the PWM. This gapped PWMmodel is useful for TFs that bind
as a dimer to two sets of constrained DNA bases separated by unconstrained bases. For exam-
ple, the yeast TF Gal4 binds to the sequence pattern CGGnnnnnnnnnnnGGC. MotifSpec takes
the gapped motif concept one step further: it has the ability to add or remove columns to the
PWM randomly during the motif search to see if it improves the specificity score. We use this
setting for genome-wide searches using expression data, since we are looking for novel motifs
that may have an unpredictable number of informative columns.

Performance heuristics
Given the definition of the specificity score, it is obvious that each iteration of the MotifSpec
algorithm requires the scanning of N total sequences for motif instances, unlike over-represen-
tation based algorithms such as AlignACE and MEME which would scan the search space
alone. Since each random start of the MotifSpec algorithm is independent, however, we can
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parallelize the searches and essentially reduce running time by a factor equaling the number of
parallel instances of MotifSpec (S3 Fig).

Another heuristic used to increase scanning performance is the maintenance of a list of the
highest scoring site in each of the input sequences. Since only the highest scoring site deter-
mines membership in the set of sequences containing an instance of the motif, we do not need
to scan every position of every sequence. Instead, we only scan the position that was the highest
scoring site in each sequence in the previous iteration. If the PWM has changed considerably
from the previous iteration, MotifSpec then triggers a full scan of all positions in all sequences.

Software availability
Source code for MotifSpec and documentation describing installation and operating instruc-
tions are available from our website: http://www.beerlab.org/motifspec and at https://github.
com/rakarnik/motifspec.

Results

Human ChIP-seq datasets
We first used ChIP-seq data for three human transcription factors: CTCF, NRSF, and the estro-
gen receptor (ER), to compare the performance of MotifSpec to five other algorithms: DREME
[16], Amadeus [15], HOMER[17], Dimont[18], and DECOD[19]. Positive and negative sets
were identical for each method and chosen as described in Methods. In all three cases, the top
motif found by MotifSpec was able to discriminate significantly better between the positive and
negative sets (higher auROC) than DREME and Amadeus and DECODE, and was generally
similar or marginally better than HOMER and Dimont (Fig 2, S4–S6 Figs) The motifs found
by each algorithm are shown in Fig 2E. MotifSpec consistently found longer motifs than either
DREME or Amadeus. As these algorithms are word-based, we speculate that finding high-scor-
ing exact matches to individual long k-mers or regular expressions is less likely and that these
long words get filtered out at an early stage in the algorithm. In contrast, as an entirely PWM-
based algorithm, MotifSpec is able to detect these longer motifs with gaps and degenerate posi-
tions. PWMmodels typically have more parameters than word based models. To ensure that
the better discriminative power of the motifs found by MotifSpec was not due to over-fitting,
we performed 5-fold cross-validation on the three datasets using MotifSpec. The motifs found
were almost identical to those found using each complete dataset, and the auROC for the test
sets were consistently within 1% of the auROC found on the whole dataset.

Mouse ChIP-seq datasets
1We next ran MotifSpec on 13 TF ChIP-seq data sets generated in mouse embryonic stem cells
[29], and compared our motifs to the previously published motifs found using DREME [16].
Motifs found byMotifSpec were similar, but not identical, to those found by DREME in each
dataset. We evaluated the ability of the top motif in each dataset to recover positive sequences
from each dataset as above using auROC. In 10 of the 13 datasets, the top motif found by Motif-
Spec had higher auROC than the top motif found by DREME (Fig 3). In the three remaining
cases (Zfx, Klf4, Esrrb), the auROCs were almost identical. For some cases, the auROC values for
the best single motifs are low, indicating more combinatorial regulation by those factors.

C. elegans ChIP-seq datasets
We ran MotifSpec on the ChIP-seq data for 23 worm transcription factors [31]. We found four
additional motifs, for ELT-3, GEI-11, LIN-15B, and PQM-1, which were not reported in the
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original analysis (Fig 4). The motif found for LIN-15B was also one of the top motifs found by
dynamic expression clustering as described below.

Yeast PBM datasets
We next usedMotifSpec to find motifs in the yeast PBM data [5]. We ranMotifSpec using the
dynamic search space mode, using normalized binding scores as described inMethods. Using the
list of probes ranked by sequence score, we plotted the ROC curve for each TF-microarray pair and
calculated auROC. Using this benchmark, we compared the motifs found byMotifSpec to the
motifs reported in the original study as found by the Seed andWobble algorithm [3,5]. We excluded
41 of the 132 experiments where either auROC was less than 0.75, thereby eliminating any experi-
ments where neither algorithm found a sufficiently predictive motif. As shown in Fig 5, the motifs
found byMotifSpec outperformed those found by Seed-and-Wobble in 76 of the 91 experiments
(83%). This performance improvement was consistent, regardless of the p-value threshold used to
define the positive set. With p-value thresholds of 0.05 and 0.01, motifs found byMotifSpec were
more predictive in 83/104 (80%) and 93/119 (79%) experiments respectively (S7 Fig).

Dynamic expression clustering
Previous studies have attempted to detect regulatory elements by identifying sets of co-
expressed genes and searching for shared sequence motifs in the upstream regions of these sets
of genes [4,25,26]. These efforts first clustered genes by their expression, then used motif-

Fig 2. Human ChIP-seq results.MotifSpec performs comparably to HOMER and Dimont and consistently better than DECOD, DREME, and Amadeus in
finding a discriminative motif when run on ChIP-seq data for three human transcription factors, CTCF, NRSF and the estrogen receptor (ER). Panels a, b, and
c show the ROC curves and auROC values for the top scoring motif from each program when run on the three datasets. Panel d shows a summary
comparison of auROC for each algorithm and motif, and panel e shows the top scoring motif found by each program.

doi:10.1371/journal.pone.0140557.g002

Fig 3. Mouse ChIP-seq results MotifSpec outperforms DREMEwhen run on ChIP-seq data for 13 transcription factors frommouse embryonic
stem cells. The left panel shows a plot of the AUC for the top motif reported by MotifSpec against the AUC for the top motif reported by DREME, while the
right panel shows the improvement in AUC for the MotifSpec motif relative to the DREMEmotif.

doi:10.1371/journal.pone.0140557.g003
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finding algorithms on the upstream regions of each cluster. Given inherent biological and
experimental noise, these methods are limited in their ability to tease apart similarly expressed
regulatory programs, as similarly expressed genes can be assigned incorrectly to clusters and
lower the sensitivity of the subsequent motif-finding step. MotifSpec can increase sensitivity
relative to this two-step approach by using its dynamic search spaces to search for elements in
co-expressed gene sets without starting with predefined co-regulatory clusters. MotifSpec iden-
tifies genes that have similar expression profiles and a shared sequence motif in their upstream
regions, and iteratively refines the model of both the expression profile and the sequence motif.
This approach was used to search for regulatory elements in genome-wide datasets using com-
bined sequence and expression data. We first test MotifSpec on simulated expression and
sequence data, and then on actual yeast expression and sequence data, as it has been empha-
sized that it is significantly more difficult to detect motifs in actual genomic sequence [39].

Synthetic sequence-expression dataset
To evaluate the performance of this approach on a simulated dataset, we ran MotifSpec against
the synthetic data described inMethods. To compare MotifSpec to the two-step approach, we
also clustered the genes using k-means clustering on the expression data and ran the motif find-
ing algorithms AlignACE, MEME andWeeder on the upstream sequences of the genes in each
cluster. We evaluated the ability of these distinct methods to recover seeded motifs from the
upstream sequences. MotifSpec performed much better than the two-step approach, as shown by
the precision-recall curve (Fig 6). At a 10% false positive rate (90% precision), MotifSpec recov-
ered 85% of the seeded motifs, while the two-step algorithms recovered between 46% and 60%.

Yeast sequence-expression data
We next compared the performance of MotifSpec to that of a two-step process of clustering
using k-means and motif-finding within clusters using AlignACE on the actual yeast

Fig 4. modENCODE ChIP-seq results. Binding specificities for four C. elegans transcription factors as learnt from ChIP-seq data from the modENCODE
project.

doi:10.1371/journal.pone.0140557.g004
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expression data described in Methods. The list of motifs generated by each algorithm was com-
pared to a compendium of 97 known yeast motifs. MotifSpec found more known motifs from
the expression data (65/97 or 67%) than k-means-AlignACE (39/97 or 40%) at a CompareACE
threshold of 0.75 (Fig 7). We also compared the target list for predicted motifs with lists of tar-
get genes from yeast ChIP-chip data. More target lists found by MotifSpec overlapped

Fig 5. Motifs found by MotifSpec perform better at retrieval of bound probes than the motifs found by Seed-and-Wobble. The barchart shows the
percentage improvement in the area under the receiver-operator characteristic (ROC) curve, and the top motif found by MotifSpec performs better than the
Seed-and-Wobble motif in the majority of cases where either motif has an AUC of 0.75 or better. Three representative ROC curves are shown, two (Gln3 and
Pbf2-9) in which MotifSpec outperforms Seed-and-Wobble and one in which Seed-andWobble is better (Sum1-9). The red curve is the ROC for the Seed-
and-Wobble motif and the green curve is the ROC for the best MotifSpec motif.

doi:10.1371/journal.pone.0140557.g005
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significantly (p-value< 10−7) with ChIP-chip target lists than those found by k-means-
AlignACE (Fig 7).

Fig 6. MotifSpec performs better at recovery of seededmotifs from a synthetic sequence-expression dataset than two-step procedures of k-
means clustering andmotif-finding using AlignACE, MEME andWeeder.

doi:10.1371/journal.pone.0140557.g006
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C. elegans sequence-expression data
We next used dynamic expression clustering to find motifs using MotifSpec on C. elegans
expression data. To determine a significance threshold for reporting motifs, we repeated the
search on randomized sequences as a negative control. At a specificity score of 26 or higher, we
found 135 motifs found in the real dataset and only 10 motifs in the randomized dataset, which
translates to a false discovery rate of 7.4%. To generate a non-redundant list, we removed
motifs that had a target gene overlap of 30% or greater with a similar motif, leaving 87 motifs
total (S1 Table). For each of these motifs, we calculated Gene Ontology (GO) and Anatomy
Ontology (AO) [40] enrichment.

The top 5 motifs from this analysis are shown in Fig 8, along with any enriched GO and AO
terms. Motif M1 is the known GATA factor binding site. As expected from its intestinal func-
tion, GO terms such as "small molecule metabolic process" and "hydrolase activity" are highly
enriched in the set of target genes, while the AO terms "digestive tract" and "intestine" are also
enriched. Motif M2 was previously found to be associated with the expression of muscle genes
[41], and "locomotion" and "muscle cell" are the most enriched ontology terms. We note that
several similar GA-rich motifs on our full list (S1 Table) also have high specificity scores and
highly overlapping target gene sets, suggesting that the motif may be more degenerate than the
highest scoring motif would suggest. Motif M3 is novel and is significantly enriched for "ubi-
quitin-mediated proteolysis". Its target genes include several F-box family proteins and non-
coding RNAs. Motif M4 matches a motif identified as the binding site for CEH-30 from mod-
ENCODE ChIP-seq data [6], while our own analysis of the LIN-15B ChIP-seq dataset from the
modENCODE project identifies it as well (Fig 4). CEH-30 ensures survival of male-specific

Fig 7. MotifSpec detects more known yeast motifs than the combination of k-means clustering and
AlignACE (km-aa). There were 97 knownmotifs in total. A CompareACEmotif similarity score of 0.75 or
greater was considered a match. ChIP target sets were considered a match if the hypergeometric p-value for
overlap was less than 10−7.

doi:10.1371/journal.pone.0140557.g007
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neurons during development [42] and M4 targets are enriched for "sex differentiation", which
would support the hypothesis that CEH-30 binds to this motif. LIN-15B is implicated in the
development of vulval cells [43]. In either case, it is likely to be functional. Motif M5 is another
novel motif and targets "cuticle" genes, including 12 collagen and 3 vitellogenin genes.

Discussion
We have described a novel discriminative motif finding algorithm which uses dynamic search
spaces and we evaluated the discovered motifs' predictive performance using ROC analysis.
Our algorithm, MotifSpec, showed comparable or marginally improved performance com-
pared to HOMER and Dimont, and markedly improved performance relative to other discrim-
inative motif finding algorithms such as DECOD, DREME and Amadeus when using a fixed
search space on mouse and human ChIP-seq data. Since these discriminative motif finders all
use similar objective functions, we attribute most of the improvement to our use of a PWM
motif model rather than k-mers or regular expressions. We also analyzed PBM binding data,
and here MotifSpec consistently outperformed the platform-specific motif finder Seed-and-
Wobble. Seed-and-Wobble is geared specifically towards the analysis of PBM datasets and uses
a k-mer enrichment score. MotifSpec is able to do better than Seed-and-Wobble, while remain-
ing agnostic to the underlying technology.

We also presented MotifSpec's novel dynamic expression clustering mode, where we used
MotifSpec to search for proximal cis-regulatory elements in yeast and C. elegans using sequence
and expression similarity on an equal footing. Using this approach on worm, we found a non-
redundant list of 87 motifs, which are highly specific for gene target co-expression and func-
tional enrichment. These putative cis-regulatory elements are prime candidates for experimen-
tal verification. Only 49 of these elements were found in our earlier investigation of worm

Fig 8. The top 5 motifs found by MotifSpec in a genome-wide search of aC. elegans sequence and expression dataset. Alongside each motif is its
specificity score and any Gene Ontology (GO) and Anatomy Ontology (AO) terms that were enriched in the list of target genes.

doi:10.1371/journal.pone.0140557.g008
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expression data [25], and only 12 are in the list of 61 motifs found by the FIRE algorithm [44].
Two elements that we have experimentally validated (data not shown) have been shown to be
functional in the worm germline [45].

Recently, significant progress has been made detecting TF-binding sequence signals in more
complex mammalian enhancers using SVMs [32,46–48]. In these approaches, all k-mers of a
given length receive a weight quantifying their importance defining the enhancer set. Because
this k-mer list is typically very long, it can be difficult to interpret. Because the k-mer weight
list has a continuous score and is logically identical to PBM data in structure, where the SVM
weight is analogous to the PBM enrichment score, we anticipate that MotifSpec may be useful
in summarizing important TF binding sites in weights from an SVM trained on mammalian
enhancers.

In summary, we have shown that our discriminative motif finder with dynamic search
spaces is comparable to or marginally outperforms all of the best existing motif discovery tools,
and should improve the extraction of biologically meaningful regulatory elements from the
large amounts of ChIP-seq and RNA-seq expression data being generated by high throughput
sequencing technologies.

Supporting Information
S1 Fig. Q-Q plots showing fit of PBM data to log-normal distribution. Q-Q plots for two
experiments, Bas1 and Pho4-9, are shown.
(PDF)

S2 Fig. Effect of background model on MotifSpec ChIP-seq results. The graphs show the
impact on auROC for three datasets of the order of the background model. There was very little
change in auROC with the use of higher-order background models.
(PDF)

S3 Fig. MotifSpec uses multiple worker processes to parallelize the motif search process.
The worker threads output the motifs found, which are collected by an archiver process that
creates a non-redundant archive of motifs. The motif archive is fed back into the worker pro-
cesses for early termination of searches that are similar to a motif that has already been found.
(PDF)

S4 Fig. Precision recall curve for CTCF. The AUC values are shown in the bottom left corner.
(PDF)

S5 Fig. Precision recall curve for NRSF. The AUC values are shown in the bottom left corner.
(PDF)

S6 Fig. Precision recall curve for ER. The AUC values are shown in the bottom left corner.
(PDF)

S7 Fig. MotifSpec motifs predict PBM binding data better regardless of p-value threshold.
The bar charts shows the improvement in the area under the receiver-operator characteristic
(ROC) curve, and the top motif found by MotifSpec performs better than the Seed-and-Wob-
ble motif regardless of the p-value threshold used to define the positive set of bound probes.
The top chart shows the auROC improvement with a threshold of 0.01 and the bottom chart is
with threshold 0.05.
(PDF)

S1 Table. Motifs found in C. elegans by dynamic expression clustering.
(PDF)
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